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Abstract 
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or 

ion pressure gradient effects and can potentially influence the stability and turbulent saturation 

level of edge plasma modes.  On the other hand, such flows are subject to the transverse Kelvin-

Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an 

analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. 

The analytic model treats sheared EB flows, ion diamagnetism (including gyro-viscous terms), 

density gradients and parallel currents in a slab geometry, enabling a unified summary that 

encompasses and extends previous results. In particular, while ion diamagnetism, density 

gradients and parallel currents each individually reduce KH growth rates, the combined effect of 

density and ion pressure gradients is more complicated and partially counteracting.  Secondly, 

the important role of realistic toroidal geometry is explored numerically using an invariant 

scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed 

and open field line regions.  For a typical spherical torus magnetic geometry, it is found that KH 

modes are more unstable at and just outside the separatrix as a result of the distribution of 

magnetic shear. Finally implications for reduced edge turbulence modeling codes are discussed. 
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1. Introduction 
Sheared flows in plasmas are ubiquitous and their effect on plasma instabilities and 

turbulence can be one of either suppression or enhancement.  Sheared flows are often stabilizing 

when the local shearing rate is comparable to the linear growth rate of an unstable mode, and can 

nonlinearly suppress turbulence and transport by decorrelation of turbulent eddies (Burrell 1997; 

Terry 2000).  In this paper, we focus on a competing effect: sheared flows also provide a source 

of free energy for instabilities such as the Kelvin-Helmholtz (KH) mode. 

The study of velocity shear instabilities in plasmas has a long history dating back many 

decades, going up to the present, and encompassing both space and fusion applications. The cited 

papers which follow are but a few examples of the rich literature on this topic.  Magnetized 

plasmas generally have anisotropic flows across (v) and along (v||) the magnetic field, and these 

flows can have both perpendicular () and parallel (||) gradients. The resulting instabilities 

broadly separate into classes depending on whether the free energy source is from the parallel 

velocity shear v|| (D'Angelo 1965; Catto et al. 1973; Garbet et al. 1999; Wang et al. 2015), the 

parallel shear of the perpendicular  flows ||v (Lee et al., 1982; Tsidulko et al. 1994), or the 

perpendicular "transverse" shear of the perpendicular  flows bv (Perkins & Jassby 1971; 

Miura & Pritchett 1982; Pritchett 1987; Horton et al. 1987; Vranješ & Tanaka 2002; Rogers & 

Dorland 2005; Popovich et al. 2010; Fisher et al. 2015; Xi et al. 2012).  In the present paper we 

will be concerned only with the latter, and by KH we will mean the transverse KH instability.  In 

tokamak plasmas, also the primary concern of this paper, this typically means the KH mode that 

is driven by the shear dvy/dx where (x, y, z) are approximately the radial, binormal (in tokamak 

terminology approximately poloidal) and parallel directions to the magnetic field.  In the material 

which follows we will consider KH instability models in both this simple slab geometry and in 

fully toroidal divertor geometry relevant to tokamak edge and scrape-off layer plasmas. 

One motivation for studying the KH mode is its possible role in determining saturation 

levels for other unstable modes (Itoh et al. 2006; Ricci & Rogers 2013; Goto et al. 2015).  

Reynolds stress arising from a primary instability, e.g. a curvature-driven resistive ballooning 

mode as in Guzdar (1993), and references therein, acts as a source for both zonal (oscillating) 

and mean (time-averaged) flows.  When shear in the resulting flows becomes sufficiently large, 

dvy/dx ~ , i.e. comparable to the primary instability growth rate , nonlinear saturation may 

occur.  On the other hand, if the resulting sheared flows are mitigated or destroyed by secondary 

KH instability, the primary mode may continue to grow.  Understanding the conditions for KH 

instability is thus important for determining the amplitude scaling of saturated turbulence.  

An application of particular present day interest for fusion research is the resulting 

scaling of the scrape-off layer (SOL) heat flux width implied by turbulence cross-field transport 
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(Myra 2015).  (The SOL is the region of open field lines just outside the confined plasma.  In a 

tokamak, the heat from the confined core plasma transports across the separatrix or last closed 

flux surface, into the SOL where it is ultimately deposited on material surfaces.)   It is worth 

noting that edge and near-SOL plasmas can have very short perpendicular gradient scale lengths, 

on the order of a few mm to a few cm, in both the plasma pressure profiles and the drift 

velocities, making for potentially strong instability driving terms. 

In spite of the considerable literature on the transverse KH instability in magnetized 

plasmas, reviewed briefly in the following paragraphs, significant questions remain to be 

addressed clearly even in the linear theory.  Because the KH instability cannot be obtained from 

a local dispersion relation, it is usually treated numerically, and this has hampered the 

development of simple criteria for stability boundaries, particularly when density gradients, ion 

diamagnetic effects, and parallel currents are present simultaneously. Finally, to the best of our 

knowledge, there has been no attempt to date to examine the KH instability near the separatrix 

and in the SOL in realistic toroidal geometry.  Both of these topics are addressed in the present 

paper. 

Although the KH mode does not obey a local dispersion relation, various models 

employing specialized velocity profiles have been employed to obtain analytical or semi-

analytical results, including  "sharp boundary" (discontinuous) (Pritchett 1987), piecewise linear 

(Horton et al. 1987) and tanh-type (Vranješ & Tanaka 2002) velocity profiles. While many of the 

early papers considered the basic KH instability with velocity gradients in an otherwise minimal 

plasma model, later works also included the stabilizing effect of Alfvén parallel currents, i.e. 

magnetic line bending energy (Miura & Pritchett 1982; Rogers & Dorland 2005) and ion 

diamagnetic drifts (Vranješ & Tanaka 2002; Rogers & Dorland 2005).  Although some of the 

literature relevant to inertial confinement fusion considers KH instability in the presence of a 

density gradient (Wang et al. 2009), the simultaneous treatment of  parallel currents, velocity, 

density and ion pressure gradients necessary to understand magnetic-fusion-relevant plasmas 

has, to the best of our knowledge, only been attempted in numerical studies (Goto et al. 2015). 

