Blobs, Edge Turbulence and Interaction with Sheared Flows

J.R. Myra, D.A. D'Ippolito, D.A. Russell Lodestar Research Corp., Boulder CO

acknowledgements:

D.P. Stotler & S.J. Zweben (PPPL); R. Maqueda (Nova Photonics),
the NSTX Team; T. Munsat (U. Colorado); S.I. Krasheninnikov, J. Boedo,
D. Rudakov, (UCSD), G Antar (Am. U. Beirut); O.E. Garcia (Risø);
B. Coppi & J. Terry (MIT)

presented at MIT, Oct. 24, 2008

work supported by DOE grants DE-FG02-97ER54392 and DE-FG02-02ER54678

Outline

review:

S. I. Krasheninnikov, D. A. D'Ippolito, and J. R. Myra, J. Plasma Physics 74, 679 (2008).

Outline

- motivation and background
- physical mechanisms of blob dynamics
- modeling of NSTX/GPI
- turbulence saturation mechanisms and flows

- motivation
- history
- experimental observations

Edge plasma physics is important for fusion research

- What is the "edge"?
 - just inside the separatrix (~ cm's) to the wall
 - some tokamak specific, much generic to magnetically confined plasmas
- Programmatic: [Loarte, ITER Physics Basis 1999]
 - edge parameters critical for performance,
 - power handling: "wall" damage by impact from plasma; SOL width
 - wall content (tritium inventory)
 - scrape-off-layer (SOL) environment for RF antennnas

Classical picture of the edge: plasma flows to divertor

classical picture

- turbulence diffuses plasma flux across separatrix (anomalous)
- plasma flows <u>along field lines</u> to divertor

classical assumptions

- parallel losses ($\tau_{||} = c_s/L_{||}$) dominate in the scrape-off-layer (SOL)
- weak diffusive process set SOL width, $\lambda = (D\tau_{||})^{1/2}$

but early observations in edge revealed

- very large amplitude, intermittent fluctuations
- coherent structures
 - Goodall 1982
 - Zweben 1985

Fall of the classical picture: main chamber recycling and blobs

- Alcator C-Mod experiments: large fraction of plasma flows to walls instead of divertor [Umansky 1998]
- SOL transport not diffusive ($\propto D\nabla n$) but convective ($\propto nv_{conv}$)
 - far SOL profiles can be flat
 - $v_{conv} vs. c_s$

• plasmas convects across SOL in thin field-aligned blobfilaments

[Krasheninnikov 2001; D'Ippolito et al. 2002]

- main ingredients of blob physics known previously
- blob now emerges as fundamental, individual, coherent object

EXPERIMENTAL

Fluctuation PDFs show skewed non-Gaussian tails, and have a universal character

Antar, Counsell, Yu, LaBombard, Devynck Phys. Plasmas **10**, 419 (2003)

PDF = probability distribution function (for fluctuating quantities)

- PDF of I_{sat} is skewed towards rare positive events (non-Gaussian)
- large events propagate radially outwards ...

Lodestar/Myra/MIT-2008

Probe signals show intermittent transport

- conditionallyaveraged signals: intermittency, strong nonlinearity
- fast rise, slow ulletdecay
- E_{θ} correlated with density and flux (convection)

2D imaging techniques show coherent structures in the edge and scrape-off-layer

- Gas Puff Imaging on C-Mod, NSTX and other experiments
 - Zweben, Terry
- Beam Emission Spectroscopy (BES) on DIII-D
 - McKee
- large (cm) scale objects emerge from near the separatrix and propagate radially outwards

(<-- in) Radial Direction (out -->)

J.L. Terry et al., 2003 [C-Mod]

Characteristic time and space scales

- spatial correlation length \perp B ("blob" radius): $a_b = 0.5 3$ cm
- radial size of edge region: 5 20 cm
- correlation time: $\tau_c = 10$'s of μ s
- structure ("blob") velocity: $v_x \sim a_b / \tau_c \sim 10^5$ cm/s = 1 km/s
- parallel correlation (connection) length: $L_{\parallel} = 100$'s of cm
- parallel loss (flow) time $\tau_{\parallel} \sim 100$'s of μ s
- tokamak edge/SOL plasma characteristics
 - $n_{\rm e} = 10^{12} 10^{14} \,\rm cm^{-3}$
 - $T_e = 5 50 eV$
 - $\quad \rho_j < L_{\perp}, \, a_b$
 - $-\lambda_{ei} < L_{\parallel} \Rightarrow$ collisional \Rightarrow try resistive, fluid modeling
 - $\Omega_{cj} \tau_c >> 1 \Rightarrow$ gyro-averaged (low frequency) theory

