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Abstract

A finite element code that solves self-consistent radio-frequency (RF) sheath-
plasma interaction problems is improved by incorporating a generalized sheath
boundary condition in the macroscopic solution scheme. This sheath bound-
ary condition makes use of a complex sheath impedance including both the
sheath capacitance and resistance, which enables evaluation of not only the
RF voltage across the sheath but also the power dissipation in the sheath.
The newly developed finite element procedure is applied to cases where the
background magnetic field is perpendicular to the sheath surface in one- and
two-dimensional domains filled by uniform low- and high-density plasmas.
The numerical results are compared with those obtained by employing the
previous capacitive sheath model at a typical frequency for ion cyclotron
heating used in fusion experiments. It is shown that for sheaths on the or-
der of 100 V in a high-density plasma, localized RF power deposition can
reach a level which causes material damage. It is also shown that the sheath-
plasma wave resonances predicted by the capacitive sheath model do not oc-
cur when parameters are such that the generalized sheath impedance model
substantially modifies the capacitive character of the sheath. Possible expla-
nations for the difference in the maximum RF sheath voltage depending on
the plasma density are also discussed.
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1. Introduction

Radio-frequency (RF) sheaths form when RF waves, plasma, and material
surfaces coexist. RF sheaths are important in many situations including
plasma processing devices [1–4], magnetic fusion devices [5–18], and plasma
science experiments [19, 20]. In the area of magnetic fusion, RF sheaths have
mostly been studied in the ion cyclotron range of frequencies (ICRF) in the
context of heating and current drive in tokamaks. In this frequency range, it
is believed that sheath effects may often be important in limiting successful
operation through enhanced impurity sputtering. However, sheath effects in
other frequency ranges may also be of interest. As explained subsequently,
the properties of RF interactions with the sheath are in part controlled by the
dimensionless ratio of the wave to ion plasma frequency, ω/ωpi, independent
of the absolute frequency band. Finally, an understanding of RF sheaths
arising from waves in any of these regimes is of interest for interpretation
of diagnostic Langmuir probe signals when those probes are used in an RF
environment [14].

The problem of solving for global wave behavior in a plasma volume
that is bounded by material surfaces, and hence RF sheaths, involves multi-
scale physics. The sheath physics takes place on the scale of the electron
Debye length which is many orders of magnitude smaller than typical RF
wavelengths, or plasma dimensions of interest. In order to alleviate compu-
tational issues associated with the large disparity in space scales, a useful
procedure has been to mathematically separate the microscopic sheath and
macroscopic plasma volume (i.e., RF wave propagation) problems.

From the point of view of the macroscopic problem considered in this
paper, the sheath physics will be collapsed into a sheath boundary condition
(sheath BC) on the surface. This boundary condition describes the electro-
magnetic interaction of the waves with the boundary in terms of a surface
impedance. Various implementations of a sheath boundary have been de-
vised in previous work [2, 6, 8, 18, 21, 22] and in the numerical code “rfSOL”
developed by the authors [16, 23, 24]; however, these studies have been re-
stricted to or focused on the capacitive sheath regime, where the complex
sheath impedance is purely imaginary. Here, we consider the solution of the
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wave propagation problem using a recently available formulation of the gen-
eralized sheath impedance [25, 26]. The generalized sheath impedance is fully
complex with both real and imaginary parts that describe both resistive and
capacitive physics. This model allows calculation of not only the rectified
sheath potential (important for ion sputtering impact energies), but also the
RF power dissipation in the sheath. Because the solution of the wave prop-
agation problem in the volume must be self-consistent with the boundary
condition, it is expected that the generalized sheath impedance model can
lead to significantly different predictions than the capacitive sheath model in
some parameter regimes.

