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Abstract 

The model of blob-filament propagation in the scrape-off-layer (SOL) of a 

tokamak is extended to include objects which carry a large net uni-directional current 

parallel to the magnetic field.  Under experimentally realistic conditions, the blob-

filament structure and propagation is influenced by magnetostatic forces.   Some aspects 

of the model may be relevant to the SOL propagation of edge localized modes (ELMs). 
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I. Introduction 

Previous work by several authors has examined the theoretical properties of 

density (pressure) “blob” filaments.1-11  The dynamics of these coherent structures, 

created by edge turbulence, is governed in part by dipole and higher-order parallel 

currents, ||J~ .   This “dipole” structure arises in the cross-section of the blob-filament in a 

plane perpendicular to the magnetic field, and is the result of charge separation by 

curvature and grad-B drift effects.  In this paper, the model is extended by considering 

blob-filaments which also carry net (uni-directional, e.g. “monopole”) parallel current, 

||J .  The net current in the filament arises from the outward radial transport of parallel 

current carried by the tokamak during an edge localized mode (ELM) ejection event.   

The notion that current density, as well as particles and energy are lost from the main 

plasma in an ELM event has been proposed previously12 and found to be consistent with 

experimental observations of strike-point jumps.  Furthermore, direct observations of 

current carrying ELM filaments have been made in experiments conducted on the 

MegAmp Spherical Tokamak (MAST).13  In the following, for brevity, the current 

carrying filamentary blobs will be referred to as ELMs, although the present model is not 

claimed to be a complete ELM model.  In particular, this work emphasizes physics that is 

complementary to, but compatible with, the Alfvén wave dynamics of high beta blobs 

considered previously.4,6 

The basic idea is that ELM pedestal instabilities are driven by a combination of 

edge current and pressure gradients.14  Nonlinear saturation of these instabilities attempts 

to reduce the drives by removing filaments of plasma pressure and current, which 

propagate outward.  Thus, it is postulated that each ELM filament carries with it the 

density, temperature, and parallel current12,13 of the creation (instability) zone.  This 
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current can interact with other currents through the J × B force and thereby influence the 

dynamics. 

The elementary result for the force per unit length between two long, parallel 

current carrying filaments is 

 
d2
II

dc

II2F 210
2

21
π

µ
→=′  (SI units) (1) 

where I1 and I2 are the currents in the filaments and d is their perpendicular separation.  

Using an ELM-filament current illustrative of the MAST results13 (I ~ 200 A) and taking 

a parallel filament length L|| ~ 1 m, the total force is of order F = L||F′ = 0.8/d(cm) N.  For 

comparison, the curvature force on a blob is R/c2VnmF 2
si=κ where n is the blob 

density, mi the ion mass, ||
2
bLV πδ= the blob volume, δb the blob radius, cs the sound 

speed and R the major radius of the torus.  Employing n = 1012 cm-3, Te = 50 eV, δb = 2 

cm, R = L|| = 100 cm, and µ = 2 (Deuterium) yields Fκ ~ 0.02 N.  Thus for reasonable 

perpendicular separations (d < 40 cm) magnetostatic forces must be considered, in 

addition to the curvature effects which are known to induce radial blob (ELM) 

convection through curvature and grad-B-drift charge separation.   

II. Model equations 

A simple model for current carrying ELM filaments result from the observation 

that in a sufficiently collisional scrape-off-layer (SOL) the parallel current convects with 

the density and temperature of the ELM.  Considering time scales shorter that the time 

scale for parallel loss of the particles and energy in the filament, the ELM temperature T 

will be substantially larger than that of any surrounding background plasma.  Thus the 

higher parallel electrical conductivity will confine the current to the location of the 

filament.  We consider the lowest order ||E = E0 to be a spatially constant induction field, 

so that the spatial variation of (the lowest order)  
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 ||0|| /EJ η=  (2) 

is determined by T through the resistivity η|| ~ T−3/2.  For simplicity in the following we 

take T = T(n) and therefore, the uni-directional component of the ELM current satisfies 

)n(JJ |||| = .  If we can show that ELM-filament density and temperature convect across 

the SOL, then the preceding argument establishes (in an appropriate limit discussed 

subsequently) that the filamentary current will also be confined to, and convect with, the 

ELM.  