Outline

- motivation and background
 physical mechanisms of blob dynamics
 modeling of NSTX/GPI
 drive terms
 drive terms
 electrostatic blob regimes
 EM effects, ELMs
- turbulence saturation mechanisms and flows

Curvature drifts & charge separation drives interchange modes

Rosenbluth Longmire 1957

- unstable interchange mode
- crests break off \Rightarrow blobs
- troughs penetrate in \Rightarrow holes

$$\nabla \cdot \mathbf{J}_{\perp} + \nabla_{\parallel} \mathbf{J}_{\parallel} = 0$$

$$\nabla \cdot \frac{d}{dt} \left(\frac{nm_i c^2}{B^2} \nabla_\perp \Phi \right) = \nabla_{\parallel} J_{\parallel} + \frac{c}{B} \mathbf{b} \cdot \nabla \times \mathbf{F}$$
$$= -\frac{m_i c}{B} g_{sp} \frac{\partial n}{\partial y}$$

Blob structures result from the saturation of edge turbulence; many drive mechanisms

Charge separation drives currents which must close

- parallel plasma resistivity
- cross-field resistivity
- sheath resistivity
- EM effects

The size of the various effective resistances controls the distribution of currents, as well as the total potential and therefore the blob speed $v_{E\times B} \sim \Phi/a_b$.

Speed ratio v_{\perp}/c_s controls "SOL width", divertor footprint, midplane wall

2D physics and closure relations

Sheath limited blobs (Nedospasov instability)

• parallel resistance is small; perpendicular resistance large \Rightarrow current loop closes in the sheath

$$v_b = 2c_s \left(\frac{\rho_s}{a_b}\right)^2 \frac{L_{\parallel}}{R}$$

Inertia limited blobs (resistive ballooning mode)

• parallel resistance is large; current flows *locally* across field lines

 $\nabla_{\parallel} J_{\parallel} \rightarrow 0$ $v_{b} = \frac{a_{b}^{1/2} c_{s}}{R^{1/2}}$

• sheath and inertial limits introduce some characteristic scales

$$a_{*} = \rho_{s} \left(\frac{L_{\parallel}^{2}}{\rho_{s} R} \right)^{1/5} \qquad v_{*} = c_{s} \left(\frac{a_{*}}{R} \right)^{1/2} = c_{s} \left(\frac{\rho_{s}^{2} L_{\parallel}}{R^{3}} \right)^{1/5}$$

scale where sheath resistance, curvature drive, and inertial term balance

X-point limited blobs (resistive X-pt mode)

• parallel current flows to X-pt where shear (flux tube squeezing) enhances perpendicular conduction and enables closure of the current path

Krasheninnikov, Ryutov and Yu, 2004

$$\nabla_{\parallel}J_{\parallel} \rightarrow \frac{\left(\sigma_{\parallel}\sigma_{\perp}\right)^{1/2}}{L_{\parallel}\delta_{b}}\Phi$$

 $v_b \propto \begin{cases} g_{sp}^{2/3} / a_b^{1/3} & \text{ion polarization} \\ g_{sp} / a_b & \text{electron } \sigma_{\perp} \end{cases}$

electron σ_{\perp} Krasheninnikov, Ryutov and Yu, 2004 17

Lodestar/Myra/MIT-2008

Theory and simulations show the scaling of blob velocity vs. size (a) and collisionality regime (Λ)

• linear theory with <u>correspondence rules</u> give a rather good description of blob speed $\gamma \rightarrow \frac{v_x}{a_b}, k_{\perp} \rightarrow \frac{1}{a_b}, L_n \rightarrow a_b, k_{\parallel} \rightarrow \frac{1}{L_{\parallel}}$ [CT invariant scaling]

Myra, Russell, D'Ippolito 2006

Electrostatic regime diagram characterizes blob speeds

• specific scaling predicted in each regime

$$\Lambda = \frac{v_{ei}L_{\parallel}}{\Omega_e \rho_s} \qquad \hat{a} = \frac{a_b}{a_*} \qquad \hat{v} = v / v_*$$

expected range of blob velocities is bounded

NSTX and C-Mod explore different regions of edge/SOL parameter space

- B ratio 20, n_e ratio 30 ...
- Observed v_{blob} similar
- Characteristic v_{*} is similar
 v_{*} ~ 2 km/s