Our objective in this paper is to present a new finite element scheme for
analyzing RF sheath-plasma interactions to evaluate the RF voltage across
the sheath and the sheath power dissipation accurately over interesting pa-
rameter ranges in the RF voltage and normalized frequency ω̂ = ω/ωpi.
The proposed numerical scheme can be regarded as a micro-macro decou-
pling scheme in which the accuracy of the macroscopic solution is assured
by including the microscopic sheath physics (i.e., the dynamics of the time-
dependent magnetic presheath and non-neutral Debye sheath [25]) in the
sheath BC. The oblique angle magnetized RF sheath considered in Ref. [25]
requires four dimensionless parameters to describe the interaction. In this pa-
per, we restrict our attention to the special case of “perpendicular sheaths”,
i.e., sheaths where the background magnetic field is perpendicular to the sur-
face. In this special case, only two dimensionless parameters are required;
namely, ω̂ and a normalized RF amplitude ṼRF (which will be defined in
Section 2). The sheath impedance parameter is expressed with the use of
differentiable functions of these dimensionless parameters in order to apply
the Newton–Raphson method to solve the nonlinear system of discretized
equations.

The paper is organized as follows. In Section 2, we describe the equations
used for simulations of macroscopic RF sheath-plasma interactions. Section
3 presents the finite element procedure with emphasis on incorporation of
the discretized sheath BC and current-voltage relation into a system of dis-
cretized equations. The validity of the proposed finite element scheme is
verified through comparison with an analytical solution in a one-dimensional
(1D) closed domain in Section 4. A comparison of the results obtained by
the previous and newly developed codes in the capacitive sheath limit is also
discussed. Further, numerical results for sheath-plasma interaction problems
in a two-dimensional (2D) slab domain filled by low- and high-density plas-
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Figure 1: Schematic diagram of a tokamak poloidal cross-section near the antenna, in
which the interaction between the sheath and the wave in a cold plasma occurs. Note that
the calculation domain bounded by the dashed lines is the same as that shown in Ref. [23],
but the magnetic presheath is introduced in the new sheath model.

mas are presented in Section 5. Lastly, conclusions of the present work are
described in Section 6.

2. Formulation for RF sheath-plasma interactions based on a sheath
impedance model

This section summarizes the equations that govern the behavior of plasma
waves and the macroscopic interaction between the waves and the sheaths on
metal surfaces. Fig. 1 shows a simplified schematic of the tokamak poloidal
cross-section in the vicinity of a limiter or other vessel surface. It is assumed
that the magnetic field lines intersect with a metal surface and thereby the
sheath, which consists of the non-neutral sheath and magnetic presheath.
The region investigated in this numerical study is the scrape-off layer (SOL)
bounded by the two dashed lines in Fig. 1, namely, the core-edge plasma
boundary and sheath-plasma interface. (In this and the following sections,
the hypothetical boundary surface between the magnetic presheath and the
plasma is abbreviated to the sheath surface or sheath-plasma interface.) Note
that the physics inside the sheath is not solved by the present numerical code
but has influence on the macroscopic simulation through the sheath BC, as
described later. All the analyses in this study will be conducted using a cold
plasma model, which is typically valid due to low plasma temperatures (∼ 10
eV). Also, we assume that only deuterium is considered as an ion species, so
that the ion mass is mi = 3.3436× 10−27 kg.
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The governing equation for plasma waves in the SOL is a combined form
of Maxwell’s equations described as

∇×∇×E − ω2

c2
ε ·E − iωµ0Jext = 0, (1)

where the electric field E and the external current Jext vary on the RF
time scale. Here, i is the imaginary unit, ω is the applied angular frequency
(waves vary in time t as e−iωt), and c is the speed of light, having a relation
with the dielectric constant ε0 and the permeability µ0 in vacuum, which is
expressed as c2 = (ε0µ0)

−1. The dielectric tensor ε is given based on the
cold plasma model (see Ref. [23] for the definitions including the dielectric
tensor components ε⊥, ε‖, and ε×). Throughout this study, we assume that
quasi-neutrality is retained in the SOL, i.e., ne0 = ni0 = n0, where ne and ni

are the number densities of electrons and ions, respectively, and the subscript
0 denotes an equilibrium quantity.

