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Abstract 

Radio frequency waves for heating and current drive of plasmas in tokamaks and 

other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before 

they can be put to their intended use.  The SOL plasma is strongly turbulent and 

intermittent in space and time.  These turbulent properties of the SOL, which are not 

routinely taken into account in wave propagation codes, can have an important effect on 

the coupling of waves through an evanescent SOL or edge plasma region.  The effective 

scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned 

filamentary plasma turbulence is addressed in this paper.  It is shown that although the 

FW wavelength or evanescent scale length is long compared with the dimensions of the 

turbulence, the FW does not simply average over the turbulent density; rather, the 

average is over the exponentiation rate.  Implications for practical situations are 

discussed. 

 

PACS: 52.25.Os, 52.35.Ra, 52.50.Qt, 52.55.Fa
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I. Introduction 

The propagation of plasma waves in the presence of a background of short-scale 

turbulence has been recognized as an important and scientifically interesting topic for 

many years. Pioneering theoretical work on this problem was done in the early 1980’s 1-3 

which resulted in a Fokker-Planck description of the scattering of rays by a random 

distribution of plane-wave perturbations on the background plasma.  This approach was 

subsequently explored theoretically for a variety of wave regimes (including high-

harmonic fast wave, lower hybrid, and electron cyclotron) by other authors.4-7  

Experimental evidence for wave scattering8-10 including mode conversion induced by 

scattering8  was also reported and motivated some of the theoretical work. 

Complimentary to the wave-kinetic Fokker-Planck type of approach to theory and 

modeling, the wave scattering problem has also been considered for the case where the 

background plasma turbulence contains coherent structures.11-13  These approaches were 

partly motivated by theory and observations of the edge and scrape-off-layer (SOL) 

which showed that the turbulence in those plasmas is dominated by short-scale field-

aligned structures often referred to as blob-filaments or simply blobs.  Two review 

articles14,15 covering theory, experiment and simulation provide addition information and 

references on this topic.  For present purposes we can view a blob as a flux tube 

containing significantly denser plasma than the surrounding background.  Blobs typically 

have cm scale dimensions perpendicular to the magnetic field B, and much longer scales 

(several m or more) along B.  Relative to the short period  (<< 1 s) of rf waves in the ion 

cyclotron range of frequencies (ICRF) and above, the blob structures are frozen in time, 

but present a spatially intermittent edge and SOL which the waves must traverse on their 

way to the core plasma. 

In Ref. 11 the scattering of fast and slow waves in the ICRF and lower hybrid 

frequency regimes was considered.  The propagating waves in this study were taken to be 

incident on an isolated cylindrical blob, an assumption which requires a sufficiently large 

blob separation or equivalently a small blob packing fraction.  Calculations were 

performed analytically by matching the incident plane wave solution onto the interior 

blob solution and a scattered wave.  Scattering widths were derived and the scattered 

power fraction was estimated using a cold-fluid plasma model.  Processes such as 

scattering-induced mode conversion, scattering resonances, and shadowing were 

investigated.  Subsequently, scattering calculations from an assumed spherical plasma 

structure using an analogous formalism reported similar results.13 

The goal of the present paper is to consider a problem much like that described in 

Ref. 11 but for the case where the incident wave is an evanescent field.  In this case, there 
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is no far-field scattering as such, but the important question becomes one of determining 

how the effective scale length for evanescence is affected by the presence of the spatially 

intermittent plasma, i.e. the blob structures.   

The practical interest in this problem arises because radio frequency waves meant 

for heating and current drive in tokamaks and other magnetic confinement devices must 

first traverse the scrape-off-layer (SOL) before they can be put to their intended use.  The 

turbulent properties of the SOL, which are not routinely taken into account in wave 

propagation codes, can have an important effect (as we shall see) on the coupling of fast 

waves through an evanescent SOL or edge plasma region.  When the effective scale 

length for fast wave (FW) evanescence is short compared to the distance between the 

antenna and the core plasma it is difficult to couple much power into the core.  High 

voltages on the antenna would be required, and this often results in edge power losses and 

impurity issues,16-18 and possibly antenna damage from arcing.    