The dynamics of these current-carrying ELM filaments can be studied in the 

reduced magneto-hydrodynamic (MHD) approximation, keeping the magnetostatic forces 

due to the current, as well as the usual curvature and grad-B forces that characterize 

electrostatic blob dynamics.  Central to the model derivation is the standard vorticity 

equation 

 p
B
c2J

B

cnm
dt
d

||||2

2
i ∇⋅κ×+∇=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ∇⋅∇ ⊥ b  (3) 

where ∇⋅+∂∂= vt/dt/d and Φ∇×= z)B/c( ev .  Other notations have their usual 

meaning. In particular, n is the density, mi is the ion mass, Φ is the electrostatic potential, 

B is the magnetic field, b = B/B, κ ~ 1/R is the curvature, and p = nT is the electron 

pressure.  For simplicity, to illustrate the basic idea, a cold ion model is considered, 

although retention of warm ion effects on the pressure, ion diamagnetic flows, and 

viscosity tensor would be more realistic. 

To obtain a model set of dynamical equations for ELM-filament motion in the 

plane perpendicular to B, it is necessary to derive a “closure” relation for the parallel 

current term in Eq. (3), relating it to dynamical quantities in the plane.  For the well-

studied1-11 curvature driven electrostatic blobs, the parallel current acquires an 

approximately dipole structure, denoted ||J~ , in the perpendicular plane as the result of 

charge separation by curvature and grad-B drift effects. The charge separation and 
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current flow pattern is illustrated in Fig. 1.  Note that in addition to the dipole structure in 

the plane, these ||J~  currents have an odd parity along the magnetic field (assuming the 

curvature source term is even at z = 0, the outboard midplane location). The parallel 

current ||J~  flows in response to the charge pattern and completes a current loop which 

closes along the filed lines, for example at their termination on divertor plates where 

sheath boundary conditions apply.1,2   

For these odd-parity dipole parallel currents, the two-dimensional (2D) dynamics 

are well represented by integrating the vorticity equation along z, and retaining the sheath 

current term from the endpoint contributions.2  More generally, an operator L(Φ) ≡ 

[ ||J~ (z=+L||) − ||J~ (z=−L||) ]/(2L||) can be defined to describe the closure appropriate to a 

given set of boundary conditions along the field line.  For example, in the sheath-

connected limit1,2 L(Φ) ≈ )TL/()(cne2 ||fs
2 Φ−Φ where e/T3f ≈Φ  is the floating 

potential.  Also relevant to high-beta ELMs is closure by Alfvén wave emission along the 

magnetic field4-6,15 where bending of the field lines occurs due to the dipole current.  

This high-beta closure (also called the RX-EM regime in Ref.  5) is L(Φ) ≈ 

−2c2/(4πva0L||)
2
⊥∇ Φ where va0 is based on the background ambient density n0. Some 

additional examples of closure relations are discussed in Refs. 5 and 10.   

The point of the present paper is to include the effects on the 2D dynamics of an 

additional uni-directional (e.g. monopole) current [see Fig 1b)] carried by the ELM 

filament.  In order to assess the magneto-static forces arising from this ELM current, it is 

crucial to distinguish between the equilibrium background field B, and self-consistent 

(ELM generated) fields.  A slab model is considered where the equilibrium field is 

straight, ez = B/B is the unit vector along the equilibrium magnetic field, and the notation 

|| refers to the total magnetic field zz A∇×− eB  where the self-generated magnetic field 

due to the ELM current zJ  is described by zA .  The field-line averaging of the vorticity 

equation proceeds by employing 
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 zzz JJ~J +=  (4) 

and ∇|| = ez⋅∇ −(1/B) ez⋅∇Az×∇.   Taking ∇||J|| ≈ ∇||Jz, the field line average of the 

d zJ~ /dz term yields the L operator introduced previously.  Making the simplifying 

assumption that zJ  is constant along B, the d zJ /dz term makes no contribution to the 

field-line averaged equation, and the new terms all arise from ez⋅∇Az×∇Jz, which is just 

the reduced MHD magnetostatic force contribution.  The sub-ordering, zz JJ~ << , 

invoked next, highlights the effects of the ELM current, and gives rise to the following 

set of field-line-averaged model equations 

 zzzz
2

2
a

2
AJ

B
1p

B
c2)(L

dt
d

v4
c

∇×∇⋅+∇⋅κ×=Φ−Φ∇
π

⊥ ee  (5) 

 
0

dt
dn

=
 (6) 

 zz
2 J

c
4A π

−=∇⊥  (7) 

where,  in Eq. (5), va is the Alfvén velocity, and the non-essential but usual Boussinesque 

approximation has been made for the vorticity advection term on the left.  Here κ now 

refers to an appropriate field-line-averaged curvature. 