In the present numerical analysis, the sheath-plasma interaction is taken
into account by means of a sheath BC proposed in Ref. [25]. First, the general
form of the sheath BCs, including the previously used capacitive sheath BC
[22], is written as

Et = −∇tVRF, (2)

where the subscript t denotes the component tangential to the boundary,
and VRF is the instantaneous RF voltage across the sheath (hereafter, simply
called the RF sheath voltage), which is defined as

VRF ≡ Φ(sh)
ω

∣∣
s-p interface

− Φ(sh)
ω

∣∣
w-s interface

. (3)

Here, Φ
(sh)
ω is the electrostatic potential in the sheath at the frequency ω,

which is evaluated at the locations designated in the subscripts; s-p and
w-s stand for sheath-plasma and wall-sheath, respectively, and the contri-
butions of the higher harmonics to the RF sheath voltage are neglected as
being small. Note that for VRF → 0, or equivalently when the sheath width
approaches zero, the sheath BC reduces to the conducting-wall boundary
condition (conducting-wall BC), Et = 0. The RF sheath voltage can also be
expressed by employing the sheath impedance parameter zsh as

VRF = −J (sh)
n zsh = −J (pl)

n zsh = −ω

i
D(pl)

n zsh, (4)
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where the superscripts (sh) and (pl) denote quantities on the sheath and
plasma sides of the sheath-plasma interface, respectively, Jn (= s · J) is
the component of the total current density J normal to the sheath surface,
and Dn (= s · (ε0ε ·E)) is the component of the electric displacement D
normal to the sheath surface (and s in the definitions is the unit normal
vector pointing into the plasma). In the derivation of Eq. (4), continuity of

Jn (or Dn) at the sheath-plasma interface and the fact that the total J
(sh)
n ,

including particle and displacement currents, is constant inside the sheath
are taken into account [25]. In general, the sheath impedance parameter zsh

is a function of four dimensionless parameters which are evaluated on the
sheath surface: Ω̂ = Ωi/ωpi, |bn| (where bn = b · s), ω̂ = ω/ωpi, and ṼRF =
e |VRF| /Te, where Ωi is the ion cyclotron frequency, ωpi is the ion plasma
frequency, b is the unit vector along the background magnetic field B0 (i.e.,
b = B0/ |B0|), e is the elementary charge, and Te is the electron temperature.
The basic strategy is to pre-calculate zsh through a fully nonlinear fluid micro-
scale model and store the results in interpolation functions or approximation
fits which are efficient for calculations using the rfSOL code. A simplified
example of the approximation fits is shown in Appendix A.

The total sheath voltage Vtotal consists of the RF wave contribution VRF

and the rectified sheath voltage Vrect, i.e., Vtotal = VRF + Vrect. Here, Vrect is
determined by the numerical solution of the microscopic sheath model, and
the physics of the microscopic sheath model shows that Vrect increases with
|VRF| [25]. Of course, by definition, the time average of Vtotal is equal to Vrect.

In order to exclude the core or distant SOL regions from the calculation
domain, we introduce a damping layer in the vicinity of the core-edge plasma
boundary so as to satisfy an outgoing wave condition, i.e., an absorbing
boundary condition (absorbing BC). The method is described in our previous
work [23, 24].

3. Finite element discretization

In this section, we consider the discretization for the present formulation
in a 2D domain (filled by a cold plasma) subject to the sheath and absorbing
BCs. We aim at obtaining a system of equations to be solved for the unknown
nodal values of the electric field components and RF sheath voltage in the
Cartesian coordinate system. The numerical technique employed for the
discretization of the sheath BC may be compared with that described in
Section 3.3 of Ref. [23], with VRF now playing the role of −∆shDn/ε0 (where
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∆sh is the time-averaged sheath width) in that paper. A main difference from
the previous scheme is the inclusion of the current-voltage relation, Eq. (4), to
additionally obtain the RF sheath voltage as a part of the numerical solution.

First, a combined form of Maxwell’s equations, Eq. (1), is discretized in
the 2D calculation domain Ω based on the standard Galerkin approach. Since
the details of this discretization procedure, together with the discretization
of the antenna current, are described in the authors’ previous paper [23],
they will not be repeated here. We only note that a single Fourier mode of
the electric field in the z direction and in time is considered in this study and
is expressed in the entire domain as

E = ÊiNi (x, y) ei(kzz−ωt), (5)

where Ni is the piecewise biquadratic interpolation function and Êi is the
vector quantity at node i; the subscript i denotes the global node number.
The summation convention applies to the subscript i. Further, kz is the z
component of the wave vector k. (Hereafter, the subscripts x, y, and z denote
the x, y, and z components of vector quantities, respectively.)