The key known results from previous work can be summarized as follows.  The basic KH 

mode is unstable over a range of perpendicular wavenumbers ky directed along the flow vy, 

extending from ky = 0 to a maximum cutoff wavenumber kmax ~ 1/Lv where Lv is the scale 

length of the velocity profile, Lv
-1 ~ d ln(vy)/dx.  The KH growth rate is maximized at kyLv ~ 0.5 

and the maximum growth rate is of order max ~  0.2 vy,max where vy,max is the maximum 

shearing rate of the profile and here  denotes d/dx. The function (ky) has a characteristic 

inverted-parabola shape as illustrated in Fig. 1. In the limit kyLv << 1, the growth rate scales like 

 ~ C kyLvmax where C is an order unity constant. 
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The Alfvén parallel current stabilizes the KH mode when, in order of magnitude, a > 

max where a= k||va. Here, k|| is the parallel wavenumber and va = B/(4nmi)1/2 is the Alfvén 

velocity. Tokamak plasmas have magnetic shear (i.e. variation, from one flux surface to the next, 

of the pitch angle of the magnetic field with respect to the toroidal direction). Magnetic shear 

imposes a minimum effective k|| on the perturbation: the fixed twist of the mode and the shear of 

the magnetic field prevent the mode from staying aligned from one flux surface to the next. Thus 

KH stability can also be brought about by magnetic shear effects.  

 Ion diamagnetic flows vdi ~ vtii/Lpi become important when vdi ~ vE where the KH 

instability is driven by the gradient in the EB velocity vE = EB c/B2 and E and B are the 

equilibrium electric and magnetic fields. Here vti is the ion thermal velocity, i is the ion Larmor 

radius, Lpi is the gradient scale length of the ion pressure and the relevant components of vdi and 

vE are in the y direction. More precisely, since vE is frame dependent, the condition is vdi ~ vE 

where vE is the net change in vE(x) across a characteristic distance in x of order Lv.  Density 

gradients usually reduce the growth rate of the KH mode, but cannot completely stabilize it. 

The plan of our paper is as follows. In Sec. 2 a simple analytical model of the KH mode 

is presented in the asymptotic limit kyLv << 1, which is equivalent to a sharp-boundary model.  

The analytic model treats sheared EB flows, ion diamagnetism, density gradients and parallel 

currents in a slab geometry, enabling a unified summary that encompasses and extends well-

known results. The model employs a warm ion treatment including ion gyro-viscous terms that 

are consistent with the drift-ordered, fluid model result derived by Simakov & Catto (2003) and 

used in the BOUT (Umansky et al. 2009) and SOLT (Russell et al. 2015) codes.  These 

somewhat complicated additional terms are the same order as the usual ion diamagnetic drift 

term, and influence the KH stability boundary. To the best of our knowledge, they have not 

previously been treated in any analytical KH model and are also omitted in some numerical 

studies.  Remarkably, a simple, analytical dispersion relation is still possible in the kyLv << 1 

limit. 

Having addressed the effects of ion diamagnetism, density gradients, parallel currents and 

their mutual interactions in a simple geometry, in Sec. 3 the effect of realistic toroidal geometry 

is explored numerically using the 2DX eigenvalue code (Baver et al. 2011) for KH modes both 

inside and outside the separatrix.  For this portion of the study, a minimal cold-ion KH model is 

employed. An invariant scaling analysis is shown to reduce the parameter space and isolate the 

main dependencies on wavenumber, Alfvén parallel current, electron skin depth and 

collisionality. It is shown for a sample spherical torus magnetic geometry that the KH mode is 

more unstable in the near-separatrix and SOL than in the closed surface region. 



   
 

 5 

In Sec. 4 a method for qualitatively including the stabilizing effect of parallel Alfvén 

currents on the KH mode in 2D reduced-model nonlinear simulations is presented.  Finally our 

conclusions are given in Sec. 5.  

As mentioned in the preceding, various limitations apply separately to the different 

sections of the paper: the use of slab geometry in Sec. 2, and the use of a cold ion model in Secs. 

3 and 4.  The goal of this approach is to highlight individual effects in an attempt to gain insight, 

rather than to include all important effects simultaneously. The latter approach would be 

required, for example, for quantitative modeling of an experimental discharge. 

2. Analytical model of KH mode 
In this section an analytical theory of the KH mode including warm ion effects is 

considered in a slab geometry.  The slab geometry is a significant limitation for tokamak 

applications because of magnetic shear, discussed in Sec. 3, and the implications of coupling of 

perpendicular and parallel flows in toroidal geometry. Nevertheless, the slab model, being 

analytically tractable, provides some useful insights. 

A. Radial eigenvalue equation 

The basic equations of the warm-ion fluid model considered in this section are given by 

charge conservation (vorticity), and advection for the density and ion pressure.  

 ||||jiijt J)f)(v())((  fvf  (1) 

 0nnt  v  (2) 

 0pp iit  v  (3) 

where v = b   and 

 ipn  f  (4) 

Here and in the following we employ Bohm-normalized variables, i.e. length and time scales are 

normalized to s = cs/i, and 1/i respectively, the electrostatic potential is normalized to e/Te0 

and the density and temperature are normalized to arbitrary values n0 and Te0. The generalized 

plasma vorticity (including finite ion pressure effects) is given by f and in Eq. (1) the last term 

on the left-hand-side  employs Cartesian tensor notation with implicit sums on repeated indices 

and i,j taking the values x,y, i.e. the coordinates perpendicular to the magnetic field B = bB.  It is 

shown in Appendix A that Eq. (1) is equivalent to the fluid vorticity equation used in the BOUT 
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and SOLT codes which are consistent with the Simakov & Catto  (2003) result for the gyro-

viscous terms.  

