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Abstract 

A two-dimensional, electrostatic reduced turbulence model with parallel physics closure 

relations and ion pressure dynamics has been applied to study confinement transitions driven by 

ion heating.  Low (L) and high (H) confinement regimes are observed in these SOLT code 

simulations, depending on the strength of an ion heating source localized inside the separatrix: 

with increasing heating, particle and energy confinement times at first decrease in the L-mode 

then rise in the H-mode. The L-H transition is marked by distinct changes in sheared-flow 

profiles. The addition of ion pressure dynamics enables modeling the self-consistent interaction 

between the ion diamagnetic drift and the radial electric field (mean and zonal flows). The roles 

of these sheared flows in mediating the L-H transition are explored for both ramped heating and 

steady state cases.  Finally it is shown that  the scrape-off layer collisionality regime, specifically 

sheath connected or conduction limited, has a profound effect on confinement in the closed 

surface region. 
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I. Introduction 

Magnetically confined tokamak plasmas have long been known to transition under 

certain condition to a self-organized state which exhibits enhanced confinement.1 This transition 

to the high confinement (H-mode) state is important for good plasma energy confinement in 

present day devices, and critical for ITER to allow achievement of its burning plasma goals.  

Shearing by radially varying ExB drifts is thought to play a central mechanistic role in 

suppressing turbulent transport and enabling the low confinement to high confinement (L-H) 

transition but despite many years of investigation, a complete and generally accepted theory of 

the transition is not presently available.  Transition dynamics in theory and experiment have been 

discussed in a number of recent papers.2-8 The L-H transition has also been simulated by a 

variety of numerical models.9-15 These papers have emphasized different physical effects 

including the importance of neoclassical flows, turbulent Reynolds stress, ion pressure gradients 

and ion orbit loss. A recent review of the role of turbulence-flow interactions covering 

experiment, theory and simulation has been given by Schmitz16. 

In the present work, we apply the SOLT code17 to the L-H transition problem.  A recent 

version of the SOLT model,18 summarized in Sec. II, is employed for these studies. The model 

retains ion pressure dynamics and a generalized vorticity (which does not employ the Boussinesq 

approximation).  Our work complements previously published work in several respects. We 

highlight the role of ramped heating effects and a moving front in triggering a confinement 

transitions in Sec. III.  Transient effects have been studied theoretically19 and moving fronts have 

been observed in some experiments.4,5,20,21  Steady state simulations in Sec. III are also shown 

to result in different confinement regimes in our model.  In Sec. IV, for the first time, to best of 

our knowledge, the role of scrape-off layer conditions on edge/core confinement conditions is 

explored.  This topic is of particular relevance to future fusion devices because it is anticipated 

that reactor-relevant regimes may require a collisional dissipative SOL to mitigate the intense 

heat flux exhaust channel, which would likely imply operation in a semi-detached regime.  The 

compatibility of such a regime with good core H-mode confinement is a topic of some concern.  

A summary and conclusions is given in Sec. IV.  Finally in an Appendix we generalize the usual 

cold fluid Boussinesq description of turbulent energetics to the finite ion pressure non-

Boussinesq model. 

II. The SOLT code model 

The scrape-off layer turbulence (SOLT) code is a 2D electrostatic fluid turbulence code 

which describes plasma dynamics in the two-dimensional (x,y) Cartesian plane perpendicular to 
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the magnetic field for flute-like modes. Here x and y are the radial and binormal (approximately 

poloidal) coordinates.  The model, described in detail in Ref. 18 consists of coupled equations in 

x, y and time t for the quasi-neutral density n, electron and ion temperatures Te and Ti, and 

generalized vorticity,  = npi  where  is the electrostatic potential, and pi = nTi is 

the ion pressure. The electrostatic potential is extracted from the vorticity by different algorithms 

depending on the problem: relaxation,22 conjugate gradient and multigrid. Note that the 

Boussinesq approximation is not invoked. 

All fields in SOLT are turbulent, i.e. n = n(x,y,t), etc. and no scale separation is employed 

in the evolution equations: fluctuations are evolved together with the background (y-averaged 

fields) without expanding about ambient profiles. Self-consistent order unity fluctuations are 

supported. In the parallel direction, the dynamics are treated by analytical closure relations. In 

the closed surface region, the model is a superset of the Wakatani-Hasegawa model,23 to allow a 

rudimentary description of drift-wave physics. In the scrape-off layer (SOL) the model  

dynamically transitions between sheath-connected and conduction limited regimes depending on 

the local collisionality. SOLT contains a reduced description of the electron drift wave, 

interchange and Kelvin-Helmholtz (K-H) instabilities, as well as sheath physics and blob 

propagation.  Important for the present study, which models H-mode regimes, is the self-

consistent evolution of ion pressure and ion diamagnetic drifts, where the latter is allowed to be 

comparable to the EB drift. 