Next, the sheath BC described in Eq. (2) is discretized by employing a 1D
finite element method in a manner similar to that of Ref. [23]. Forming the
inner product of Eq. (2) with the weight function W S, and then integrating
it over the sheath surface Γ S yields∫

ΓS

W S · (Et +∇tVRF) dΓ S = 0. (6)

It is assumed here that Γ S is given as a simple closed curve or a periodic
region. Let us next define the weight function, electric field, and RF sheath
voltage on Γ S as

W S = Ŵ S
i′ N

S
i′ (τ) e−ikzz = Ŵ S

i′ Ñ
S
i′ , (7)

E = ÊS
j′N

S
j′ (τ) ei(kzz−ωt), (8)

VRF = V̂RF,j′N
S
j′ (τ) ei(kzz−ωt), (9)

where NS
i′ and NS

j′ are the piecewise quadratic interpolation functions with
respect to τ (the tangential coordinate defined along the sheath surface on the
x–y plane), and the subscripts i′ and j′ denote the node number redefined on
Γ S, which means that the number is different from the global node number
assigned to each node in the calculation domain Ω ; Ŵ S

i′ and ÊS
j′ are the
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vector quantities at nodes i′ and j′, and V̂RF,j′ is the scalar quantity at node
j′. Here the summation convention applies to the subscripts i′ and j′, and the
superscript S is attached to explicitly show that the quantity is positioned
on Γ S. The interpolation function NS

i′ or NS
j′ is locally defined in a 1D three-

node element on the sheath surface. Since Eq. (6) needs to be satisfied for
arbitrary weight functions, we obtain∫

ΓS

ÑS
i′

(
Eτ +

∂VRF

∂τ

)
dΓ S = 0, (10)

∫
ΓS

ÑS
i′ (Ez + ikzVRF) dΓ S = 0, (11)

considering that VRF ∝ eikzz. The corresponding discretized equations are
obtained by substituting Eqs. (8) and (9) into Eqs. (10) and (11) as follows:

Gτi′ ≡
[
NS

i′N
S
j′

]
ÊS

τj′ +
[
NS

i′Ň
S
j′

]
V̂RF,j′ = 0, (12)

Gzi′ ≡
[
NS

i′N
S
j′

]
ÊS

zj′ + ikz

[
NS

i′N
S
j′

]
V̂RF,j′ = 0, (13)

where[
NS

i′N
S
j′

]
≡
∫

ΓS

NS
i′N

S
j′dΓ S,

[
NS

i′Ň
S
j′

]
≡
∫

ΓS

NS
i′
dNS

j′

dτ
dΓ S. (14)

The tangential component of ÊS
j′ is expressed by ÊS

τj′ = ex · eτj′Ê
S
xj′ + ey ·

eτj′Ê
S
yj′ , where ex and ey are the unit vectors in the x and y directions,

respectively, and eτj′ is the unit vector in the τ direction at node j′.
The current-voltage relation shown in Eq. (4) need not be discretized,

since it does not include any differential operators. At node i′ on the sheath
surface, this relation is expressed as

Hi′ ≡ V̂RF,i′ − iε0ωzsh,i′

(
si′ · εS

i′ · ÊS
i′

)
= 0, (15)

which is obtained by employing VRF,i′ = V̂RF,i′e
i(kzz−ωt) and Ei′ = ÊS

i′e
i(kzz−ωt)

(see Eqs. (8) and (9)). Evidently, in contrast to the approach in Refs. [16, 23],
there is no need to interpolate the dielectric tensor ε on the sheath surface.

The resultant nonlinear system of equations can be solved by employ-
ing the Newton–Raphson method. The procedure is described in Appendix
B. For the calculations in 2D domains, the system of linear equations at
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each Newton–Raphson iteration is computed by employing MUMPS (MUl-
tifrontal Massively Parallel sparse direct Solver) on the Edison (Cray XC30)
computer system at the National Energy Research Scientific Computing Cen-
ter (NERSC).