From the derivation and discussion, it should be clear that the descriptive terms 

“monopole” and “dipole” are used somewhat loosely in this paper to indicate the sign and 

character of current flow (net vs. cancelling).  They describe the lowest order multipole 

contributions to the current that contribute to the physics of magnetostatic forcing and 

charge-separation-induced convection, respectively, in the 2D plane.  The model itself 

applies to any function )y,x(Jz  that is constant along z; and the usual closure relations 

assume only that )y,x(J~z  is odd in z. 

The model equations neglect dipole-current contributions to the magnetostatic 

force, e.g. zzz AJ~ ∇×∇⋅e , and the fact that the ELM currents flow on bent field lines 

zzz A~J ∇×∇⋅e  These effects are regarded as less important here because the dipole 
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fields fall off rapidly in space in the x-y plane as one moves away from the ELM, and 

also these particular terms have an odd parity along B which makes their field-line-

averaged contribution small.   

As an aside, note that the zzz AJ~ ∇×∇⋅e  term describes the effect of  local 

rotational transform due to the ELM current on the (dipole curvature-induced) 

polarization charges.  If strong enough, this effect can mitigate charge polarization and 

hence slow the radial convective velocity.  However, for Jb ~ Jedge (where Jb is the 

blob/ELM current) this effect will not be qualitatively important while the ELM filament 

is localized to the outboard midplane, since Jedge ~ Bθ/r and Jb ~ Bθb/δb gives qb ~ qedge 

where qedge is the usual safety factor and qb = δbB/RBθb, i.e. the local rotational 

transform due to the ELM current is the same order as that due to background field. 

In general, Eq. (2) should be replaced by a more complete Ohm’s law 

 zz0
||

z JE
Ldt

Ad
c
1

η−=
∆Φ

+  (8) 

where ∆Φ is any net floating potential difference along the field-line segment, e.g. plate-

to-plate for a sheath-connected filament. The time scale for ELM convection τb ~ δb/v⊥ 

is normally short compared to the resistive diffusion time inside the filament where T is 

relatively high, τη = )c/(4 2
||

2
b ηπδ , suggesting the retention of d zA /dt. In addition, 

electron inertial effects should be added to Eq. (8) when δb < c/ωpe. However, for a 

coherent propagating ELM that retains its structure, e.g. a “blob” solution,1,2 the time 

derivative of the structure ideally vanishes in the moving frame so that d zA /dt ≈ d zJ /dt 

≈ dn/dt ≈ dT/dt ≈ 0.  In practice, electrostatic blob simulations (see e.g. Refs. 4-6) show 

that dn/dt is not strictly zero in the blob frame; instead, slow evolution (relative to τb) of 

the structure occurs.  Thus the simplest justification for employing Eq. (2) in place of Eq. 

(8) is the rather harsh restriction τη << τb.  In the present model, however, it will be seen 

subsequently that the magnetostatic force term itself acts to retain coherency of a 
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circular-cross-section ELM-blob structure, so a broader validity condition is expected to 

pertain.  Further attention to this issue, likely requiring numerical simulation, will be 

deferred to a later investigation. 

From Ampere’s law, for two ELMs of perpendicular radius δb, separated by d, we 

estimate ∇⊥ zA  ~ 2π zJ δb2/dc.  The magneto-static force from the last term of Eq. (5) 

provides an acceleration term (which may lead to steady blob velocity or not, depending 

on the regime and transient or steady conditions) that can be estimated from v ~ (cΦ/δbB) 

and Eq. (5) as 

 
dBc

Jv8
v 22

2
z

2
b

2
a

2 δπ
=&  (9) 

In dimensionless ratio form (to the Bohm scales for time = 1/Ωi and space = ρs = cs/Ωi) 

this yields 

 
d

4
c

v

bi

s

si β
ρ

=
Ω
&

 (10) 

where an “internal” blob (ELM) beta has been defined as 

 
2

b
e2

bi

e
bi I2

c
nT8

B

nT8
⎟
⎠

⎞
⎜
⎝

⎛ δ
π=

π
=β  (11) 

Here, the current carried by the filament is I = zJ πδb2 and Bbi is the magnetic field from 

this current at one blob radius.  An estimate for the strength of the curvature term in Eq. 