In the simulations presented in this report, particle and energy fluxes are driven by 

diffused (D) Gaussian sources (S) localized in a buffer zone near the core-side boundary.  This 

injection region is well removed from the separatrix (x = 0) in the simulations and thus 

effectively implements flux-driven boundary conditions for the simulation region of most 

interest. The SOL (x > 0) is defined in practice by the region where parallel sheath or conduction 

end-losses are invoked.   

We will find in Secs. III and IV that the confinement of the core-edge region (x < 0) is 

controlled primarily by the strength of the ion heating source, and, in Sec. V by the parameter 

regime of the SOL.  The primary diagnostics that we employ for the L-H transition, are the 

steepness of the pressure gradient and the particle and energy confinement times defined by 

 
 0x

n
0x

n dxSndx , (1) 

 
 0x

p
0x

p dxSpdx . (2) 
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III. L-H transition for an “ramped”  ion heating source 

In most of this section, we present results from a single SOLT simulation driven by a 

diffused ion heating source, confined near the core-side boundary, that grows linearly with time: 

a “ramped” source,  illustrated in Fig. 1.  The parameters of the simulation are typical of NSTX.  

We simulate a deuterium plasma with reference density n0 = 1013cm-3 and reference temperature 

T0 = 100 eV, in an outboard midplane magnetic field of B = 3416 Gauss.  At these reference 

parameters, the ion Larmor radius is s = 4.2 mm, the ion cyclotron frequency is i/2 = 2.6 

MHz, and the ion sound speed is cs = 69 km/sec.  To convert the dimensionless Bohm units used 

in the SOLT code to physical units of length, time, velocity, energy and electrostatic potential we 

use s , (i/2
s , cs , T0 and T0/e, respectively, where e is the magnitude of the 

electron’s charge (1.6022 10-19 Coulomb).  In Bohm units, the growth rate of the interchange 

instability, squared, is mhd
2 = (2s/R) x(Pe+Pi)/n, where the major radius of the tokamak 

(NSTX) is R = 144 cm. 

 
Fig. 1.  Illustration of the ion heating source (SPi) and diffusion profiles (DTi) used to create a 
flux-driven boundary condition, together with the growing ion pressure sampled at 0, 0.5, 1.0, 
1.5, 2.0 and 2.5 ms, starting from a flat Pi profile at t = 0,  for the ramped-source case.  The dot-
dashed line at x = 0 denotes the separatrix. 

 

 

As the simulation progresses, three confinement regimes are visited successively: low 

(L), high (H) and avalanche (A).  The transitions between regimes correspond to the propagation 

of an ion pressure front, viz. high-gradient domain, from the core region to the edge.  The front is 

shown passing a reference point in Fig. 2(a).  
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Fig. 2.  Evolution of the (a) ion pressure gradient 6 cm inside the separatrix, (b) particle and 
energy confinement times (n, Pe, Pi), shown as (black, blue, red) lines respectively, (c) mean, 
Eq. (A9) (black), and fluctuating, Eq. (A15) (red), flow energies and  (d) Reynolds work Eq. 
(A14) for the ramped-source simulation.  L and H indicate the low- and high-confinement 
regimes, and A denotes the avalanche regime.  In (b) the integrals defining the confinement 
times (Eqs. 1 and 2) are over x < 0 and include the sources but not the SOL. In (c) and (d), 
integrals involved in the calculations are from x = 7.5 cm to x = 0 and so exclude the source-
driven region and the SOL. 

 

At early times, before the front detaches from the core, the ion pressure gradient rises at 

the foot of the heated region (x = 8 cm, see Fig. 1) and confinement times tend to saturate at 

relatively low values, as seen in Fig. 2(b); this is the L-regime.  With increased heating, the front 

detaches from the heater boundary and propagates radially outward toward the edge region, and 

confinement times increase markedly; this is the H regime. The increased plasma pressure and 

density in the wake of the propagating front is responsible for the rise in confinement times.  