4. Verification of the scheme for sheath-plasma interactions in 1D
geometry

In order to verify the validity of the developed finite element scheme for
sheath-plasma interactions, we first derive an analytical solution for the RF
wave field and sheath voltage in 1D geometry under the condition where the
direction of a constant background magnetic field is perpendicular to the
sheath surfaces. Then, we compare a numerical solution with an analytical
solution under a low-density plasma condition. We also investigate how the
present sheath impedance model relates to the previous capacitive sheath
model. Our focus in this paper is on understanding fundamental sheath
interactions with waves; the parameters chosen in this section (and in the
next section) are similar to ICRF, edge and SOL parameters in tokamaks
although we do not attempt to model any specific experiment here. The
analytical and numerical results shown in Sections 4.2 and 4.3 are assumed
to be on the plane of y = z = 0 m at t = 2πl/ω, where l is an integer.

4.1. Analytical solution for constant n0 and B0

The calculation domain considered here is shown in Fig. 2; a constant-
density plasma is filled in a waveguide which is assumed to be infinitely long
in the y and z directions. This calculation model is the same as the one
used for the derivation of an analytical solution in Ref. [23]. The background
magnetic field is also assumed to be constant in magnitude and is pointed
purely in the x direction. The wave vector components ky and kz are fixed,
and the antenna current density is given by

Jext = Kδ (x− xant) ei(kyy+kzz−ωt)ey, (16)

where K is constant.
Now, let us look for a solution to Eq. (1) in the form E = Ēei(kxx+kyy+kzz−ωt).

Then, we obtain the dispersion relation that forms a quadratic equation in
terms of k2

x. Since the domain is divided by the presence of the external
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Figure 2: Sheath-plasma interaction problem defined on the 1D domain including the
antenna current and bounded by the sheaths on both sides; this 1D calculation model was
also used in Ref. [23].

surface current, the general solutions for the electric field in region A and
region B in Fig. 2 are, respectively, written as

EA = ÊA (x) ei(kyy+kzz−ωt), EB = ÊB (x) ei(kyy+kzz−ωt), (17)

where

ÊA (x) ≡
4∑

j=1

CAjẼje
ikxjx, ÊB (x) ≡

4∑
j=1

CBjẼje
ikxjx. (18)

Here, CA1, . . . , CA4 and CB1, . . . , CB4 are constants to be determined, and
Ẽ1, . . . , Ẽ4 are the polarization eigenvectors corresponding to kx1, . . . , kx4,
respectively. The subscripts A and B denote the regions where the quantities
are defined. The expressions for the RF sheath voltage at x = xL and x = xR

are, respectively, given by

VRF|x=xL
= V̂Aei(kyy+kzz−ωt), VRF|x=xR

= V̂Bei(kyy+kzz−ωt). (19)

Since the magnetic field line intersects at a right angle with the walls,
the sheath must be present at both ends, which yields the following four
conditions:

ÊAy (xL) = −ikyV̂A, ÊAz (xL) = −ikzV̂A,

ÊBy (xR) = −ikyV̂B, ÊBz (xR) = −ikzV̂B.
(20)

Further, the current-voltage relations at both ends are written as

V̂A = −ω

i
D̂Axzsh

∣∣∣
x=xL

, V̂B = −ω

i
D̂Bxzsh

∣∣∣
x=xR

, (21)
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where D̂Ax = ε0εxxÊAx and D̂Bx = −ε0εxxÊBx; εxx is a dielectric tensor
component. At the position where the surface current is present (x = xant),
one has to consider the jump conditions in both the electric and magnetic
fields, which gives four additional equations (see Section 4.1 of Ref. [23]).
Consequently, one finds that the problem can be analytically solved, since
the number of unknowns is the same as the number of equations (i.e., the
number is 20 when we decompose the unknowns and equations into their
real and imaginary parts). Due to the nonlinearity in the sheath BCs at
both ends, one has to iteratively calculate the system of equations to obtain
the constants CAj, CBj (j = 1, . . . , 4), V̂A, and V̂B, for example, using the
Newton–Raphson method.