Lodestar/Myra/MIT-2008

Experiments on TCV showed collisionality scaling

Garcia et al. PPCF 2007

SOL n_e profile broadens at low $I_p \Rightarrow$ high collisionality (~ $L_{\parallel}/\lambda_{ei}$ $\propto \Lambda$) radial blob velocity (crosscorrelated with n_e fluctuations)

also seen on C-Mod [e.g. LaBombard PoP 2008]

• blobs speed up and SOL broadens with collisionality Λ

Heat transport and density limit implications of blob theory

collisionality dependence of blob model: v_b in increases with v_{ei}

For the physically-observable high-T root (solid), Q_{\perp} exceeds Q_{\parallel} just before the equilibrium limit is reached.

Lodestar/Myra/MIT-2008

Outline

- motivation and background
- physical mechanisms of blob dynamics
- modeling of NSTX/GPI
- turbulence saturation mechanisms and flows

- background
- comparison with analytic estimates
- comparison with turbulence code

Background – GPI

- Gas Puff Imaging (GPI)
 - Zweben 2004; Maqueda 2003; Terry 2003
 - look for visual emission pattern from puffed gas in presence of plasma
 - 2D movies of edge turbulence blob motion
- GPI measures light intensity, not n_e , T_e HeI 5876 line intensity is $I = n_0 F(n_e, T_e)$ $n_0 =$ neutral He density $F(n_e, T_e) =$ atomic physics
- test theory of blob v_x
- difficult to do with probe data alone
 - 1D time-slice through blob
 - unknown impact parameter (no y info)
- NSTX and C-Mod GPI diagnostic well matched to blob dynamics
 - spatially and temporally

sample GPI frame

```
NSTX shot 112825
L mode 4.5 kG, 800 kA
0.8 MW NBI
He puff (HeI filter)
```

NSTX: Observed blob velocity is bounded by theoretical minimum and maximum

- database of blobs with size, speed, intensity ...
- bounds, but no scaling

$$\frac{1}{\hat{a}^2} < \frac{v_r}{v_*} < \hat{a}^{1/2}$$

v_{max} (theory) (m/s)

Myra, D'Ippolito, Stotler, Zweben et al. PoP 2006

Blobs lie in expected regime of parameter space

- another way of looking at the same data
- possible evidence for â independent upper limit, consistent (large error bars) with Alfvén-wave high-β closure
- hidden parameter is $\Lambda \Rightarrow$ try controlled collisionality experiment

Generally, more satisfactory theory/experiment comparisons require: analytic scalings → turbulence code

statistical variation of v_{blob} is large:

- initial conditions for blob (vorticity)
- parallel properties
- blobs not isolated, round ...
- Can we understand the dynamics of an individual blob with known properties?
 - given n_e , T_e , a_b compare observed v_x
- What properties are blobs created with and why?
 - rate & statistics of blob generation, scale size a_b , n_e , T_e
 - flux $\Gamma \sim v_b n_b f_p$
 - $-v_v$ shear, nonlinear coupling effects on blob generation

well in hand

in progress

The SOLT [Scrape-off-Layer Turbulence] code

- 2D fluid, strong turbulence, $\delta n/n \sim 1$
- simulated GPI diagnostic

density

$$(\partial_t + \mathbf{v}_E \cdot \nabla)\mathbf{n} = \alpha_{DW} \overline{T}^{3/2} \{ \phi - T \ln(n) \} - \alpha_{sh} n \sqrt{T} e^{\Lambda_B - \phi/T} + S_n + D\nabla^2 n e^{\Lambda_B - \phi/T} + S_n + D\nabla^2$$

sources and dissipation

D. Russell

Lodestar

temperature

$$(\partial_t + \mathbf{v}_E \cdot \nabla)\mathbf{T} = -\alpha_{sh} \mathbf{S}_E \mathbf{T}^{3/2} \mathbf{e}^{\Lambda_B - \phi/T} + \mathbf{S}_T + \mathbf{D}\nabla^2 \mathbf{T}$$

zonal momentum

$$\begin{array}{l} \mathsf{m} \\ \partial_t \left\langle n v_y \right\rangle + \left\langle \partial_x \left\langle n v_x v_y \right\rangle \neq \int dx \left\langle \alpha_{sh} n \sqrt{T} \left[1 - e^{\Lambda_B - \phi/T} \right] \right\rangle + \overline{\mu} \partial_x^2 \left\langle v_y \right\rangle - v_{py} \left\langle n v_y \right\rangle + S_{\phi} \\ \\ \begin{array}{l} \mathsf{passive convection} \\ \mathsf{+ Reynolds stress} \end{array} \qquad \begin{array}{l} \mathsf{momentum loss to} \\ \mathsf{sheaths} \end{array}$$

