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Edge plasma physics is important for fusion research Edge plasma physics is important for fusion research 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.5

1

1.5

2

2.5

3

3.5

4

x, r

y, θ

• What is the “edge”?
– just inside the separatrix  (~ cm’s) to the wall
– some tokamak specific, much generic to 

magnetically confined plasmas

• Programmatic: [Loarte, ITER Physics Basis 1999]
– edge parameters critical for performance,
– power handling: “wall” damage by impact from 

plasma; SOL width
– wall content (tritium inventory)
– scrape-off-layer (SOL) environment for RF 

antennnas
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Classical picture of the edge: plasma flows to divertorClassical picture of the edge: plasma flows to divertor

classical picture
• turbulence diffuses plasma flux across 

separatrix (anomalous)
• plasma flows along field lines to divertor
classical assumptions
• parallel losses (τ|| = cs/L||) dominate in the 

scrape-off-layer (SOL)
• weak diffusive process set SOL width, λ
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but early observations in edge revealed
• very large amplitude, intermittent fluctuations
• coherent structures

– Goodall 1982
– Zweben 1985
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Fall of the classical picture: Fall of the classical picture: 
main chamber recycling and blobsmain chamber recycling and blobs

• Alcator C-Mod experiments:  large fraction of plasma 
flows to walls instead of divertor  [Umansky 1998]

• SOL transport not diffusive (∝ D∇n) but convective 
(∝ nvconv) 
– far SOL profiles can be flat
– vconv vs. cs

convective

ne

r

• plasmas convects across SOL in thin field-aligned blob-
filaments
[Krasheninnikov 2001; D’Ippolito et al. 2002]
– main ingredients of blob physics known previously
– blob now emerges as fundamental, individual, coherent 

object 
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Fluctuation Fluctuation PDFsPDFs show skewed nonshow skewed non--Gaussian tails, Gaussian tails, 
and have a universal characterand have a universal character

• PDF of Isat is skewed towards rare positive 
events (non-Gaussian)

• large events propagate radially outwards …

Antar, Counsell, Yu, LaBombard, Devynck
Phys. Plasmas 10, 419 (2003) 

• PDF = probability 
distribution function (for 
fluctuating quantities)

EXPERIMENTALEXPERIMENTAL
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Probe signals show intermittent transportProbe signals show intermittent transport

D. Rudakov, J. Boedo, R. Moyer et al., PPCF 44, 717 (2002) [DIII-D]

• conditionally-
averaged signals: 
intermittency, 
strong nonlinearity

• fast rise, slow 
decay

• Eθ correlated with 
density and flux 
(convection)

time
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2D imaging techniques show coherent structures in the edge 2D imaging techniques show coherent structures in the edge 
and scrapeand scrape--offoff--layerlayer

• Gas Puff Imaging on C-Mod, 
NSTX and other experiments
– Zweben, Terry

• Beam Emission Spectroscopy 
(BES) on DIII-D
– McKee

• large (cm) scale objects emerge 
from near the separatrix and 
propagate radially outwards

J.L. Terry et al., 2003 [C-Mod]
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Characteristic time and space scalesCharacteristic time and space scales

• spatial correlation length ⊥ B (“blob” radius):  ab = 0.5 – 3 cm
• radial size of edge region: 5 - 20 cm
• correlation time: τc = 10’s of µs
• structure (“blob”) velocity:  vx ~ ab/ τc ~ 105 cm/s = 1 km/s
• parallel correlation (connection) length:   L|| = 100’s of cm 
• parallel loss (flow) time τ|| ~ 100’s of µs

• tokamak edge/SOL plasma characteristics
– ne = 1012 – 1014 cm-3

– Te = 5 -50 eV
– ρj < L⊥, ab
– λei < L|| ⇒ collisional ⇒ try resistive, fluid modeling
– Ωcj τc >> 1 ⇒ gyro-averaged (low frequency) theory 
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• motivation and background