The issue of FW coupling through an evanescent SOL may be of particular 

interest for the ITER tokamak now under construction.  The planned ITER FW antenna is 

located far into the SOL.  This has motivated a study by Messiaen and Weynants19 of 

FW coupling using a laminar one-dimensional (1D) density profile.  These authors found 

that coupling was very sensitive to the width of the evanescent region below cutoff, and 

to the profile of the region above cutoff. Slight profile modifications were found to lead 

to substantial coupling and power capability variations. Given this result, the present 

study of blob effects (which are a rather extreme profile variation) on evanescence seems 

well motivated. 

This paper here addresses the effective evanescence rate from the perspective of 

several models. It generalizes to two dimensions (2D) an initial study12 using a 1D blob 

lattice model.  In Sec. II, the evanescence rate is calculated in a 2D infinite blob lattice 

using a model wave equation.  The main parametric dependencies are deduced from this 

model.  In Sec. III an asymptotic solution is developed for the case where the blobs are 

sufficiently separated that there are no multiple-blob interactions of the waves.  In Sec. 

IV the formalism of Ref. 11 for the actual fast wave (as opposed to the model wave 

equation) is applied in the same asymptotic limit of isolated blobs. It is shown that the 

results for the model wave equation and the fast wave are the same.  Finally in Sec. V, 

the results are summarized and described using an intuitive approach.  Practical 

implications of the work are discussed. 
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II. 2D blob lattice model 

In this section, a model wave equation is solved in the domain of a 2D blob 

lattice.  For the sake of simplicity, a scalar wave model is used here to avoid the full 

complexities of the fast wave dispersion relation and associated vector polarization.  

These complexities are treated asymptotically in Sec. IV.  The geometry is shown in Fig. 

1 which defines the blob radius “a” and the inter-blob spacing (lattice size) parameters Lx 

and Ly.  In this geometry the packing fraction, i.e. the ratio of blob area to area between 

blobs, is given by 

 
yx

2

p LL

a
f


  (1) 

which can take on values over the range 0 < fp <  with the upper limit occurring for Lx 
= Ly. 

 

 

Fig. 1 One cell of a doubly periodic blob lattice.  The blob radius 
is “a”; Lx and Ly specify the blob spacing.  The fast wave is 
incident from the left. 

 

The main physical features of the problem are illustrated here by considering the 

solution of the following wave problem 

 02  , r < a (2) 

 022  , r  a. (3) 

where r = (x2+y2)1/2.  This problem models a situation where the blob consists of plasma 

of sufficient density to be above wave cut-off, so that the waves do not evanesce inside 

the blob itself. In the vacuum region between the blobs, evanescence occurs at the local 
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rate . As discussed in Sec. V, this situation is the one of most interest for fast wave 

interactions with turbulent edge and SOL plasmas.  Note that we are interested in the case 

where the (modeled fast wave) wavelength is much larger than the blob dimensions, so 

propagation characteristics inside the blob are neglected, i.e. ka << 1 where k is the 

wavenumber in the blob plasma. 

The complications in solving Eqs. (2) and (3) are in the associated matching and 

boundary conditions.  At the blob-vacuum interface r = a the wave field and its gradient 

are continuous 
 )ar()ar(    (4) 
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r
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Periodic solutions are sought in the y-direction 
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where y/y  .  In the x-direction, the desired solutions are evanescent-periodic, 

i.e. 
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where 0 < F <1 is the sought-after “eigenvalue” to be determined from the solution.  

Given F, the effective evanescent rate q is then defined by 

 qLeF   (10) 

where henceforth L  Lx = Ly. The notations Lx and Ly are sometimes retained in the 

following presentation for pedagogical clarity. 

The solution method adopted here is to employ series expansions of the general 

solution to the wave (Laplace or Helmholtz) equation in the internal (blob) and external 

(vacuum) regions.  The boundary and matching conditions then provide constraints which 

convert the problem into a generalized eigenvalue matrix problem.  The solution method 

is summarized in an Appendix. 
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The field pattern for a typical solution is shown in Fig. 2. Note the distortion of 

the wavefronts by the blob and the more rapid evanescent decay in exterior region.  For 

this case (kL = 4, a/L = 0.25 corresponding to fp = 0.20) the result is F = 0.0299, q =  ln 

F = 3.51 and hence q/ = 0.88.  