The linearization of Eqs. (1) – (4) with modes proportional to exp(ikyyit) yields 

 )~/(i)f)(v()f)(v())((~i 22
0ajiijjiij  fvf  (5) 

 0nn~i  v  (6) 

 0pp~i ii  v  (7) 

 ipnn f  (8) 

Here we define yyvk~   and the dimensionless Alfvén frequency is given in terms 

of dimensional quantities as a0 = k||va0/i.  The derivation of this parallel current term uses E|| 

= 0, i.e. the ideal Ohm’s law  (in dimensional form  ckA~
|||| ) and Amperes law (in 

dimensional form ||
2

|| A)4/c(J   ). 

We have assumed a slab equilibrium where n, pi, and hence vy are functions of x alone.  

As a result v = eyvy and f = exfx with  xyv  and iyx pnvf  .  After a small 

manipulation the vorticity equation takes the form 

 
0)~/()pnnv(vkfk

fk)]nv()pn(k)pn([~

22
0aixxyyyxxy

xyyxi
2
yixxx







 (9) 

We can write  ~vk xyy  which allows combining the corresponding term with the ~  term 

as follows 

 
0)~/(

)f(k)pn(k~)]nvpn(~[

22
0a

xxyi
2
yyixxx







 (10) 

On substitution for n and pi the preceding equation becomes an explicit second order radial 

eigenvalue equation describing the KH mode, in the presence of density and ion pressure 

profiles.  The driving term is the gradient in the equilibrium vorticity, xf  contained in the second 

last term. It is remarkable that, after some straightforward but tedious algebraic manipulations, 

this radial eigenvalue equation takes a rather simple form: 

 0Ak~A~ 2
yxx 











  (11) 
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where 

 



 ~pkn~A
2
0a

iy  (12) 

It is worth noting that the simple (and as we shall see, integrable) form expressed by Eq. 

(11) is only made possible by the inclusion of the gyro-viscous terms contained in )f)(v( jiij  . 

B. Sharp boundary model 

To make further analytical progress, we specialize to the sharp boundary model where 

profiles of vy(x), n(x), and ip (x) (hence fx and A) are flat in the “left” and “right” regions 

labeled “1” and “2” respectively, and take a discontinuous jump at the junction between these 

regions. The sharp boundary limit gives solutions in the asymptotic limit kyLv << 1 where Lv is 

the gradient scale length of the velocity profile, i.e. the width of the velocity transition layer 

where the jumps take place.  Extrapolation of the sharp boundary results to kyLv ~ 0.5 gives a 

rough estimate of the maximum growth, optimized over ky, of the KH mode.  In the local limit 

kyLv >> 1 the KH mode is stable because of the instability cutoff at kmaxLv ~ 1.  These latter 

points will also be demonstrated in the numerical work of Sec. 3. 

The first integral of Eq. (11) for x  x2 is 

 0Akdx~A~ 2
y

xx

x
x

1












  (13) 

Here the integral on the right-hand-side is across the layer of width Lv separating the two 

regions.  In the sharp boundary asymptotic limit, this layer width shrinks to zero.  Since the 

integrand itself remains finite, the integral evaluates to zero, asymptotically.  Evaluating Eq. (13) 

at x = x2 shows that the left-hand-side must be the same in the two regions. Since ~  is constant 

in any given region, we have from Eq. (13) 

 2x21x1 AA   (14) 

Equation (13) can also be expressed as 

 C~A~
x 



  (15) 

where C is a constant.  Since A~ is finite though discontinuous, ~  must be continuous 

across the junction (as with the first integral, the integration of C/ A~ vanishes asymptotically) 
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2

2

1

1
~~ 






 (16) 

Combining Eqs. (14) and (16) yields the jump condition on the logarithmic derivative 

 2x221x11 lnA~lnA~   (17) 

The next step is to solve Eq. (11) in regions 1 and 2 to obtain the logarithmic derivatives 

on the two sides, and do the matching.  Since ~  and A are constants within each region the 

solutions are exponential and the branches that decay at infinity are 

 )xkexp( y1   (18) 

 )xkexp( y2   (19) 

The global dispersion relation is therefore  

 0A~A~
2211   (20) 

or on employing the definition of A 

 0pk~n~2pk~n~
2iy22

2
2

2
0a1iy11

2
1   (21) 

This is the primary result of the analytic model. By choice of frame, we can take vy1 = V/2, vy2 = 

V/2 where V is the total jump in velocity across the layer.  Then, normalizing to kyV and 

defining 

 
V

pi  (22) 

 
22

y

2
a02

Vk

2
  (23) 

the normalized dispersion relation is 

 0
2

1
n

2

1

2

1
n

2

1 2
22

2

11

2







 






 






 






   (24) 

Note that  is just the ratio of the ion diamagnetic velocity to the total jump in EB velocity, and 

 is proportional to the strength of the Alfvén parallel current. 
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C. Sharp boundary model results 

We first consider the effects of a density gradient, ion diamagnetism, and Alfvén parallel 

current separately.  For a pure density gradient ( =  = 0), Eq. (24) reduces to 

 0
4

12   (25) 

where 1 < < 1 is given by 

 
12

12

nn

nn




  (26) 

i.e. n1 = 1 and n2 = 1+ so that  is proportional to the density gradient, dn/dx ~ n/L where 

2L is the scale-length over which n transitions from n1 to n2. The solution is 

 
2

)1(i 2/12
  (27) 

The growth rate of Eq. (27) is maximized for  = 0.  Thus any density gradient (in either 

direction) reduces the growth rate of the KH mode in this limit.  Similar results were obtained by 

Wang et al. (2009).  Physically it is clear that for || = 1, i.e. vanishing n1 or n2, there is no 

inertial weighting of vorticity on one side of the velocity jump, hence there is no KH instability. 