• physical mechanisms of blob dynamics 

• modeling of NSTX/GPI

• turbulence saturation mechanisms and flows

• drive terms
• current closures 
• electrostatic blob 

regimes
• EM effects, ELMs
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Curvature drifts & charge separation Curvature drifts & charge separation 
drives interchange modesdrives interchange modes

• unstable interchange mode
• crests break off ⇒ blobs
• troughs penetrate in ⇒ holes
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Blob structures result from the saturation of edge turbulence;Blob structures result from the saturation of edge turbulence;
many drive mechanismsmany drive mechanisms

+
−

• curvature
Krasheninnikov 2001
D'Ippolito 2002

• neutral wind
Krasheninnikov 2003

• centrifugal
• plate tilt

Cohen, Ryutov 2006

gκ = 2cs
2 /R

g cent = Vθ
2 / a

gnw = vnνin

gtp = 2cs
2 cot θ /L||



14Lodestar/Myra/MIT-2008

Charge separation drives currents which must closeCharge separation drives currents which must close

• parallel plasma resistivity
• cross-field resistivity
• sheath resistivity
• EM effects

The size of the various effective resistances controls 
the distribution of currents, as well as the total 
potential and therefore the blob speed  vE×B ~ Φ/ab. 

Speed ratio v⊥/cs controls “SOL width”, divertor footprint, 
midplane wall
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2D physics and closure relations2D physics and closure relations

Sheath limited blobs (Nedospasov instability)Sheath limited blobs (Nedospasov instability)

• parallel resistance is small; perpendicular resistance large ⇒ current loop 
closes in the sheath
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Inertia limited blobs (resistive ballooning mode)Inertia limited blobs (resistive ballooning mode)

• parallel resistance is large; current flows locally across field lines
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XX--point limited blobs (resistive Xpoint limited blobs (resistive X--pt mode)pt mode)

• parallel current flows to X-pt where shear (flux tube squeezing) enhances 
perpendicular conduction and enables closure of the current path
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Krasheninnikov, Ryutov and Yu, 2004
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Theory and simulations show the scaling of blob velocity vs. Theory and simulations show the scaling of blob velocity vs. 
size (a) and collisionality regime (size (a) and collisionality regime (ΛΛ))

• linear theory with correspondence rules give a rather good description of 
blob speed
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• blobs speed up with collisionality Λ
• for low Λ, small blobs move fastest
• for large Λ, large blobs move fastest

Myra, Russell, D'Ippolito 2006

CT invariant scaling
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Electrostatic regime diagram characterizes blob speedsElectrostatic regime diagram characterizes blob speeds
• specific scaling predicted in each 

regime

• expected range of blob velocities is 
bounded
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â
v
v

â
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2/1
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NSTX and CNSTX and C--Mod explore different regions of edge/SOL Mod explore different regions of edge/SOL 
parameter space parameter space 

• B ratio 20, ne ratio 30 …
• Observed vblob similar
• Characteristic v∗ is similar 

v∗ ~ 2 km/s 
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Experiments on TCV showed collisionality scalingExperiments on TCV showed collisionality scaling

• blobs speed up and SOL broadens with collisionality Λ

Garcia et al. PPCF 2007

SOL ne profile broadens at low 
Ip ⇒ high collisionality (~ L||/λei
∝ Λ)

radial blob velocity (cross-
correlated with ne fluctuations)

low Ip, high Λ

high Ip, low Λ

also seen on C-Mod [e.g. LaBombard PoP 2008]
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Heat transport and density limit implications of blob theory Heat transport and density limit implications of blob theory 
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• motivation and background

• physical mechanisms of blob dynamics

• modeling of NSTX/GPI

• turbulence saturation mechanisms and flows

• background
• comparison with 

analytic estimates
• comparison with 

turbulence code
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Background Background –– GPIGPI

• Gas Puff Imaging (GPI)
– Zweben 2004; Maqueda 2003; Terry 2003
– look for visual emission pattern from puffed gas 

in presence of plasma
– 2D movies of edge turbulence blob motion

• GPI measures light intensity, not ne, Te
HeI 5876 line intensity is  I = n0 F(ne, Te)
n0 = neutral He density
F(ne, Te) = atomic physics