 

 

Fig. 2 Field pattern (shaded contours) for || in the (x, y) plane 
for the case L = 4, a/L = 0.25 corresponding to fp = 0.20. The 
thick circle is the blob radius r = a and the wave is incident from 
the left. 

 

It turns out that over a wide parameter range the solutions are conveniently 

expressed in the parameter space of the packing fraction fp and the relative evanescence 

rate q/.  This result is partly expected from the 1D model investigated in Ref. 12. 

Figure 3 summarizes the main findings from the 2D blob lattice model. The numerical 

result for q (normalized to ) is shown vs. fp with solid lines for particular values of L 

ranging from  small to large.  For small L, the results accumulate at a bounding line that 

is essentially the L = 0.5 case. The L << 1, fp << 1 limit is numerically close to q/ = 

1 fp/2 moving down and away as fp increases. For largeL the curves follow q/ = 1 

fp for fp << 1 and then move up and away from this line as fp increases. It will be shown 

in Sec. III that 1fp is the analytical asymptotic limit for large  and small fp. 
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Fig. 3 Relative evanescence rate from the 2D blob lattice model. 
Numerical results for L = 0.5, 1, 2, 4, 7, 10 are shown with solid 
lines. The dashed lines are analytical scalings that bound the 
results. 

 

An important result from Fig. 3 is the all the cases are bounded by the dashed 

lines i.e. 
 2/f1/qf1 pp  . (11) 

This has the advantage that it makes numerical work unnecessary for rough estimates, 

and, as discussed in the Sec. V, it enables an intuitive interpretation of the results. 

III. Asymptotic solution of the model problem 

In this section the solution of the model problem of Sec. II is derived in the 

asymptotic limit of large  L >> 1.  In this limit, the coupling between adjacent cells in 

the lattice is negligible and we can treat the interaction of an evanescent field with a 

single isolated blob.  The basic method is the same as described in Ref. 11, using 

scattering theory, but with modifications to account for the evanescence of the fields and 

the scalar nature of the model described in Sec. II. 

 The incident field in the exterior region is 

 )cosrexp(ee xxik)i( x    (12) 

where x = r cos kx = i and we take the incident ky = 0.  Using Bessel identities we 

have 
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The “scattered wave” (actually an evanescent field) is written as 
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where Km is the decaying Bessel function as r gets large.  The interior (blob) solution is 
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Applying the matching conditions at r = a and eliminating )b(
m results in 
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where all Bessel functions are evaluated at z = a. The total exterior wave solution is then 

given by )s()i(  .  

To calculate the evanescence rate for large r we take the asymptotic limit of the 

Bessel functions for r >> m 
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For large r the scattering term )s( is small compared with the incident field )i( by the 

factor 1/(r)1/2 and henceforth is treated as a perturbation.  Thus to leading order in the 

scattering 

 )s(xx22 Ree2e   . (18) 

Next the evanescence factor is defined as 
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where  <…>y is a y-average. After some algebra one obtains 

 




  
y

x
)s(2/L

y
x

)s(2/LL )2/L(Ree)2/L(Ree1eF xxx  (20) 

where 

 












 



m
4/122

2/122
(s)
m

y

2/1
)s(
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Here x̂x  , ŷy  , x̂/ŷtan  , 2/122 )ŷx̂(r   and the y-integration has been 

extended to the infinite domain, valid for the leading asymptotic result. 

To make further analytical progress it is necessary to invoke the z  a << 1 

expansions of )s(
m .  Note that a << 1 and L >> 1 together imply that fp << 1. It is 

readily shown that 
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and all other terms are higher order than z2.  Here E is Euler’s constant. 