Next, with = Eq. (24) gives the effect of ion diamagnetism as 

 0
44

1

2
21212 





  (28) 

If  the result is 

 
2

)1(i 2/12
  (29) 

which gives stability for either sign of  when ||  > 1. This result is consistent with Rogers & 

Dorland (2005) who show (in the present notation) that  guarantees stability (or 

equivalently that  > 1 is a necessary condition for instability).  The real part of  is shifted by 

the ion diamagnetic drift as expected.  

Since   pi considering 1  2  describes the effects of pi.  The stability condition 

from Eq. (28) is 

 21

2
21 1

2







 

 (30) 
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Stability is attained at smaller values of the mean diamagnetic parameter (1 + 2)/2 when 1 < 

2. To express this result in a more physical way, it is simplest to consider V > 0, i.e. xvE < 0.  

Then 1 < 2 implies xvdi > 0. This case reduces the shear of the net flow, x(vE + vdi). 

Retaining with  = = 0 yields 

 0
24

1 2
2 


  (31) 

or 

 
2

)21(i 2/12
  (32) 

which shows that the Alfvén parallel current stabilizes the KH mode for .  Since  has an 

explicit 1/ky
2 dependence, this result implies that there is a threshold ky below which KH modes 

are absolutely stable.  This will be confirmed in the numerical results of Sec. 3. Note that   k|| 

so that magnetic shear, which naturally provides a finite k|| for these radially extended modes, 

enhances the stabilization effect (Rogers & Dorland 2005). 

Finally, we can consider the combined effects of density gradient, ion diamagnetism, and 

Alfvén parallel current.  The condition for stability  is 

 12)( 22   (33) 

where for simplicity .  Notice that when = their effects cancel, thus the density 

gradient counteracts part of the ion pressure gradient.  Qualitatively it is as if the net result is 

more sensitive to the ion temperature gradient part of pi.  A more rigorous general statement is 

not possible because in the sharp boundary model the density and ion pressure gradients do not 

enter in the same way. In fact, although  describes ion diamagnetic effects,  may be best 

associated with the inertial weighting of the vorticity rather than a density-gradient drift. Further 

investigation of this point would require a diffuse profile model. A marginal stability diagram is 

shown in Fig. 2. 

3. The KH mode in realistic toroidal geometry 
While useful for illustrating the effects of a density gradient, ion diamagnetism, and the 

Alfvén parallel current on the KH mode, the analytic model cannot directly account for the 

effects of magnetic shear or realistic toroidal geometry.  For this we turn to numerical modeling 

using the 2DX eigenvalue code (Baver et al. 2011) together with a minimal (cold ion) physics 

model for the KH mode. Our goal is again physical insight rather than comprehensive modeling 
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that includes all effects simultaneously.  Comprehensive tokamak gyrokinetic models, at least for 

the closed flux surface regions, have been discussed previously (Wang et al. 2015; Rogers & 

Dorland 2005). 

The 2DX code solves linearized eigenvalue problems in the R-Z plane for each toroidal 

mode number n. It takes as input experimental magnetic divertor geometry for the edge and SOL 

and implements toroidal periodicity on both the open and closed flux surfaces while allowing 

separatrix-spanning modes. 2DX has a specialized equation parser to input the physics model 

and associated plasma profiles. Use of a sparse matrix package enables high resolution.  More 

details and some code benchmark cases are given by Baver et al. (2011). 

Typically a field-line following coordinate system is employed in 2DX.  The mode is 

described as  

 













 






0

dininexp),(  (34) 

where ( are respectively the poloidal magnetic flux "radial" variable, a poloidal angle 

variable and the toroidal angle; n is the toroidal mode number, and  is the local magnetic shear.  

By extracting the eikonal function as shown in Eq. (34), is it only necessary to carry out a 

numerical solution for the slowly varying envelope function  The exponential containing the 

eikonal piece may be used to define a local k() given n and the magnetic geometry;  

however, no eikonal approximation is involved since the residual eigenmode structure is 

contained in . The so-called ballooning angle 0 is usually taken to be at the outboard 

midplane. 

For the purposes of this section we employ a minimal physics model, which neglects ion 

pressure and employs constant density and electron pressure, to eliminate curvature-driven 

modes and allow focus on the effects of parallel currents and geometry on the KH mode.  The 

model retains parallel collisional and electron skin effects.  The linearized model equations for 

the perturbed vorticity  , pressure p, and parallel vector potential  are 

 J
n

B
||

2
 vv  (35) 

 


























  ||

2
e

2
2
e

2
2
e

nAAA
n

A
n

v  (36) 

Here, we employ Bohm dimensionless variables with AJ 2   ,  
2 ,  

2 ,  

= mi/me, e is electron Coulomb collision frequency ||Q = B||(Q/B) for any scalar quantity Q,  



   
 

 12 

and   = iis the (complex) growth rate.  Strictly speaking, A is not Bohm-normalized but is 

related to the parallel component of the Bohm-normalized vector potential by A = e
2A|| 

where e= c/pe is the electron skin depth.  Note that e
2= 1/e where e is the electron plasma 

beta. Other notations are as in Sec. 2. In particular v = b  and v = b . 