• test theory of blob vx

• difficult to do with probe data alone
– 1D time-slice through blob 
– unknown impact parameter (no y info)

• NSTX and C-Mod GPI diagnostic well matched 
to blob dynamics
– spatially and temporally

sample GPI frame

NSTX shot 112825
L mode  4.5 kG, 800 kA 
0.8 MW NBI
He puff (HeI filter)
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NSTX: Observed blob velocity is bounded by theoretical NSTX: Observed blob velocity is bounded by theoretical 
minimum and maximumminimum and maximum

• database of blobs with size, speed, intensity …
• bounds, but no scaling

v r(
ob

se
rv

ed
) (

m
/s

)

vmin (theory) (m/s)
200 400 600 800 1000 1200 1400

200
400
600
800

1000
1200
1400

vr (GPI) vs. vmin

1000 2000 3000 4000

250
500
750

1000
1250
1500
1750
2000

v r(
ob

se
rv

ed
) (

m
/s

)

vmax (theory) (m/s)

vr (GPI) vs. vmax

2/1r
2

â
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Blobs lie in expected regime of parameter spaceBlobs lie in expected regime of parameter space

• another way of looking at the same data
• possible evidence for a independent upper limit, consistent (large 

error bars) with Alfvén-wave high-β closure
• hidden parameter is Λ ⇒ try controlled collisionality experiment
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â
v
v

â
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Generally, more satisfactory theory/experiment comparisons Generally, more satisfactory theory/experiment comparisons 
require:  analytic scalings require:  analytic scalings →→ turbulence codeturbulence code

• Can we understand the dynamics of an individual blob with known 
properties?
– given ne, Te, ab compare observed vx

• What properties are blobs created with and why? 
– rate & statistics of blob generation, scale size ab, ne, Te

• flux Γ ~ vb nb fp
– vy shear, nonlinear coupling effects on blob generation

well in hand

in progress

statistical variation of vblob is large:
• initial conditions for blob (vorticity)
• parallel properties
• blobs not isolated, round …
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The SOLT [The SOLT [SScrapecrape--ooffff--LLayer ayer TTurbulence] code urbulence] code 
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D. Russell
Lodestar
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• turbulence is intermittent, 
and blobs are emitted in 
random bursts

• blobs have similar shape, 
propagate in both x and y, 
and elongate in y

planeyrinI/I −∆><δ overbar ⇒ y-avg <…> ⇒ t-avg

Qualitative blob behavior in GPI movies is similar in Qualitative blob behavior in GPI movies is similar in 
simulation and experimentsimulation and experiment

D’Ippolito, IAEA 2008
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y

level of agreement between 
experiment and simulated turbulence 
is sensitive to parameters that control 
how close the system is to marginal 
stability, e.g. dissipation. 

N
ST

X
SO

LT

><−=δ III
NSTX
t = 3850 µs

NSTX
t = 3883 µs

NSTX
t = 3916 µs

SOLT
t = 4075 µs

SOLT
t = 4092 µs

SOLT
t = 4109 µs

NSTX
t = 3850 µs
NSTX
t = 3850 µs

NSTX
t = 3883 µs
NSTX
t = 3883 µs

NSTX
t = 3916 µs
NSTX
t = 3916 µs

SOLT
t = 4075 µs
SOLT
t = 4075 µs

SOLT
t = 4092 µs
SOLT
t = 4092 µs

SOLT
t = 4109 µs
SOLT
t = 4109 µs

NSTX
t = 3850 µs

NSTX
t = 3883 µs

NSTX
t = 3916 µs

SOLT
t = 4075 µs

SOLT
t = 4092 µs

SOLT
t = 4109 µs

NSTX
t = 3850 µs
NSTX
t = 3850 µs

NSTX
t = 3883 µs
NSTX
t = 3883 µs



30Lodestar/Myra/MIT-2008

Simulations provide a reasonable match to Simulations provide a reasonable match to I(rI(r) profiles and ) profiles and 
fluctuations levels fluctuations levels 

• Simulated and exp. data processed in 
same way and normalized to 1.