The leading term in the z expansion therefore comes from m = 1.  However, 

after some further calculations, it can be shown that the resulting m = 1 contribution to 

F vanishes for large    Lx/2. Thus, the desired asymptotic result comes from 
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where 2222222 ŷx̂sinr̂cosr̂2cosr̂   has been used. Substituting these 

contributions into Eq. (20)  yields 
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which gives the normalized decay rate 
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provided 1fL px   to expand the logarithm (otherwise the treatment of the scattered 

field as a perturbation breaks down). This result is in agreement with the numerical 

results in Fig. 3 and will also turn out to be identical to the asymptotic result for the FW 

case. 
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IV. Asymptotic solution of the fast wave problem 

Up until now in the paper, consideration of the evanescence problem has been 

restricted to the case of the Helmholtz-Laplace model given by Eqs. (2) and (3).  It is 

important to gain some insight into how faithfully this model reproduces the actual FW 

behavior.  In this section the solution of the full FW problem is derived in the asymptotic 

limit of large  L >> 1. As in Sec. III, we can treat the interaction of an evanescent field 

with a single isolated blob, and the formalism again closely follows Ref. 11.  The 

derivation, which is tedious but straightforward, will only be summarized here. The 

notation for the most part follows  Ref. 11, which the reader is referred to for details. 

The basic FW equation set is given by Eqs. (MD-2) and (MD-3) where the MD 

prefix indicates equation numbers from Ref. 11.  The general solution may still be written 

in the form given by Eq. (MD-6), namely 
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mE  are the 

unknown coefficients to be solved for.  The calculations go through if we continue the 

Bessel functions into the complex plane, effectively making the change 
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m
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where k  = i for the evanescent waves Taking the limit ka << 1 as in Ref. 11 for the 

wave-fields both internal and external to the blob, one arrives, as before, as Eq. (MD-31) 

giving the ratio of the scattered solution )1(E to the incident wave )0(E as 
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where ka, bkba and subscript b indicates evaluation using plasma parameters 

inside the blob.  Here Q = )n/(i 2
||   and Qi = Im Q where × and  are the usual 

cold fluid components of the dielectric tensor and n|| = k||c/
From this point on, the calculations start to depart from Ref. 11 since the present 

calculation investigates different limits and different outputs (namely the evanescence 
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factor F rather than the far-field scattering width).  The simplest limit is   << 1, and b = 

0 which also corresponds to the limit considered for the model problem.  In this case 

 )(
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The total external solution consists of the incident wave and the decaying m = 1 Hankel 

functions embedded in )r()j(
mW .  In the asymptotic limit r >> 1, the mH terms are 

dominant in the scattered solution.  After some algebra using the explicit forms for 

)r()j(
mW  given in Appendix D of Ref. 11,  one obtains the total field to first order in the 

scattered solution as 
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Here the cos  factor arises from the m = 1 contributions to the scattering and the (Q 

sin   + cos ) factor arises from the identity11 )cossinQ(EE )1()1(
y   . 

Continuing to retain only first order contributions from the scattered field, 
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ŷd)x̂(f

22







  (35) 

xx̂  , yŷ   and the integration limits have be extended to infinity using Ly >> 1. 

Using the definition of F given in Eq. (19) with  now replaced by Ey, the evanescence 

factor is 
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where  = Lx/2.  Thus the normalized decay rate is 
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and only the leading the leading asymptotic terms in  are significant. It can be 

shown that 1~)(g   for .  This completes the demonstration that Eqs. (38) and (27) 
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are equivalent asymptotically, i.e. the model Helmholtz problem and the full FW problem 

give the same result for the dependence of the normalized evanescence rate on the 

packing fraction in the limit L >> 1. 

V. Discussion and conclusions 

When expressed in terms of the packing fraction, the results of this paper are very 

similar to those of a simple 1D model.12 In that model, for L >> 1 but fp arbitrary, the 

leading order result was 

 pf1
q




 (39) 

while for fp << 1 and L ~ 1 the leading order result was 

 pf
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1
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q
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Interestingly, Eq. (40) is the same upper bound shown in the numerical results of Fig. 3. 

These 1D results have an intuitive heuristic interpretation. Consider the net decay 

of the fields over a length L = L1 + L2 where L1 and L2 represent regions with 

corresponding evanescent decay rates q1 and q2.  Let 
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In the case q2 = 0 (e.g. representing the high density blob where the FW propagates) then 

one obtains )f1(qq p1  recovering previous results.  Thus we conclude that the 

evanescent wave fields effectively average over the local exponentiation rate.  In 

practical FW coupling calculations, this can be very different from calculating the 

exponentiation rate using an average density. 