To most efficiently present the numerical results it is useful first to carry out an invariant 

scaling analysis (Connor & Taylor 1984) of Eqs. (35) and (36) in an effort to reduce the 

parameter space to a minimal set of dimensionless combinations. For the purpose of this scaling 

analysis alone, one may combine the equations into a single heuristic equation by eliminating 

Employing the notation 1/L for  acting on equilibrium quantities and k for  acting on 

perturbed quantities we find that the scaling is determined by 

   2
e

2
e

2
e

2

2
a222

kk1)vik(
k)i(k)vik(







 vkb  (37) 

where the b is irrelevant for the scaling argument.  Here we have introduced

R/v)Rn/(B a
2/1

e
2/1

a   where for the purpose of scaling, we can set k|| = 1/R. 

Ab initio there are six input parameters 

 ),,,L,v,k( e
2
e

2
a    (38) 

The formal procedure is to postulate a transformation of the form  , ,kk a
  vv b

, LL c , 2
a

d2
a  , 2

e
e2

e  , e
f

e   and look for a solution (a, b, c, d, e, f) that 

leaves the original equations, equivalently Eq. (37), invariant: all powers of should collect up 

and cancel out.  The resulting equations are a + b = 1, 1 + 2a = a  2c + b, 1 + 2a = e +2a  1, 2a 

+ f = 0 and g = 1 which have as the solution b = 1  a, c = a, e, f = 2a and g = 1 with one 

free parameter a. There are two independent invariant transformations given by  a = 0, 1.  

This reduces the original six input parameters to four invariant combinations which may 

be taken as 

 





 




 v

L
,

L
,

v

L
,LkF

v

L eea  (39) 

with F a function to be determined numerically. These four invariant combinations completely 

characterize the KH mode aside from the geometry, which includes the magnetic flux geometry 

of the torus and the profile of the equilibrium electrostatic potential  We take the latter to 

be a flux function given by 

 























 

w

021
1 tanh1

2

)(  (40) 
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where w021 ,,,    are constants that specify the velocity v, scale length L, and location of 

the shear layer relative to the separatrix. The invariant parameters are defined with v as the total 

jump in EB velocity implied by Eq. (40) and the scale length given as L = w/(RBp) where  R 

is the major radius of the torus and Bp is the local poloidal magnetic field. 

Figure 3 illustrates the NSTX (Ono et al. 2000) flux surface geometry used for this study, 

and the spatial structure of a typical KH eigenmode on the computation mesh.  Parameters for 

this case are aL/v = 0.108, e/L = 0.24, eL/v = 0.36 and n = 100 which implies kbL = 0.40. 

Here kb is the binormal component of k at the outboard midplane, which is also |k| at that 

location. Note that the mode strongly balloons near the outboard midplane of the torus.  At first 

this may seem surprising since, unlike curvature-driven ballooning modes, the free energy from 

Eq. (40) is not obviously localized to this region.  The localization results from the weighting 

provided by the RBp Jacobian factors in the equilibrium vorticity gradient 

 











 )(

RBRB pp  (41) 

The R factor weights the outboard side of the torus relative to the inboard side and the Bp factor 

weights the midplane relative to the upper (virtual) and lower X-points.  To understand this in a 

more physical way, consider the equilibrium electric field between two adjacent flux surfaces, E 

= r where r = /RBp is the local flux surface spacing. Because the flux surface spacing 

is smallest at the outboard midplane (see Fig. 3, left) the EB drift velocity from E, its shear, 

and hence the instability drive for the KH mode is largest there.  This effect, while present for all 

tokamaks, is accentuated in the high-plasma-beta spherical torus geometry. 

The eigenmode illustrated in the right panel of Fig. 3 shows a double peaked structure for 

||.  Further investigation reveals that the maxima of Re() and Im() are shifted spatially 

with respect to each other as a result of an outward propagating radial phase velocity for the 

unstable modes.  The structure shown in Fig. 3 is typical of all the results summarized in the 

following. 

Figure 4 illustrates the dependence of the KH growth rate on wavenumber for a few 

different combinations of dimensionless parameters (see table 1).  The case labelled "base (EM 

Alfvén)" shows the unstable spectrum with all effects: electromagnetic (EM) parallel Alfvén 

current, collisionality and electron skin. Note that there is both a lower and upper limit on kbL 

for instability.  The upper limit is essentially that of the classical KH mode, to be discussed next; 

the lower limit is as expected from the analysis of Sec. 2, Eqs. (23) and (32) which show that the 

stabilizing effects of the EM parallel current are relatively stronger for small perpendicular 

wavenumbers.  
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The strong stabilizing effect of the parallel Alfvén current is illustrated by comparison of 

the base case with the electrostatic (ES) curve labeled "classical ES KH". In this case, we have 

a = 0, ande and e become irrelevant.   This spectrum shows the inverted-parabolic growth 

rate dependence that is characteristic of the pure KH mode (see Fig. 1 and its discussion).  In this 

case the corresponding fastest-growing eigenmodes have a delta-function character in their -

variation along the field line: there is no line-bending energy cost when a = 0.  The dashed line 

in Fig. 4 labeled "kbL << 1 analytic" is the asymptotic result from the sharp boundary model of 

Sec. 2 applied to this case.  Agreement for sufficiently small kbL is good and provides a check 

on the numerical work.   

The curve labeled "ES limit" shows the result when the parameter e/L is asymptotically 

large.  Referring to Eq. (38), and noting that a e, in this limit the Alfvén parameter that 

remains is aL2/(ve) = L2i1/2/(Rv) where i= eB/(mic) (see table 1). This is an electrostatic 

limit, but one that retains parallel currents.  These ES parallel currents are also stabilizing 

relative to the a= 0 case.  Finally the curve labeled "half e" shows that collisionality did not 

play a strong role in our base case and that reducing e tends to increase the growth rates of the 

higher kb modes.  None of the preceding parameter variations have much effect on the spectral 

cutoff at high k. These cases confirm the stabilizing effect of both EM and ES perturbed parallel 

currents on the KH mode. 