• location of peak intensity agrees

• simulated intensity too small for ∆r > 
5 cm (radial region where field lines 
connect to sheath)

• ⇒ sheath losses too large in the 
simulation for ∆r > 5 cm 

D’Ippolito, IAEA 2008
∆r
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PDFsPDFs of blob size are in reasonable agreement of blob size are in reasonable agreement 

• apply blob selection criteria 
(filtering, smoothing) to create a 
blob database

• analysis covers a spatial range 
0 < ∆r < 10 cm and a time slice of 
1200 ms 

• same procedure used for both 
simulation and experimental data

• most probable ab ~ 1.5 - 2.0 cm in 
both cases

• width of PDF also agrees

probability distribution
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PDFsPDFs of blob velocity show discrepancyof blob velocity show discrepancy

• here, exp. and simulation are NOT 
processed in same way:  
– vx (NSTX) is the kinematic

velocity of the intensity blob; 
– vx (SOLT) is the E × B velocity

• qualitative agreement in shape, but 
SOLT vx sacle is larger by factor 
of ~ 2

• possible explanation: turbulence 
too strong in simulation (too far 
from marginal stability)

• work in progress:  kinematic vx
(data & SOLT) using Tobin 
Munsat’s optical tracking 
algorithm
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SOLT code reproduces generic features of boundary SOLT code reproduces generic features of boundary 
turbulence observed in many experimentsturbulence observed in many experiments

SOLT code NSTX + others
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• motivation and background

• physical mechanisms of blob dynamics

• modeling of NSTX/GPI

• turbulence saturation mechanisms and flows

• role of ZF damping
• profile modification
• sheared flow 

saturation
• momentum transport 

and spin-up
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Strong zonal flow damping enhances turbulence Strong zonal flow damping enhances turbulence 
and blob transportand blob transport

SOLT turbulence code simulations 
[Russell et al. 2008; D’Ippolito IAEA 2008]

• νpy = zonal flow damping 
rate

• large damping  ⇒
– no zonal flows
– saturation by wave-breaking 

and plateau formation
– radial streamers & quasi-

periodic oscillations
• small damping ⇒

– saturation by zonal flows
– convecting objects are blob-

like
– intermittent bursts (in turb. 

flux)

flow shear

flux
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∆r (cm)∆r (cm)

FIG. 3   Plot of average density profile for 
several values of flow dissipation parameter νpy. 
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FIG. 3   Plot of average density profile for 
several values of flow dissipation parameter νpy. 
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∆r
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νpy → ∞

Density profile modification saturation occurs when Density profile modification saturation occurs when 
flows are damped flows are damped 

• for νpy → ∞

• Kadomtsev estimate works to 
within a factor of 2

• gives Γ independent of νpy
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• balance Reynolds stress with flow dissipation

• to get

• agrees qualitatively up to the knee of the curve

• for very small νpy, passive loss dominates

– very bursty transport

The small The small ννpypy regime saturates by sheared flows regime saturates by sheared flows 
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need better understanding of SOL 
dissipation:  neutrals?, measurements
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Edge turbulence carries momentum across the separatrix Edge turbulence carries momentum across the separatrix 

• back reaction spins up plasma
– Coppi [EPS 2006 paper P4.017  &  NF 2002] spontaneous toroidal rotation

• here examine transport of v⊥ only (2D problem)

• net plasma momentum buildup 
(balanced by sheath momentum loss)

• initial transient blob “kick”
• intermittency
• inward momentum diffusion5 10 15 20
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Residual from Reynolds and passive momentum flux Residual from Reynolds and passive momentum flux 
provides edge sourceprovides edge source

• Reynolds term generates flows
• passive momentum losses carry flows to SOL (blobs)
• residual ⇒ edge source
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Dynamics of blob formation and momentum transportDynamics of blob formation and momentum transport