Confinement times continue to rise as the front reaches a neighborhood of the separatrix, and the 

expanding plasma begins to experience the parallel transport of the SOL.  This SOL-overlap 

begins at about 1.1 ms and is seen as an inflection point in the -histories in Fig. 2(b) and as a 

corresponding peak in the mean-flow energy history of Fig. 2(c).   
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The H-regime ends, and the A-regime begins, when the confinement times start to 

decrease at t = 1.5 ms.  Throughout the H-regime, the fluctuation energy Eq. (A15) (the red 

curve in Fig. 2(c)) is relatively quiet and constant in comparison to the intermittent bursts that 

follow. The bursts correspond to the step-wise reductions in confinement times, evident in Fig. 

2(b), and to poloidally localized bursts in the radial particle flux at the separatrix for which this 

regime is named. 

We conjecture that the H-regime is terminated, and the A-regime begins, as the flow-

shear associated with the propagating front (which, it may be argued, serves to control the 

interchange instability at the front) is displaced by the high flow-shear imposed by the sheath 

physics in the SOL as the front approaches the separatrix, and that, with this transition, the K-H 

instability emerges to drive the avalanches.  The following analysis of the turbulent flow 

energetics appears to support this scenario. 

The Reynolds work, defined in the appendix, Eq. (A14), is the rate at which velocity 

fluctuations increase energy in the mean fluid flow.  Where the work is positive the fluctuations 

beat together to manufacture mean flow, and where it is negative that beating depletes the mean 

flow (e.g. K-H instability).  The Reynolds work history for the ramped-heater simulation is 

shown in Fig. 2(d).  In the L- and H-regimes, the Reynolds work is positive, indicating a transfer 

of energy from the fluctuations to the mean flow.  But in the A-regime, the mean Reynolds work 

decreases toward zero, with negative bursts in the instantaneous value clearly associated with the 

avalanches.  Thus confinement deteriorates as energy is increasingly transferred from the mean 

flow to the fluctuations, supporting the speculation that the Kelvin-Helmholtz instability is 

responsible for terminating the H-mode.  This energy analysis is global, i.e., the integrals in Eqs. 

1 and 2, extend from x = 7.5 cm to the separatrix.  Similarly, support for the first part of the 

conjecture, concerning shear-control of the interchange instability at the propagating front, may 

be gleaned by analyzing the Reynolds work at the front. 

A standard model holds that the L-H transition may be triggered by a surge in Reynolds 

work that drives sheared mean flows that moderate the interchange instability and allow pressure 

gradients to rise.  Signatures of this well-developed paradigm have been observed in many, 

though not all, experiments and simulations.  (See the discussion and references in Sec. I.)  

Curiously, a similar sequence of events is observed as the front passes by a fixed reference point 

in this simulation.  Histories of the normalized mean flow production rate [Pmf from Eq. (A12), 

divided by the turbulence production rate mhd fl], the mean flow shear rate and the ion pressure 

gradient are plotted at a fixed radial location in Fig. 3.  It is seen that as the mean flow 

production rate rises to equal the turbulence production rate, Fig. 3(a), the magnitude of the EB 

flow shear rate, Fig. 3(b), rises to surpass the local interchange instability growth rate mhd, and a 

rise in the ion pressure gradient, Fig. 3(c), follows.  So locally it would appear that a surge in 
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Reynolds-driven sheared flow, acting to suppress the interchange instability, is followed by a rise 

in the ion pressure gradient, viz., a paradigmatic L-H transition has occurred.  Note that the ratio  

Pmf/(mhd fl) is order unity at the front, indicating efficient conversion of fluctuation energy to 

mean flow energy but not necessarily local moderation of the interchange instability by the 

sheared mean flow; the proof of this moderation is provided in Fig. 3(b). 

 

 
Fig. 3.  Time evolution of (a) the mean flow production rate divided by the turbulence production 
rate (see the Appendix), (b) the (-)EB flow shear rate (black) together with the shear rate of the 
ion diamagnetic drift (red) and the local interchange instability growth rate (magenta) and (c) the 
pressure gradient, all at a fixed radial location 6 cm inside the separatrix, spanning the L-H 
transition.  Positive Pmf corresponds to the transfer of turbulent energy into mean-flow energy.  
Note that the ion pressure gradient begins to rise after the enhanced EB flow shear rate has 
surpassed mhd  , at about t = 0.8 ms. 