The cases shown in Fig. 4 highlight the main effects of the invariant dimensionless 

parameter combinations. It remains to assess the role of magnetic geometry, in particular in the 

vicinity of the separatrix including both closed and open field line regions. To explore this, Fig. 5 

shows the results of a study in which the location of the sheared flow layer, parametrized by  
is varied with respect to the separatrix.  Negative (positive) shifts indicate cases where  is 

located in the closed (open) flux surface region.  All other parameters are held fixed.  It is seen 

that the KH mode is more unstable at, and just outside, the separatrix compared with inside the 

closed surface region.  The reason appears to be related to the distribution of magnetic shear.  

Fig. 6 shows the variation of the integrated magnetic shear k  
 /d

0
 along the 

field line at the flux surface of strongest velocity shear for the four cases considered in Fig. 5. 

The most unstable modes have reduced magnetic shear in the midplane region and stronger shear 

near the X-points, especially the lower (dominant) X- point near  = 2. The important role of 

the poloidal distribution of local magnetic shear in shaped plasmas has been noted previously in 

a variety of contexts (Myra et al. 2000; Sugiyama & Strauss 2010; Xu et al. 2011). 

4. Reduced modeling equations 
The final topic considered in this paper is that of constructing reduced two-dimensional 

(2D) modeling equations that are at least qualitatively faithful to the physics of the KH mode 
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discussed in this paper.  In a 2D interchange model, which simulates dynamics in the plane 

perpendicular to B, such as employed in the SOLT (Scrape-Off Layer Turbulence) code (Russell 

et al. 2015) the transverse KH mode may easily be unstable. Strong EB velocity shear layers 

can arise from Reynolds-driven flows and steep ion pressure profiles.  It is desirable to account 

for the stabilizing effects of parallel current and magnetic shear in these types of nonlinear 2D 

interchange models.  To explore this possibility, we again revert to a cold ion model for 

simplicity of presentation. This is motivated by noting that the parallel current and warm ion 

terms in the model of Sec. 2 are not intertwined. 

The most important physics may be captured by adding the electromagnetic terms for J|| 

by combining Ampere's law ||
2

|| A)4/c(J   and the resistive Ohm's law E|| = 

||(1/c)A||/t||J|| to obtain (in dimensional Gaussian units) 

 









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
2

||

2

||
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2

|| 4

c
J

4

c
J

t
 (42) 

The vorticity equation in the 2D model, Eq. (1), requires a closure equation for ||J|| 

(Krasheninnikov et al. 2008; D'Ippolito et al. 2011).  One such closure is the high-beta blob 

closure original proposed by Krasheninnikov et al. (2004), 

 


 
2

a

2

||
|||| v4

c

L

2
J  (43) 

This can be obtained heuristically from Eq. (42) by postulating outgoing Alfvén waves so that 

/t  iik||va, and on the right-hand-side of Eq. (42) ||  ik||.  Dropping the || term and 

estimating the || operator in the left-hand-side of Eq. (43) as the inverse parallel half-length of a 

blob-filament, L||/2 , one arrives at the right-hand-side of Eq. (43).  This closure implies 

dissipation: vorticity is lost by the outgoing parallel Alfvén wave as the field line bulges out and 

bends as a result of the blob-filament's midplane motion.  It can easily be shown that the 

corresponding linear dispersion relation including an interchange driving term is 

 0i 2
mhda

2   (44) 

where a = 2va/L|| and mhd = cs/(RLp)1/2.  Evidently Eq. (44) does not contain the Alfvén 

physics in Eq. (21) necessary to stabilize interchange or KH modes: a term proportional to 2
a  is 

required. 

An alternative closure describing this physics is instead given by treating the time 

dynamics of Eq. (42) directly.  A vorticity-Alfvén model which accomplishes this is given by 
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 ...)n(t   (45) 

  
22

a
2

e
2
et n

2

1
 (46) 

where "…" in Eq. (45) refers to all the remaining vorticity terms on the left-hand-side of Eq. (1). 

In this model a is an input parameter depending on a characteristic scale length L|| which may 

be chosen based on geometrical considerations including magnetic shear.  Equations (45) and 

(46) imply a dispersion relation of the form 

 02
mhd

2
a

2   (47) 

This model contains the necessary physics to stabilize interchange and KH modes by including 

the Alfvén wave line bending energy. 

For application in codes such as SOLT, it is useful to have a unified closure which 

automatically includes limiting cases as dictated by (dynamically evolving) plasma parameters.  

The EM Alfvén induction through A|| provides a channel for charge loss that is separate from 

(and effectively in parallel with) electrostatic charge loss to the sheath.  As such it is reasonable 

to add the parallel current closures. Let us postulate a combined closure and then discuss its 

justification: 

 ...Jn)n( shsh
2

at    (48) 

  
22

a
2

e
2
et n

2

1
 (49) 

Here the a term on the right-hand-side of Eq. (48) gives the original high-beta blob closure and 

the shJsh term represents the usual parallel sheath current closure (Krasheninnikov et al. 2008)  

which is easily generalized to include warm ion and collision-limited regimes (Russell et al. 

2015).  This model implies a dispersion relation of the form  

 0)(i 2
mhd

2
asha

2   (50) 

where )Lk/(c ||
2
s

2
ssh   is the sheath current term. It should be emphasized that this is a 

heuristic closure based on patching together asymptotic limits as discussed next.  

It is clear that the a = 0 limit of Eqs. (49) and (50) recovers the previous electrostatic 

model. In the limit of small but finite a<<  (and for simplicity sh<< a) there is no time for 

Alfvén physics to “equilibrate” along field lines and as a result one gets line bending and 

dissipation from outgoing Alfvén waves.  This is the high-beta blob regime of Eq. (44).  Note 
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that in this regime the inertial term dominates the Alfvén terms unless additional physics is 

present.  X-point dissipation can provide the needed additional physics and allow the ia term 

to directly balance the 2
mhd  interchange drive term (Myra and D'Ippolito 2005). 