4.2. Comparison between the analytical and numerical solutions

First of all, a numerical solution is obtained with the newly developed
rfSOL code for a 1D domain. This 1D code is straightforwardly constructed
by noting that ∂/∂τ is equivalent to iky in the sheath BCs at both ends and
the integrations over the sheath surface Γ S (for the spatial discretization) are
not necessary. The result from the 1D code is compared with the analytical
solution given in Section 4.1. Based on Fig. 2, the calculation domain is
defined such that xL = 0 m, xant = 0.8 m, and xR = 1 m. The plasma density
and background magnetic field are assumed to be constant; n0 = 3 × 1017

m−3 and B0 = B0x = 1 T (where B0 = |B0|). The other parameters fixed
in this analysis are Te = 15 eV, f = 80 MHz (where ω = 2πf), ky = 0 m−1,
kz = 10.8 m−1, and K = 560 A/m. A uniform mesh which includes 201
nodes (100 three-node elements) is used for the finite element discretization.

Fig. 3 shows the comparison of the analytically and numerically calculated
profiles of the electric field components, which are obtained by imposing the
generalized sheath BC at x = xL and x = xR, together with the profiles
obtained subject to the conducting-wall BC which corresponds to the case for
Te = 0 eV. (The sheath BC is abbreviated as SBC in the graph legends. This
abbreviation will also be used in Section 5.) It is confirmed in Fig. 3(a) and
(b) that the profiles obtained by the 1D rfSOL code are in good agreement
with the exact profiles of these electric field components when the sheaths are
present on both sides of the domain. Note that Re (Ex) = 0 V/m in the entire
domain when the sheaths are not present on the metal walls. In addition,
although not shown here, Re (Ex) = 0 V/m and nonzero Im (Ex) are still
obtained even if the conducting-wall BC is replaced with the previously used
capacitive sheath BC; in both of these cases, Ex is π/2 out of phase with
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the y component of the antenna current density, Jext,y. Good agreement is
also confirmed in the RF sheath voltage values at both ends. The absolute
values of the nonzero RF sheath voltage at x = xL and x = xR, which
are expressed as |VRF|x=xL

and |VRF|x=xR
, are 25.41 V and 101.73 V in the

analytical solution, respectively; on the other hand, |VRF|x=xL
= 25.41 V

and |VRF|x=xR
= 101.80 V in the numerical solution. Having verified the

new code using the analytical solution, in the next subsection, we will show
the comparison of the analytical solutions obtained under the capacitive and
generalized sheath BCs.

4.3. Relation between the capacitive and generalized sheath BCs

In the capacitive sheath limit, the dimensionless sheath admittance pa-
rameter (the inverse of the dimensionless sheath impedance parameter ẑsh)
is expressed only by the dimensionless displacement current admittance pa-
rameter as follows (see Eq. (A.9) in Appendix A):

1

ẑsh

= −i
ω̂

∆̂sh

= −i
ωλDe

∆shωpi

, (22)

where ∆̂sh is the dimensionless time-averaged sheath width defined as ∆̂sh =

∆sh/λDe; λDe is the electron Debye length defined as λDe = (ε0Te/ne0e
2)

1/2
.

As given in Ref. [25], the dimensionless sheath impedance parameter is con-
verted into the dimensional one through the following relation:

zsh =
λDe

ε0ωpi

ẑsh. (23)

By substituting Eq. (22) into Eq. (23) and then substituting the obtained
expression into Eq. (4), the sheath BC shown in Eq. (2) can be rewritten as

Et = ∇t

(
∆sh

ε0

Dn

)
, (24)

which is identical with the capacitive sheath BC (for εsh = ε0) derived in
Ref. [22] and used in the original rfSOL code [23]. (The superscript (pl) in
Eq. (4) is omitted in Eq. (24).)