 

The shear rate of the ion diamagnetic drift is plotted in Fig. 3(b) along with that of the 

EB drift.  Although a weak effect, some “mirroring” of the two flows, i.e., xvE + xvdi   

constant, can be observed as the front approaches.  Persistent mirroring would provide a route to 

an enduring H-mode in the wake of an L-H transition: with rising ion pressure gradient, the 

increasing EB flow shear might continue to suppress the interchange instability and “lock-in” 

the H-mode.  However, as we suspect is the case here, increasing shear rates may also drive the 

K-H instability and ruin the H-mode. 

All regimes are transient in the ramped-source simulation.  The L-regime lasts only until 

the front arrives, leaving the H-regime in its wake, and the H-regime subsides as avalanches set 

in.  Nor has the A-regime reached equilibrium at the end of the simulation.  We conducted a 

series of simulations with stationary sources, differing only in the amplitude of the ion heating 
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source, and discovered equilibria corresponding to the regimes visited in the ramped case.  The 

confinement times for these simulations are plotted in Fig. 4. 

In these stationary-SPi simulations, the L-regime is characterized by confinement times 

that decrease with increasing heater power, while the H-mode confinement times increase with 

increasing heater power.  This loss of confinement with increasing heater power in the L-regime 

was not observed in the ramped case because the L-regime did not equilibrate before the front 

detached and propagated from the heater region.  Otherwise the stationary simulations recover 

the confinement characteristics of the three regimes found in the ramped case, and the flow shear 

rate exceeds the interchange growth rate (|xvE| > mhd)  within the turbulence birth zone in the 

H-regime, as it does at the propagating front in the ramped-SPi simulation. 

 

 
 
Fig. 4.  Confinement times from seven simulations that used the same parameters as the ramped 
case except here the ion pressure source (SPi) was held fixed.  Simulations were run to 
equilibrium in each case, and the confinement times were averaged over the last 0.5 ms, with  
error bars representing standard deviations about the averages. 

IV. Role of the SOL in core confinement  

In this section we study how the edge (x < 0 ) confinement times depend upon SOL (x 

> 0) collisionality.  We ran a single simulation, with the parameters of Sec. V (Here we used 

fixed sources: Sn = SPi = SPe = 0.01.), but changed the SOL collisionality abruptly midway 

through the simulation.  The resulting change in core confinement is shown in Fig. 5.   

In the SOLT model, the SOL collisionality is described by a single parameter,  = 

eiL||/es = (me/mi)
1/2L||/ei : the ratio of volume plasma resistance to the effective sheath 

resistance.  ( ~ 0.01for the reference parameters used in the simulations in Sec. III, implying a 

sheath-connected regime.) Parallel transport in the SOL adjusts self-consistently between 

conduction-limited (CL) and sheath-limited (SL) expressions for the particle (charge) and heat 

fluxes,  with CL electron parallel fluxes inversely proportional to jCL qCL See 

Appendix A of Ref. 18 for details.)  The smaller of the CL and SL expressions dominate the total 
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flux via the (time-dependent) relation 1/j = 1/jCL + 1/jSL + 1/jFL and similarly for the inverse heat 

flux 1/q.  ( jFL is an overall flux limit ~ ve).  At high collisionality, CL fluxes dominate parallel 

transport in the SOL, tending to disconnect the midplane from the divertor sheath. 

At t  2 ms (dashed vertical line in Fig. 5),  was changed from 108 (effectively “ ” for 

complete disconnection) to 105 (effectively “0” for connection) in the simulation.  As shown in 

Fig. 5,  at low-collisionality, sheath-limited transport results in larger confinement times than 

high-collisionality, disconnected transport. Furthermore it was verified (not shown explicitly 

here) that the transition is reversible. 

 

 
Fig. 5.  History of edge particle and energy confinement times in a simulation with stationary 
sources.  The SOL collisionality parameter was  decreased abruptly (manually) at t  2 ms 
(dashed line), establishing sheath-connection and leading to improved confinement. 

 

The characteristics of the CL-to-SL transition include: increased confinement times 

(Fig. 5); decreased normalized density fluctuation amplitudes (Fig. 6); decreased electrostatic 

potential fluctuation amplitudes (not shown); decreased SOL heat flux width  (not shown); and a 

quiet interlude lasting about 200 s immediately following sheath connection (not shown). 