In the limit a  Alfvén waves are no longer purely outgoing, rather there is time for 

them to sense the entire field line. In the absence of downstream dissipation they are reflected 

and result in Alfvén propagation in both directions, as in Eq. (47).  Interchange and KH modes 

can be stabilized by the line-bending physics in this limit when a> mhd or a> kh,max ~  0.2 

vy respectively.   

If the Alfvén parameter is in a particular range, then the model can describe a situation 

where the KH mode is stable, but curvature-driven interchange modes are unstable, viz.  

 mhda
kh
max   (51) 

Finally, these arguments, and the proposed model can be used to estimate blob velocities in the 

various regimes using the dispersion relation in Eq. (50) with the blob velocity given by 

 bb ~v   (52) 

where b is the blob scale size in the poloidal direction. 

5. Summary and conclusions 
In Sec. 2 of this paper we developed a unified analytical model for transverse KH modes 

in slab geometry including several physical ingredients: ion diamagnetism (including ion gyro-

viscous terms), density gradients and parallel Alfvén currents. An exact, arbitrary wavenumber 

radial eigenvalue equation, following from Eqs. (1) – (3), is given in Eq. (11) for this slab 

geometry case. The main result of the long-wavelength limit of the calculation is to be found in 

Eq. (21) or equivalently its normalized form Eq. (24).  Taken one at a time, all the examined 

mechanisms have a stabilizing effect. Density gradients of either direction relative to the velocity 

shear reduce the growth rate of the KH mode, as shown in Eq. (27).  Ion diamagnetism 

completely stabilizes the KH mode when it is sufficiently large, typically || > 1 where  ~ 

vdi/(vLv) where vdi is the diamagnetic drift velocity, v is the shearing rate of the EB velocity 

and Lv is the width of the velocity shear layer.  More precise conditions are discussed in 

connection with Eqs. (29) and (30).  Furthermore, when there is shear in the diamagnetic 

velocity, the case where the net velocity shear (ion diamagnetic plus EB) is minimized tends to 

be the most stable. Alfvén parallel currents completely stabilize the KH mode when 2a > kyV 

where a = k||va and V ~ vLv, as shown in Eq. (32).  When both density and ion pressure 
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gradients coexist, as is usually the case in practice, the density gradient partly counteracts the ion 

pressure gradient, as discussed following Eq. (33).  

In the process of carrying out this work, we have also identified a new compact form for 

the ion gyro-viscous terms, as shown in Appendix A. This form may prove convenient for future 

analytical and numerical studies. An arbitrary toroidal magnetic geometry generalization, not 

presented here, would also be useful. 

Numerical results for the KH instability were considered in Sec. 3 using a minimal 

physics model with cold ions and constant density, but realistic toroidal geometry.  In general, 

KH modes in a torus balloon strongly to the outboard midplane side owing to the RBp weighting 

of the vorticity gradient when the equilibrium  is a flux function, essentially a flux surface 

spacing effect.  It was confirmed, for a typical spherical torus flux surface shape that magnetic 

geometry effects including magnetic shear and perturbed parallel currents have a strong 

stabilizing effect on the KH mode when vaLv/(vR) ~  va/(vR)  > 1 where v ~ vLv is again the 

total jump in EB velocity across the shear layer.  In addition to the usual KH instability cutoff 

at high k, electromagnetic Alfvén physics leads to a low-k limit for stability that is understood 

from the analytic model.  Electrostatic limits for the parallel current were also found to be 

stabilizing, but without the low-k cutoff.  The distribution of magnetic shear along the field lines 

was found to increase KH growth rates for situations when the shear layer is close to the 

separatrix or in the near SOL, as shown in Figs. 5 and 6. 

Finally, a set of equations with a parallel current closure, suitable for implementation in 

2D reduced modeling codes, was developed.  Its relationship to the high-beta blob closure was 

discussed and it was shown that the main stabilizing effects of Alfvén parallel currents on 

interchange and KH modes could be captured by the reduced model. 

The Kelvin-Helmholtz instability continues to be a fascinating topic in the dynamical 

evolution of plasmas.  It will be important for tokamak plasma physics to continue the effort to 

understand its role in turbulence saturation physics and in the stability of edge and near SOL 

plasmas where gradient scale lengths can be extremely short.  In particular, KH-driven turbulent 

transport and spreading of the narrow SOL heat flux channel would be very favorable to fusion. 
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Appendix A:  Ion pressure contribution to the vorticity equation 
In this appendix, we demonstrate the equivalence of three forms of the vorticity equation 

including ion pressure and ion gyro-viscosity.  Finally, a compact derivation and physical 
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interpretation of one of the forms is reviewed.  This appendix employs Bohm-normalized units, 

as does the main text. 

The starting point is Eq. (76) of Simakov & Catto (2003). Taking the limit of a straight 

constant B-field, neglecting parallel flow, parallel gradients and the parallel viscous stress, the 

vorticity equation given therein may be easily cast into the form 

 ||||t J v  (A1) 

where   = f = (npi), and as in the main text, v = b  .  Here 

 )])(n())(n()p([
2

1
di

2
i  vvvvv  (A2) 

and nvdi = bpi.  Here, and henceforth in this appendix, the operator  implies  because we 

focus on the perpendicular gyro-viscous ion physics.  In obtaining Eq. (A2) we have employed 

(v ) = v .  The fact that v = 0 is used frequently throughout the appendix to move v in 

and outside of the divergence operator.   