In the capacitive sheath model, the dimensionless time-averaged sheath
width is assumed to satisfy the Child–Langmuir law [27, 28] in the form

∆̂sh = V̂
3/4
rect , (25)
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Figure 3: Comparison of the entire profiles of Re (Ex) (a) and Re (Ez) (b) between the
analytical and numerical solutions for K = 560 A/m, which are obtained by imposing
either the generalized sheath BCs or the conducting-wall BCs at x = 0 m and x = 1 m.
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where V̂rect is the dimensionless rectified (direct-current) sheath voltage. For
the present sheath impedance model, the expression for V̂rect is given by
Eq. (A.10) with the assumption that the background magnetic field perpen-
dicularly intersects the sheath surface. On the other hand, for the previous
capacitive sheath model, the expression for V̂rect is

V̂rect = CshṼRF (26)

in the strong RF driven sheath regime, where Csh is an order-unity con-
stant giving the rectification factor. Due to the difference in expressions for
V̂rect, it is not expected even in the capacitive sheath limit that the numeri-
cal solutions satisfying the capacitive sheath BC (i.e., Eq. (24)) completely
agree with each other. However, it should be emphasized that the analytical
fits used in the sheath impedance model provide a more accurate numerical
evaluation.

Fig. 4 shows the comparison of the analytically calculated profiles of
Re (Ez) in the three different solutions obtained by imposing the previously
used capacitive sheath BC (hereafter, simply called the capacitive sheath
BC), generalized sheath BC, and “reduced” generalized sheath BC, in which
only the displacement current contribution given by Eq. (A.9) is considered
(i.e., the contributions of ions and electrons to the sheath admittance pa-
rameter are excluded), at x = xL and x = xR shown in Fig. 2. Here, we
investigate the following two cases: n0 = 3 × 1017 m−3 and K = 450 A/m
(higher density case) and n0 = 1 × 1017 m−3 and K = 1.5 kA/m (lower
density case). The other parameters used for this analysis remain the same
as described in Section 4.2. The analytical solutions satisfying the capacitive
sheath BCs at both ends are obtained according to the procedure described
in Ref. [23]; here, the rectification factor is taken to be Csh = 0.6. It is seen
in Fig. 4(a) that the result satisfying the capacitive sheath BCs is closer to
the result satisfying the reduced generalized sheath BCs than that satisfying
the generalized sheath BCs. The absolute values of the RF sheath voltage
for this higher density case are 52.68 V, 17.95 V, and 54.40 V at x = xL

and 98.98 V, 41.45 V, and 148.06 V at x = xR when the capacitive sheath
BC, generalized sheath BC, and reduced generalized sheath BC are taken
into account, respectively. On the other hand, it is seen in Fig. 4(b) that
the result satisfying the capacitive sheath BCs is closer to the result satisfy-
ing the generalized sheath BCs than that satisfying the reduced generalized
sheath BCs, although the differences between these profiles are small. The
absolute values of the RF sheath voltage for this lower density case are 26.12
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V, 12.72 V, and 22.56 V at x = xL and 93.85 V, 126.21 V, and 146.04 V
at x = xR when the capacitive sheath BC, generalized sheath BC, and re-
duced generalized sheath BC are taken into account, respectively. Therefore,
it should be noted that the exclusion of the contributions of ions and elec-
trons to the sheath impedance parameter used in the generalized sheath BC
does not always make a solution closer to the one given by the capacitive
sheath model under the same calculation condition. Also, clearly the RF
sheath voltage can be rather sensitive to the boundary condition, motivat-
ing the use of the more physically accurate generalized sheath BC. Further
investigation reveals that there is a global eigenmode of the computational
box near the condition of n0 = 3 × 1017 m−3 (with the given parameters),
which accounts for the large electric field amplitude in that case (as shown in
Fig. 4(a)). A detailed analysis of this 1D problem including the investigation
of the dependence of the RF sheath voltage, sheath power absorption, and
dimensionless sheath impedance parameter on the antenna current density
is described in Ref. [26].

In summary, for the cases investigated in Fig. 4, the solutions in the
plasma volume are not strongly dependent on the boundary condition, and
all the cases give Re (Ez) close to zero at the wall. Insensitivity to the
boundary condition is not always the case, as will be demonstrated in the
next section. However, even when the volume solutions are similar, the RF
sheath voltage can be strongly dependent on the boundary condition as noted
in the preceding paragraph. This point, as well as the need to model sheath
power absorption, is the motivation for employing the generalized sheath BC.
It is the main new message of our paper and will be investigated in the next
section using a 2D domain.