(5) yields  

 
R

2
c

v s

si

ρ
=

Ω
κ&  (12) 

Comparing Eqs. (10) and (12) shows that magnetostatic forces will dominate the 

curvature-induced forces on an ELM when βbid < 2R.  For the parameters given earlier, 

we estimate βbi ~ 5 – 10 (depending on whether we include the ion pressure which is 

technically zero in the rudimentary model equations).  
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III. Magnetostatic force effects on ELM-filament dynamics  

The effect of the magnetostatic force term on ELM dynamics is considered next.  

For an isolated cylindrically-symmetric current filament we have zJ  = zJ (r), zA  = 

zA (r) (where r = 0 is the filament’s center) and the force vanishes, 0AJ zzz =∇×∇⋅e .  

This leads to the first important conclusion: an isolated current carrying ELM filament 

experiences the same curvature-driven outward radial convection as its current-free blob 

counterpart.1-11 This convection velocity is estimated as vx ~ cΦ/(δbB) where, from Eq. 

(5), Φ is obtained by balancing the curvature term with the dominant term on the left-

hand-side. For the sheath-connected limit, this yields the familiar1,2 result  
2

bs||sx )/)(R/L(c~v δρ .  Indeed the observed radial convection velocity of ELMs is 

roughly consistent with blob-based estimates.16-18 

More generally, the magnetostatic term will act on structures with asymmetric 

current, and will cause two ELMs (which have the same direction of current filaments) to 

be attracted, and possibly merge. This is just the result of the current pinch: the attractive 

force will tend to symmetrize any localized structure in the 2D plane, evolving it to a 

cylindrically symmetric filament.  As the symmetrization progresses, the bulk (e.g. center 

of mass) motion of the ELM is expected to convect roughly at the rate derived in the 

preceding for the cylindrically symmetric case. 

 The attractive current-pinch force will also mitigate the blob bifurcation and 

fingering instabilities that occur in the electrostatic case.19,20  Additional calculations, 

not reported on in detail here, show that the stability problem for an isolated circularly-

symmetric 2D ELM is closely related to the classical rippling mode calculations.21,22 In 

a local slab approximation (valid for high-mode number perturbations of the ELM 

filament) neglecting curvature, retaining ∇z zJ  in the vorticity equation and employing 

the full Ohm’s law [Eq. (8) with ∆Φ/L|| → ∇zΦ],  the dispersion relation is 
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 2
a

rip )i(i
1

ω

ω+ωω
=

ω

γ
− η  (13) 

where  

 
Bk

ckJ

||

yzz
rip

η′
−≡γ  (14) 

πη=ω ⊥η 4/ck 22
z , k|| = kz + kθBθ/Bz, ′ = d/dr and (r, θ) are cylindrical coordinates 

based on the symmetry axis of the filament.  Note that zη′  > 0 for T decaying away from 

the filament’s center, and that zJ  and Bθ carry the same sign.  The electrostatic rippling 

mode corresponds to the limit where the rhs of Eq. (13) is negligible, resulting in ω = 

iγrip and yielding instability if γrip > 0.  For general (kz, kθ) this is possible, however in 

the 2D context where kz = 0, we have zJ ky/k|| > 0 and the mode is stable (actually 

damped). Other branches are also stable because 2
b

2
rip k~/ δγω ⊥η  >> 1 in local theory.  

For “global” low-m (relative to the filament) modes, we can consider electromagnetic 

kink-type perturbations.  If the ELM zJ  is smaller than that of the edge plasma and qedge 

>> 1, kinks are normally stable, even when finite kz is allowed.  For perturbations 

confined to the 2D plane, the magnetostatic terms provide over-stability for  m > 1 (i.e. 

ω2 ≈ 2
a

2
|| vk  ≈ 22

a
22

y B/vBk θ > 0 where ky ~ m/δb), and should thus give a stabilizing 

contribution to curvature-driven modes.  This contribution is important when 

bib
2
yRk β>δ  which is easy to satisfy. 

Thus the stability of an isolated ELM in the 2D model is enhanced over its 

current-free blob counterpart due to the magnetostatic current pinch, which will tend to 

circularize the object in the 2D plane, enhancing its coherency as it propagates.  

Consequently, as alluded to following Eq. (8), the validity of neglecting d/dt in the ELM 

frame should also be enhanced relative to the electrostatic blob case.  