Lodestar/Myra/MIT-2008

Qualitative blob behavior in GPI movies is similar in simulation and experiment

 $\delta I / \langle I \rangle$ in $\Delta r - y$ plane

overbar \Rightarrow y-avg $<...> \Rightarrow$ t-avg $\delta I = I - < \overline{I} >$

- turbulence is **intermittent**, and blobs are emitted in random bursts
- blobs have **similar shape**, propagate in both x and y, and elongate in y

D'Ippolito, IAEA 2008

Lodestar/Myra/MIT-2008

 Δr

level of agreement between experiment and simulated turbulence is sensitive to parameters that control how close the system is to marginal stability, e.g. **dissipation**.

Simulations provide a reasonable match to I(r) profiles and fluctuations levels

- Simulated and exp. data processed in same way and normalized to 1.
- location of peak intensity agrees
- simulated intensity too small for Δr > 5 cm (radial region where field lines connect to sheath)
- \Rightarrow sheath losses too large in the simulation for $\Delta r > 5$ cm

PDFs of blob size are in reasonable agreement

blob poloidal half-width

- apply blob selection criteria (filtering, smoothing) to create a blob database
- analysis covers a spatial range $0 < \Delta r < 10$ cm and a time slice of 1200 ms
- same procedure used for both simulation and experimental data
- most probable a_b ~ 1.5 2.0 cm in both cases
- width of PDF also agrees

PDFs of blob velocity show discrepancy

- here, exp. and simulation are NOT processed in same way:
 - v_x (NSTX) is the **kinematic** velocity of the intensity blob;
 - v_x (SOLT) is the E × B velocity
- qualitative agreement in shape, but SOLT v_x sacle is larger by factor of ~ 2
- possible explanation: turbulence too strong in simulation (too far from marginal stability)
- work in progress: kinematic v_x (data & SOLT) using Tobin Munsat's optical tracking algorithm

SOLT code reproduces generic features of boundary turbulence observed in many experiments

Outline

- motivation and background
- physical mechanisms of blob dynamics
- modeling of NSTX/GPI
- turbulence saturation mechanisms and flows -
- role of ZF damping
- profile modification
- sheared flow saturation
- momentum transport and spin-up

Strong zonal flow damping enhances turbulence and blob transport

SOLT turbulence code simulations [Russell et al. 2008; D'Ippolito IAEA 2008]

- v_{py} = zonal flow damping rate
- large damping \Rightarrow
 - no zonal flows
 - saturation by wave-breaking and plateau formation
 - radial streamers & quasiperiodic oscillations
- small damping \Rightarrow
 - saturation by zonal flows
 - convecting objects are bloblike
 - intermittent bursts (in turb. flux)

Density profile modification saturation occurs when flows are damped

- for $v_{py} \rightarrow \infty$ $\Gamma \sim D \nabla_x \overline{n}$ $D \sim \gamma / k_y^2$
- Kadomtsev estimate works to within a factor of 2

• gives Γ independent of v_{py}

The small ν_{py} regime saturates by sheared flows

$$\gamma \sim \overline{v}'_y \sim \overline{v}_y / L_v$$

• balance Reynolds stress with flow dissipation

$$\overline{v}_{y} = (k_{x} / k_{y})^{2} (k_{y}^{3} | \widetilde{\phi} |^{2}) / v_{py}$$

• to get $\Gamma = \langle \tilde{n}\tilde{v}_{n} \rangle \langle k_{n}/k_{n} \rangle^{2} (k_{n}/k_{n})^{2} (k_{n}/k_{n})$

$$\Gamma = \langle \tilde{n}\tilde{v}_{x} \rangle \sim (k_{y}/k_{x})^{2}(\bar{n}v_{py}L_{v})/(k_{y}L_{n}) \propto v_{py}$$