• early nonlinear development of seeded m = 4 mode
– downward ejection of blobs (streamers); upward momentum “kick”
– upward moving wave crests twisted around and down in ejection process

• later quasi-steady intermittency
– sheared flows pinch off streamers ⇒ blobs

t = 3000

snapshots: density palette, momentum arrows

ion direction

electron 
direction

note flow reversal across separatrix 
similar to C-Mod  observations by Cziegler & Terry

t = 20000
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core SOL

SOLT simulation movie of strongly driven caseSOLT simulation movie of strongly driven case

• rainbow palette
– red large > 0
– blue large < 0
– white clipped

• counter-streaming 
flows

• intermittent blob 
ejection correlated 
with flows 

Russell 2008
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Conclusions Conclusions 

• dynamics of individual blobs well in hand theoretically
– velocity scalings known and regimes established
– some, but not much, experimental confirmation

• predictive modeling of blob formation and the resulting SOL width is in 
progress
– some encouraging agreement of NSTX GPI with 2D fluid turbulence 

simulations
– discrepancies remain to be resolved
– edge dissipation mechanisms need to be better understood

• turbulence saturation by profile modification and by sheared flows is being 
studied
– may play a role in bulk plasma rotation as well as sheared bipolar flows

Coherent structure formation and convective transport in edge 
plasmas is a very rich and challenging area of research.



43Lodestar/Myra/MIT-2008

Supplemental Supplemental 



44Lodestar/Myra/MIT-2008

AlfvAlfvéén wave closure and highn wave closure and high--beta blobs/beta blobs/ELMsELMs

• parallel current is limited by EM effects:  magnetic field is perturbed 
causing excitation of Alfvén waves [Parks 2000 ; Krasheninnikov 2004]
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ELM filaments can also carry net currentELM filaments can also carry net current

• introduces additional magneto-static forces
– enhance coherency of filaments in 2D plane 

(current pinch)
– also introduces kink and rippling instabilities

• filament is accelerated away from the plasma 
near the edge (hole repulsion)

• decelerated close to the wall (image current 
repulsion)

x

y

z +

g, vE×B

zJ~

zJ~

zJ

a)

b)

edge 
plasma

wall

ELM ELM imagehole

B

zJ

Myra, PoP 2007
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Electromagnetic instability and blob regimesElectromagnetic instability and blob regimes

each regime has a characteristic magnitude 
and scaling of blob radial velocity 
vx(ne, Te, ab; B, q, R) 
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The SOLT Model The SOLT Model 
αsh ⇒ losses of particles and charge 
to sheath  
αdw ⇒ electron adiabaticity (i.e. drift 
wave physics)

• momentum conserving zonal flows 
(non-Boussinesq)

• Three radial regions:
– edge  (inside LCS)

• Sources of particles and heat
• electron drift waves
• curvature-driven modes (blob birth zone)
• closed field lines

– near SOL  (just outside LCS)
• field lines open but disconnected (⇒ large 

L||), e.g. by X-point effects
– far SOL

• field lines connect to sheaths
• sheath absorption of charge, particles, 

momentum
• curvature-driven modes in both SOLs

αDW(r) αsh(r)

n0(r)
T0(r)

∆r (cm)

edge sheath

target profiles
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Blobs transport energy and can spinBlobs transport energy and can spin

• in the SOL, ⊥ and || transport compete
• particles flow out at cs ⇒ τ||p = L||/cs (ambipolarity)
• energy is conducted by χe|| or flows out faster than cs ⇒ τ||E << τ||p
• on short time scales, τ < τ||E, blobs can carry excess Te
• such sheath-connected blobs will spin
• charge mixing of +/- dipole ⇒ spinning blobs slow down radially and 

move poloidally

Φ(r) ~ 3Te⇒
Er × BTe(r)

r
+

−

Myra, D’Ippolito, Krasheninnikov 
& Yu, Phys. Plasmas 2004