In the following we derive two other equivalent forms for 
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22  vvvb  (A3) 

and 

 )f)(v(: jkkj  fv  (A4) 

where ipn f  and the final form of Eq. (A4) employs Cartesian tensor notation with 

implicit sums on repeated indices. Thus our double-dot convention for index summation is 

 ))((: CBDACDAB   (A5) 

and the dyad operator convention is that  only operates on the quantity to its immediate right. 

Eq. (A3) is the form given in Umansky et al. (2009) and Russell et al. (2015) while Eq. (A4) is 

the form used in Eq. (1). 

From Eq. (A2) we first derive Eq. (A3). Expanding )nn()( 2  vv  

i
2p v and starting with the terms that don't contain pi there is a cancellation involving two 

n2terms leaving 
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Noting that 
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 2v)( bbv   (A7) 

and applying the vector identity for (AB) to Eq. (A6) one obtains 

 nv
2

1 2)1(  b  (A8) 

Next for the terms involving pi we have from Eq. (A2) the contribution 

 )])(n(np)p([
2

1 2
dii

2
i

)2(  vvvv  (A9) 

Noting that (nvdi) = 0 and also pulling v through the divergence yields 

 ]np)p([
2

1 2
dii

2
i

2)2(  vvv  (A10) 

Combining to get  =  proves the equivalence of Eqs. (A2) and (A3). 

To show that Eqs. (A3) and (A4) are equivalent we again begin with the terms that are 

independent of pi.  Equation (A4) has the term

  n::n)n(:)1( vvv  (A11) 

Applying the dyad identities CDbABCDBAb  ::  and BADCCDAB ::  to the first 

term on the right hand side of Eq. (A11),  )(::)( bb

 :)(b , i.e. this term equals its negative and hence vanishes.  For the second term 

we have  

 n)(nn:  vvbvv  (A12) 

Using v = 0, it is not difficult to show that 

 2/v)( 2 bvvb  (A13) 

(An inelegant proof is easily obtained by writing out the components in Cartesian coordinates.)  

Applying this to Eq. (A12) and employing the result in Eq. (A11) yields the desired result 

 nv
2

1 2)1(  b  (A14) 

For the ion pressure terms, it is easiest to start with the terms given in Eq. (A3) and work towards 

(A4). 
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ii

2
i

2)2(  bvv  (A15) 

Consider first 

 i
2

ii
2

i
2 pp:2p)p(  vvvv  (A16) 

A cancellation then occurs in Eq. (A15) which becomes 

 ])p(p:2p[
2

1 2
iii

2)2(  bvv  (A17) 

Employing  22 bv  one finds immediately that the first and last terms in Eq. (A17) 

cancel leaving 

 i
)2( p: v  (A18) 

which is the desired result.  This completes the proof of the equivalence of Eqs. (A2), (A3) and 

(A4). 

Finally, the derivation of the ion pressure contributions to the vorticity equation is 

reviewed from the point of view of the vector ion momentum equation.  We make the ansatz that 

the ion pressure contributions are contained in the terms 

 ...)(t  vgg  (A19) 

where g = nu and u = v + vdi is the total fluid velocity.  The vorticity equation can be derived by 

applying b to Eq. (A19). It is useful to note the vector identity for any vector A (again with 

bA = 0 or  = ) 

 AAbb  )(  (A20) 

Employing g = b  f and using the preceding identity one finds 

  fgb  (A21)
 

For the divergence term in Eq. (A19) we apply the same identity with A = (v)f.  This yields 

 fvfvfvvgb  :)()(  (A22) 

Collecting terms we have the vorticity equation in the form of Eqs. (A1) and (A4).  This compact 

derivation recovers the well-known gyro-viscous cancellation:  the net effect is that the total fluid 

momentum g in Eq. (A19) is only advected by v, the EB part of the total fluid velocity.  This is 

the entire physical content of the complicated terms in Eqs. (A2), (A3) or (A4). 
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Figures 
 

  
 
Fig. 1.  Computed growth rate (solid) and real part of the frequency (dashed) for the KH 
mode using a diffuse radial profile model (Popovich et al. 2010) and sample parameters 
from the LAPD experiment.  Figure reproduced from Phys. Plasmas 17, 102107 (2010). 

 

 
 

 
Fig. 2.  Marginal stability diagram for the dispersion relation of Eq. (24) with . 
Note that  in the presence of a density gradient, the effect of an  ion pressure gradient 
depends on its sign. 
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Fig.  3.    Left panel:  flux  surface  geometry  showing  the  computational  grid  at  reduced 
resolution for purposes of  illustration;   Right panel: Typical KH eigenmode structure of 
|| showing localization to the outboard midplane and a double peak. 

 

 

 

 
 

 
Fig.  4.   Dependence of  the KH  growth  rate on wavenumber  and  invariant parameter 
combinations.  See  table 1  for  the parameters of each  case.   The dashed  curve  is  the 
result from the kyL << 1 analytic theory of Sec. 2. 
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Fig. 5.   Dependence of  the KH spectrum growth  rate on  location of  the velocity shear 
layer  relative  to  the  separatrix.  Negative  (positive)  shifts  indicate  cases  where  the 
sheared flow layer is located in the closed (open) flux surface region. 

 

 

 

 

 

 
Fig. 6.   Distribution of  integrated magnetic shear along a field  line. The cases and color 
scheme correspond to those of Fig. 5.  The low‐field‐side region corresponds to  <  < 
 with the upper X‐point at  and the lower dominant X‐point at 2
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Tables 
 

Table I.  Parameters employed for the cases shown in Fig. 4. 
 

 aL/v e/L eL/v 

base case 0.108 0.47 0.36 
classical ES KH 0 - - 
ES limit a)  0.36 
half e 0.108 0.47 0.18 

 a) aL2/(ve)  =  0.073 

 
 
 