- agrees qualitatively up to the knee of the curve
- for very small v_{py} , passive loss dominates $\partial_t \langle nv_y \rangle = -v_{py} \langle nv_y \rangle \partial_x (\langle v_y \rangle \langle nv_x \rangle) + ...$ $v_{py} \ll \frac{\langle nv_x \rangle}{\overline{n}L_x}$ - very bursty transport *need better understanding of SOL dissipation: neutrals?, measurements*

Edge turbulence carries momentum across the separatrix

- back reaction spins up plasma
 - Coppi [EPS 2006 paper P4.017 & NF 2002] spontaneous toroidal rotation
- here examine transport of v_{\perp} only (2D problem)

- net plasma momentum buildup (balanced by sheath momentum loss)
- initial transient blob "kick"
- intermittency
- inward momentum diffusion

Residual from Reynolds and passive momentum flux provides edge source

- Reynolds term generates flows
- passive momentum losses carry flows to SOL (blobs)
- residual \Rightarrow edge source

Dynamics of blob formation and momentum transport

snapshots: density palette, momentum arrows

- early nonlinear development of seeded m = 4 mode
 - downward ejection of blobs (streamers); upward momentum "kick"
 - upward moving wave crests twisted around and down in ejection process
- later quasi-steady intermittency
 - sheared flows pinch off streamers \Rightarrow blobs

note flow reversal across separatrix

Lodestar/Myra/MIT-2008

similar to C-Mod observations by Cziegler & Terry

SOLT simulation movie of strongly driven case

Russell 2008

- rainbow palette
 - red large > 0
 - blue large < 0
 - white clipped
- counter-streaming flows
- intermittent blob
 ejection correlated
 with flows

Conclusions

- dynamics of individual blobs well in hand theoretically
 - velocity scalings known and regimes established
 - some, but not much, experimental confirmation
- predictive modeling of blob formation and the resulting SOL width is in progress
 - some encouraging agreement of NSTX GPI with 2D fluid turbulence simulations
 - discrepancies remain to be resolved
 - edge dissipation mechanisms need to be better understood
- turbulence saturation by profile modification and by sheared flows is being studied
 - may play a role in bulk plasma rotation as well as sheared bipolar flows

Coherent structure formation and convective transport in edge plasmas is a very rich and challenging area of research.

Supplemental

Alfvén wave closure and high-beta blobs/ELMs

• parallel current is limited by EM effects: magnetic field is perturbed causing excitation of Alfvén waves [Parks 2000 ; Krasheninnikov 2004]

$$\nabla_{\parallel} J_{\parallel} \rightarrow -\frac{2}{L_{\parallel}} \frac{c^2}{4\pi V_{A0}} \nabla_{\perp}^2 \Phi$$

 $v_b \propto g_{sp}$ independent of a_b

ELM filaments can also carry net current

- introduces additional magneto-static forces
 - enhance coherency of filaments in 2D plane (current pinch)
 - also introduces kink and rippling instabilities
- filament is accelerated away from the plasma near the edge (hole repulsion)
- decelerated close to the wall (image current repulsion)

Electromagnetic instability and blob regimes

The SOLT Model

 $\alpha_{sh} \Rightarrow$ losses of particles and charge to sheath

 $\alpha_{dw} \Rightarrow$ electron adiabaticity (i.e. drift wave physics)

• momentum conserving zonal flows (non-Boussinesq)

target profiles

• Three radial regions:

- edge (inside LCS)
 - Sources of particles and heat
 - electron drift waves
 - curvature-driven modes (blob birth zone)
 - closed field lines
- near SOL (just outside LCS)
 - field lines open but disconnected (⇒ large L_{||}), e.g. by X-point effects
- far SOL
 - field lines connect to sheaths
 - sheath absorption of charge, particles, momentum
 - curvature-driven modes in both SOLs

Blobs transport energy and can spin

- in the SOL, \perp and \parallel transport compete
- particles flow out at $c_s \Rightarrow \tau_{\parallel p} = L_{\parallel}/c_s$ (ambipolarity)
- energy is conducted by $\chi_{e||}$ or flows out faster than $c_s \Rightarrow \tau_{||E} \ll \tau_{||p|}$
- on short time scales, $\tau < \tau_{||E}$, blobs can carry excess T_e
- such sheath-connected blobs will spin
- charge mixing of +/- dipole ⇒ spinning blobs slow down radially and move poloidally

Myra, D'Ippolito, Krasheninnikov & Yu, Phys. Plasmas 2004 ₄₈

Lodestar/Myra/MIT-2008