Regarding the last point, a similar interlude was sometimes observed in NSTX experiments 

following the L-H transition.24 

It was found that sheath-connection brings significant change in the configuration of the 

sheared EB flow. In the connected (SL) state a flow-shear  layer controls the interchange 

instability in a neighborhood of the separatrix. See Fig. 7. The flow is dominated by sheath 

physics in the near-SOL; the sheath is controlling the perpendicular transport. This strong shear 

layer is absent in the disconnected (CL) regime. The profound effect of this change on the 

structure of the turbulence in the shear layer is illustrated in Fig. 8 which shows snapshots of the 

turbulent electron temperature and potential profiles in the CL and SL states.  It is seen that  
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relatively large-scale separatrix-spanning vorticity cells dominate the turbulence in the low-

confinement CL state.  These structures are precluded by the flow-shear layer imposed by the 

sheath, Fig. 7(b), in the high-confinement SL state. 

 

 
Fig. 6.  History of normalized density fluctuations, at the separatrix, across the L-H transition 
that was induced by changes in SOL collisionality. 

 

V. Summary and conclusions 

In this report, we have investigated confinement regimes and confinement transitions 

using a two-dimensional, electrostatic, source-driven, fluid turbulence model that retains the ion 

diamagnetic and gyro-viscous effects.  We find three different confinement regimes with 

increasing ion heating.  The regimes L, H and A are reminiscent of tokamak L, H, and ELMy-H 

mode regimes. Our model does not have enough physics to describe the peeling-ballooning 

modes25 that are believed to be essential in the tokamak ELMy-H mode regime; rather, our 

regime A likely involves the Kelvin-Helmholtz instability. Like the tokamak regimes, 

confinement first degrades with increasing heating power in L mode, improves with sufficient 

power to induce the L-H transition, and then degrades once again in the A regime where violent 

ejection events occur. 

These three regimes were found in both ramped ion heat source simulations and in steady 

state simulations.  In the ramped heating case, enhanced confinement in the H-regime is 

associated with the outward propagation of a shear layer to just inside the separatrix. Inside the 

shear layer, the radial gradient of the EB velocity is seen to exceed the nominal interchange 

growth rate, |vE| > mhd .  We note that the relationships between vE , vdi and pressure gradient 
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(mhd) depend strongly on radial location, making local diagnosis ambiguous.  To understand the 

dynamics of the transition a global energetics model, taking into account both EB and 

diamagnetic velocities for both fluctuation and zonal flow energy, was developed and applied to 

the simulations.  Results are broadly consistent with the driving of EB flows by both the 

transfer of fluctuation energy and by the ion pressure gradient.  Shear in the radial electric field 

appears to play an important role in enhancing confinement in the H-regime, but may also 

ultimately be responsible for confinement degradation in the A-regime. 

 

 

 

 
 

Fig. 7.  Upper panels show the radial structure of the EB flow shear, xvE , ion diamagnetic 
shear, xvdi and interchange growth rate mhd : (a) for the disconnected (CL, L-mode) state, and 
(b) for the connected (SL, H-mode) state. Lower panels show the radial pressure profiles in the 
two confinement states: (c) electron pressure in the CL (black) and SL (red) states and (d) ion 
pressure in the CL (black) and SL (red) states.  Angular brackets denote a time average over 100 
s.  The pressure is in Bohm units in (c) and (d). 
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Fig. 8.  Snapshots of the turbulent electron temperature and electrostatic potential in the CL (left 
column) and SL (right column) states. 

 

 

Finally an important role for SOL collisionality on the confinement time has been 

demonstrated. The ratio of volume plasma resistance to the effective sheath resistance, described 

by the parameter is the control parameter. Sheath-limited parallel transport in the SOL () 

is characterized by higher edge particle and energy confinement times than collision-limited 

parallel transport ().  Disconnecting the sheath by increasing the SOL collisionality 

parameter  results in an H-L back-transition;  reconnecting the sheath by decreasing the 

parameter  results in an L-H transition. 

Clearly the reduced model employed in these studies omits many details which are likely 

to affect confinement transitions in tokamak experiments (e.g. three-dimensional geometry, 

neutral-plasma interactions, kinetic effects, electromagnetic effects).  Nevertheless, the present 
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results emphasize the importance of moving transition fronts, ion fluctuation energy and total 

energy dynamics, Kelvin-Helmholtz instabilities, and SOL collisionality on the fundamentals of 

L-H transition dynamics.  
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Appendix A: Turbulent flow energetics with finite ion pressure 

In this appendix, we generalize the usual cold fluid Boussinesq description of turbulent 

energetics to the finite ion pressure non-Boussinesq model. The Boussinesq and cold ion limits  

are easily obtained as special cases of the present calculation. (See. e.g. Ref. 4 for a concise 

summary of the cold ion limit.)  Bohm units are employed throughout (i.e. with time and space 

normalizations 1/i and i respectively) and the magnetic field is taken to be constant in space. 