To examine the implications of this, consider the specific application to FW 

propagation in a typical SOL plasma. The FW dispersion relation is 

 
)n(

)n)(n(
n

2
||

2
||

2
||2









  (42) 

At very low densities with respect to cutoff we have evanescence with 

 2
||

2
||

2 nn1n   (43) 

At high densities, well above cutoff, noting that |×| > ||, × > 0,  < 0, we have 

propagation with 
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 e
2 nC

))((
n 




 




  (44) 

where C is a positive constant. Thus, if the blobs and holes (spaces between blobs) are 

both at very low density, the evanescence rate is independent of density, and spatial 

intermittency will have no effect. On the other hand, if the blobs are above cutoff, and the 

holes below cutoff, the spatial intermittency of the blob-filaments will have an important 

effect. In this case, averaging the evanescence rate (not the density) is the correct 

approach.  

As mentioned in the introduction,  FW coupling through an evanescent and 

turbulent SOL may be of particular interest for ITER.  The present work suggests that 

calculated evanescence rates based on an average 1D radial density profile may be overly 

optimistic.  From a modeling viewpoint this motivates the inclusion of spatial 

intermittency of the plasma profiles in FW propagation and coupling codes. From an 

experimental and design point of view, it may support techniques such as gas injection20 

to better control the SOL density profile and hence mitigate rapid evanescence and its 

detrimental effect on FW coupling. 

In conclusion, although the FW wavelength (evanescent scale length) in the 

tokamak SOL is typically long compared with the dimensions of the filamentary 

turbulence, the FW does not simply average over the turbulent density. Rather, the 

average is over the exponentiation rate (inverse decay length); thus the evanescence is 

usually controlled by the density between blobs-filaments where the exponentiation rate 

is fastest. Some features of this problem may be generic for waves propagating through 

short scale structures.  It was found that 2D asymptotic solutions of a model Helmholtz 

problem and the more complicated FW problem can be described by a general result; 

which also incorporates 1D results from a very simple model. 
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Appendix: Solution method for the blob lattice problem 

In this appendix it is shown how the problem defined by Eqs. (2) – (9) is solved 

numerically by expressing it as a generalized eigenvalue problem. 

In the interior region, the solution is expanded in polar coordinates 

 ar,
a

r
)mcos(C

m

m
1N

0m












 (A1) 

where up-down symmetry is explicitly invoked.  In the exterior region the evanescent 

solution is expanded in terms of Bessel functions 

 ar)],r(KB)r(IA)[mcos( mmmm
1N

0m





 (A2) 

The two matching conditions at r = a are then used to eliminate Bm and Cm in terms of 

Am.  For the periodic and evanescent-periodic boundary conditions on the edges of the 

box, an error minimization procedure is employed.  The function to be minimized is 

defined as 
 321 WWWW   (A3) 

where 
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 (A6) 

Converting between the (x,y) coordinates in W and the (r, ) coordinates in the 

fundamental expansions of Eqs. (A1) and (A2) then results in an expression for W in 

terms of the Am, 

  )2(
km

2)1(
km

)0(
kmmk

km
RFFRRAAW   (A7) 

The matrix elements )j(
kmR have explicit but lengthy expressions that are conveniently 

coded using the symbolic algebra capabilities of the Mathematica language.  An example 

contribution to a matrix element is 
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km GGdy  (A8) 

where the integral extends over the side of the box,  
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and the + and  subscripts indicate evaluation at fixed x = Lx/2.  Importantly, the 

matrices )j(
kmR  are symmetric. 

The next step is to minimize W with respect to the Am.  Taking account of the 

symmetry of the matrices, the condition for a minimum of W is 

   0ARFFRR2
A

W
m

)2(
nm

2)1(
nm

)0(
nm

kmn



   (A10) 

which gives a null-space problem with free parameter F. This is not quite yet in the form 

of a standard eigenvalue problem because F appears quadratically.  Suppressing the 

matrix indices, and writing superscripts (0), (1), (2) as subscripts for notational brevity, 

the equation is 

 0A)RFFRR( 2
2

10   (A11) 

Let 
 AFRB 2   (A12) 

to obtain 
 0FBA)FRR( 10   (A13) 

This can be written in the enlarged space of (A,B) as the block matrix problem 
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which is a generalized eigenvalue problem that can be solved by standard numerical 
packages. 
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