The interaction of an ELM filament with the edge plasma and wall, is also an 

interesting aspect of the model. Consider first the formation of an ELM.  The postulate, 
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(see the Introduction) is that during an ELM event current density, as well as particles 

and energy, are lost from the main plasma, i.e. each ELM filament carries with it the 

density, temperature, and parallel current of the creation (peeling-ballooning instability) 

zone. A “force-free” zJ -carrying ELM filament does not interact with the equilibrium 

magnetic field B = Bez.  But, because the total current carried by the torus is conserved 

on short time scales, the ejected ELM-filament must leave behind a “current-hole” in the 

creation zone, i.e. a region depleted of current just as it is depleted of pressure (see Fig. 2 

inset).  This region of depleted current can be modeled heuristically as the original 

equilibrium plus an oppositely signed localized current filament. 

Consider the current filament-hole pair in the left part of Fig. 2.  As long as the 

current-hole exists, it will exert a repulsive force on the ELM (because the hole and ELM 

have oppositely-directed zJ currents), thus the ELM will be accelerated into the SOL. 

[This magnetostatic current repulsion is clearly a different mechanism than that which 

gives rise to “explosive” pressure-gradient-driven ballooning23 although the result on the 

emerging ELM is qualitatively similar.]   After a characteristic healing time for the main 

plasma (e.g. due to turbulence and parallel flows of particles and current which act to 

restore  pressure and current to flux functions), the magnetostatic force on the ejected 

ELM will again vanish (as in the isolated ELM case discussed previously) since the 

interaction of the main tokamak magnetic field with a purely parallel current is force-

free.  However, the curvature-induced radial convection remains. 

Fig. 2 also depicts (at right) an ELM approaching a perfectly conducting wall.  In 

order to make the normal component of B vanish at the wall, the parallel current in the 

image flows in the opposite direction.  Thus the blob will be repelled by the wall (flux 

compression of the ELM’s magnetic-field against the wall), causing its radial motion to 

decelerate.  For resistive walls there is an additional effect: deceleration of the toroidal 
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rotation of the blob due to image currents.  Such toroidal deceleration has been 

observed.13 

IV. Conclusion  

In conclusion, a model for 2D ELM dynamics that includes net uni-directional 

current flow along the filament, appears to be both feasible and interesting.  The model 

suggests that an ELM will be accelerated away from the plasma, near the edge, (due to 

interaction with its hole pair) then (after the hole heals) drift with a constant E×B drift in 

the curvature-dominated zone for isolated ELM filaments, and finally decelerate close to 

the wall, assuming it maintains its parallel current zJ  and temperature T as it convects.  

More realistically, some zJ and T convected by the ELM could be lost to sheaths by the 

time the ELM reaches the wall, mitigating the image current deceleration effect in some 

cases. The current carried by the ELM enhances coherency (secondary stability) in the 

perpendicular plane, but allow resistive rippling and other instabilities in 3D.  

note added in proof: Recent nonlinear MHD simulations of ELMs24–29 show filament 

formation.  In particular, Ref. 24 explicitly discusses the observation of ELM filaments 

which carry current. Field-aligned holes left behind after filament ejection have been 

reported in recent experiments.30 
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Figure captions 

1. Sketch of current flow in blob and ELM filaments  (cutaway view):  a) charge 

separation due to a gravity force g (e.g. from curvature), resulting “dipole” parallel 

current pattern, and E×B convection; b) additional unidirectional (“monopole”) 

current flow in an ELM filament. 

2. Sketch of interactions of a current-carrying blob (ELM) with its creation-hole, (left) 

and with a wall (right).  The direction of parallel current flow is indicated by the cross 

and dot symbols.  The force with the image or hole is repulsive in both cases.  Inset at 

upper left:  Peeling-ballooning instability is postulated to deform the radial current 

profile in the plasma creating the ELM-hole pair. 

 



 16 

 
 
 
 

x

y

z +

g, vE×B

zJ~

zJ~

zJ

a)

b)

x

y

z
x

y

z +

g, vE×B

zJ~

zJ~

++

g, vE×B

zJ~

zJ~

zJ

a)

b)

 

Fig. 1 Sketch of current flow in blob and ELM filaments  (cutaway view):  a) 
charge separation due to a gravity force g (e.g. from curvature), resulting “dipole” 
parallel current pattern, and E×B convection; b) additional unidirectional 
(“monopole”) current flow in an ELM filament. 
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Fig. 2 Sketch of interactions of a current-carrying blob (ELM) with its creation-
hole, (left) and with a wall (right).  The direction of parallel current flow is 
indicated by the cross and dot symbols.  The force with the image or hole is 
repulsive in both cases.  Inset at upper left:  Peeling-ballooning instability is 
postulated to deform the radial current profile in the plasma creating the ELM-
hole pair. 
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