Let the total mass flow velocity be 

 diE vvu   (A1) 

where  bvv E  and idi pn  bv .  For notational simplicity in the following, we drop 

the subscript E on vE.  It follows that  <vx>  = 0 where here and in the following <…> is a y-

average. The momentum-density per unit mass and particle flux are given by 

 ug n . (A2) 

Considering a uniform B-field, with density source Sn, the basic conservation equations for n and 

g are 

 nt S)n(n  v  (A3) 

 0)(t  vgg . (A4) 

For future reference, we can also write an equation for the velocity u as 

 n/Snt uuvu  . (A5) 
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By taking b×  of  Eq. (A4), it can be shown [see e.g. the Appendix of Myra 2016] that the 

inertial terms represented by the left-hand-side of Eq. (A4) are equivalent to the evolution of 

generalized vorticity given by 

 0)])(n())(n()p([
2

1
di

2
it  vvvvvv  (A6) 

where   = (npi).   Eq. (A6), supplemented with parallel current and curvature terms, is 

just the SOLT equation for vorticity evolution, hence, in considering a turbulent flow energetics 

model with finite ion pressure, it is sufficient to work with the algebraically simpler form of Eqs. 

(A4) or (A5). 

The energy density per unit mass is gu/2 and an energy evolution equation is obtained 

from uEq. (A4) + gEq. (A5).  After a simple manipulation we find 

 guguvgu 
n2

S
)(

2

1
)(

2

1 n
t . (A7) 

Taking a y-average of this energy equation yields 

  Sqxt  (A8) 

with 2/gu  , 2/vq x gu  , 2/uSS 2
n . The term on the right-hand-side of Eq. (A8) 

is negative, reflecting the fact that particles sources added at zero momentum require an energy 

cost to bring them up to the local velocity of the fluid. 

There can be some latitude in how we split the energy into zonal (“mean”) flow and 

fluctuating contributions.  It is easiest to define the zonally-averaged flow energy as 

 gu 
2

1
mf  (A9) 

To obtain an equation for the zonal flow, first take the y-average of Eqs. (A4) and (A5) and then 

combine by dotting with <u> and <g> respectively and adding to obtain 

 mfmfmfxmft SPq   (A10) 

where the zonal flow energy flux is 

 ]vv[
2

1
q xxmf guug  , (A11) 
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the zonal flow production term is 

 ]vv[
2

1
P xxxxmf uggu  , (A12) 

and the energy loss term due to particle sources (at zero velocity) is 

 gu 
n2

S
S n

mf . (A13) 

Pmf > 0 implies energy transfer from fluctuations to mean flow and Pmf < 0 implies turbulence 

production from mean flows (e.g. KH instability). 

The Reynolds work can be defined as the rate of change of volume-integrated mean-flow 

energy from Eq. (A10), i.e. 

 )SP(dxqdxR mfmfmfmftw   (A14) 

where qmf is the difference in qmf at the integration boundaries. 

The fluctuation energy is then defined as the difference of the y-averaged total energy and 

the zonal flow energy 

   gugugu ~~
2

1

2

1
mffl  , (A15) 

where u and g are expanded, e.g. as uuu ~ .  Subtracting the total and zonally-averaged flow 

energy equations, and carrying out some simple manipulations 

 flmfflxflt SPq  , (A16) 

where 

 gu ~~v
2

1
qqq xmffl   (A17) 

and 

 gu ~
n2

S
SSS n

mffl   . (A18) 

In obtaining Eq. (A17) we have used <vx> = 0. The term flxq is sometimes called the 

turbulence spreading term. 

In the main text, the definitions of mean flow and fluctuating energies, their fluxes and 

the definition of zonal flow production are employed to analyze the simulations.  In the 



   
 

 16 

simulations, the evolution of these quantities is of course influenced not just by the conservative 

terms manipulated here, but also by instability growth, heat sources, flow damping and losses of 

particles energy and momentum to the sheaths. 

In the limit of cold ions, and furthermore making the often-invoked Boussinesq 

approximation, the energies, fluxes and production term reduce to the familiar forms 

 
2

ymf v
2

n
  (A19) 

 2
yxmf vv

2

n
q   (A20) 

 ]vvv[nP yxyxmf   (A21) 

 2
fl v~

2

n
  (A22) 

 2
xfl v~v

2

n
q   (A23) 

However, in the present simulations these Boussinesq forms for Ti = 0 are poor approximations 

to the full expressions. 
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