Edge Sheared Flows and Blob Dynamics

J. R. Myra,^a W. M. Davis,^b D. A. D'Ippolito,^a B. LaBombard,^c D. A. Russell,^a J. L. Terry,^c and S. J. Zweben^b

- a) Lodestar, Boulder, CO, USA
- b) PPPL, Princeton, NJ, USA
- c) MIT, Cambridge, MA, USA

Motivation & Background

- Edge sheared flows:
 - important for the L-H, and H-L transitions
 - generated by, and regulate the turbulence
 - control the character and trajectories of emitted coherent structures such as blob-filaments
- Blob generation and dynamics impacts:
 - the (near-separatrix) scrape-off-layer
 (SOL) width, which is critical for ITER power handling in the divertor
 - far SOL blob interaction with plasmafacing components

Conclusion: Mechanisms related to blob motion, SOL currents and radial inhomogeneity are sufficient to explain the presence or absence of mean sheared flows in selected NSTX and Alcator C-Mod shots.

Outline

- Experimental method and observations
- Theory of blob motion and sheared flow generation
- Seeded blob and turbulence simulations for NSTX and C-Mod
- Conclusions

Gas Puff Imaging (GPI) and blob-tracking analysis tool

Shot 1100824017

Davis et al. YP8.00038 (Fri. am)

- GPI: Small puff of neural gas (D or He) used to illuminate edge turbulence (via line emission)
- Use relative GPI intensity $\delta I/\langle I \rangle$ as the signal to analyze (in 2D space + time)
- For each frame: locate local maxima, fit ellipse to each ⇒ "blob"
 - wave crests & detached filaments
- Track the motion and structure evolution from frame to frame
- Analyze and compare blob tracks from
 - NSTX
 - Alcator C-Mod
 - SOLT code simulations

Sample NSTX experimental GPI movie frames

- normalized intensity, blob center (+) and fitted ellipse (0)
- 10 μs per image (every 4th frame of data)

Experimental NSTX blob tracks

- Some blob tracks show:
 - outward motion (ejection)
 - confinement
 - reversal of v_y near the separatrix

	NSTX 139444	C-MOD 1100824017
$n_{e,sep}$ (cm ⁻³)	5.8×10^{12}	1.0×10^{14}
$T_{e,sep}(eV)$	19.	47.
$\rho_{s,sep}$ (cm)	0.26	0.025
$\Lambda_{\rm SOL} \sim \nu_{\rm e*} (m_{\rm e}/m_{\rm i})^{1/2}$	0.3 - 0.8	1-3
blob size a _{b,sep} (cm)	2.2 ± 0.5	0.4 ± 0.1
$\delta I/\langle I\rangle _{sep}$	0 – 1.6	0 - 0.6

Blob motion is controlled by polarization charges

 ∇B and κ drifts charge-polarize the blob \Rightarrow outward convection

Current flows neutralize charges; asymmetrically in SOL

Background flows or drifts rotate and shear converting radial motion to poloidal

Additional monopole charge (vorticity) component ⇒ rotation of dipole

Related Refs.: Diamond and Kim, PF 1991; Terry, RMP 2000; Furno, PRL 2011; Bisai, PoP 2012; Myra PoP 2004; Manz TTF 2012, Horton RMP 1999

Simulation model

D. A. Russell, et al, Phys. Plasmas 16, 122304 (2009)

Scrape-Off-Layer Turbulence (SOLT) code

- 2D (x,y) fluid turbulence code: model SOL in outer midplane \perp Be_z
 - classical parallel + turbulent cross-field transport
- Evolves n_e , T_e , Φ with parallel closure relations
 - sheath connected, with flux limits, plus collisional regimes
- Strongly nonlinear: $\delta n/n \sim 1 \Rightarrow blobs$
- Model supports drift waves, curvature-driven interchange modes, sheath instabilities
- Here:
 - Seeded blob simulations (initial value)
 - Quasi-steady turbulence simulations

Trajectory for base case NSTX seeded blob

• In SOLT, initialize a typical NSTX blob (size, amplitude) on the experimental background profiles (n, T; R, B, L_{\parallel} , ...) and follow its trajectory +

- Blob flows up in the edge (e-direction) and down in the SOL (i-direction)
- Track reversal near separatrix (like data)

Sheath interactions, electron drifts, shear layers, influence trajectories in SOLT

- Artificially vary simulation physics to infer mechanisms actually operative in the experimental data
- Acceleration a_y near separatrix related to Reynolds stress and sheared flow generation

 $\begin{array}{l} \text{imposed SOL } v_{Ey} < 0 \\ \text{Co-shear flow traps blob} \\ \text{(shear confinement)} \end{array}$

Blob trajectories allow determination of Reynolds stress

• Smoothed fits to blob tracks x(t), $y(t) \Rightarrow$ accelerations and mean RS

SOLT turbulence simulations run to quasi-steady state: similar blob flows and accelerations as NSTX

rms fluctuations > means

Seeded blob simulations of high collisionality C-Mod shot require modeling extra 3D physics

- High collisionality $SOL \Rightarrow parallel variation along B, X-point effects$
- SOLT model using midplane plasma parameters disagrees with data.
- Assuming sheath disconnection from the plates and extra charge dissipation from friction or cross-field X-point currents gives better agreement.

C-Mod turbulence simulations with these assumptions reproduce small mean blob flows with turbulent shearing

Qualitative agreement near separatrix and in SOL Core-side flow BC in SOLT $v_E = 0$ is artificial (may contaminate a_v)

Blob ellipticity and tilt angle variation provide a Reynolds stress proxy (RSP)

- Blob tracking algorithm fits ellipticity and tilt to tracked objects
- Order unity variation in RSP = $-\sin(2\theta)[1-(r_2/r_1)^2]$ consistent with:
 - Significant blob shearing
 - $\omega_E' \sim 1/\tau_c$ (shearing affects dynamics: distorts blob, regulates flux [Russell et al., 2009])
- Reynolds force is in the right direction to drive observed flows in NSTX

Turbulence production rate SOLT simulations of NSTX and C-Mod

• Turbulence production rate $P_t = -\langle v_x v_y \rangle \frac{\partial \langle v_y \rangle}{\partial x}$ $P_t < 0 \Rightarrow \text{turbulent energy} \rightarrow \text{mean flows}$

• Net perpendicular force on the plasma

$$F_{\perp}/P = -\langle nv_{x}v_{y}\rangle/\langle 2nTv_{x}\rangle$$

- NSTX ~ 0.8 N/MW
- C-Mod < 0.05 N/MW

Summary and Conclusions

- GPI blob tracking tools
 - motion and changes in structure of blob-filaments
 - applied to NSTX, Alcator C-Mod, SOLT simulations
 - enables a new kind of comparison of edge turbulence theory with data
- Coherent structures crossing the separatrix are sheared and rotated by:
 - radially varying drifts

 \Rightarrow flows

- parallel sheath currents from changes in magnetic topology
- Simulated accelerations from these mechanisms are large enough to account for the observed Reynolds stress and mean sheared flows in NSTX.
- Sheared flows in the NSTX and C-Mod edge are sufficiently strong to affect blob dynamics and transport.
- There is evidence for mean flow damping in a high collisionality C-Mod case, possibly due to 3D effects.
- Model caveats: cold ions, simplified DW physics model, 2D fluid theory, but captures the essence of nonlinear E×B dynamics.

Lodestar 17