5. RF sheath-plasma interactions in a semi-infinite 2D slab domain

As a next step, we consider analyzing sheath-plasma interaction problems
in 2D slab geometry using the 2D rfSOL codes. Fig. 5 shows the problem
definition; here, a combined form of Maxwell’s equations is solved subject to
the generalized sheath BC (or the capacitive sheath BC for the purpose of
comparison) on the right-hand side, the absorbing BC on the left-hand side
(if necessary, i.e., in the case where waves propagate to the left boundary),
and a periodic boundary condition (periodic BC) that connects the top and
bottom of the domain. Based on this geometry and coordinate system, the
partial derivative with respect to τ defined in the discretization of the sheath
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Figure 4: Comparison of the entire profiles of Re (Ez) between the three different analytical
solutions obtained by imposing the capacitive sheath BCs, generalized sheath BCs, and
reduced generalized sheath BCs at x = 0 m and x = 1 m for n0 = 3 × 1017 m−3 and
K = 450 A/m (a) and n0 = 1× 1017 m−3 and K = 1.5 kA/m (b).
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BC (see Section 3) is equivalent to the partial derivative with respect to
y. The antenna surface current is given by using a cosine function in the y
direction in the range (Ly − Lant) /2 ≤ y ≤ (Ly + Lant) /2 as follows:

Jext = K (y) δ (x−Dbl-ant) ei(kzz−ωt)ey, (27)

where

K (y) = Kmax cos2

[
π

Lant

(
y − Ly

2

)]
. (28)

In this analysis, the plasma density and background magnetic field are as-
sumed to be constant over the domain and the background magnetic field
is perpendicular to the sheath surface on the right-hand side. The following
parameters are fixed throughout the analysis: Lx = 1.2 m (horizontal dimen-
sion of the domain), Dbl-ant = 1 m (distance between the boundary on the
left-hand side and the antenna), Ly = 0.2 m (vertical dimension or periodic
length of the domain), and Lant = 0.05 m (antenna length); B0x = 1 T,
B0y = 0 T, and B0z = 0 T for the background magnetic field; Csh = 0.6 used
in the capacitive sheath BC; and Te = 15 eV and f = 80 MHz. The calcula-
tion domain is divided by a non-uniform mesh which includes 800 (in the x
direction) × 200 (in the y direction) nine-node elements (or 1601×401 nodes)
in total; 600 × 200 and 200 × 200 elements are allocated in 0 ≤ x ≤ Dbl-ant

and Dbl-ant ≤ x ≤ Lx, respectively. In this mesh, the nodal positions in the x
direction are concentrated in the vicinity of the antenna and sheath surface
in order to accurately resolve possible thin layers, within which waves from
the antenna and/or sheath-plasma waves (SPWs) exponentially decay. (For
example, in addition to the main root of interest in Section 5.1, Eq. (29)
also has a large n‖ root which is strongly evanescent.) The other parame-
ters which have not yet been specified are varied depending on the problems
considered below.

5.1. Interactions with propagating waves in a low-density plasma

First, we consider cases where a low-density plasma fills in the 2D slab
domain and large values of kz are prescribed. Here, the plasma density n0 is
fixed at 1× 1017 m−3, and the calculations are carried out with two different
values of kz: 160 m−1 and 320 m−1. In order to avoid the reflection of waves
at the boundary on the left-hand side, an absorbing layer is formed with the
use of the collision frequency given by ν = ν0e

−x/λν (see Refs. [23, 24]); the
parameters used here are ν0 = 3× 1011 s−1 and λν = 0.1 m.
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Figure 5: Singly periodic slab model for the analysis of RF sheath-plasma interactions.

Fig. 6 shows the filled contour plot of Im
(
E‖
)
/Kmax for kz = 320 m−1 at

Kmax = 10 A/m, where E‖ is the component of E parallel to the background
magnetic field B0 (i.e., E‖ = E · b = Ex). Here, the antenna and magnetic
field lines are also superimposed on the plot. The result is obtained by
imposing the generalized sheath BC on the sheath surface at x = Lx. It
is observed that the slow wave (SW) propagates along the magnetic field
lines, since this is a plot showing E‖ in which the fast wave contribution is
considered to be negligible. In order to verify the accuracy of the wavelength
in the x direction, one can employ the cold plasma dispersion relation which
includes n‖ (the component of the index of refraction parallel to B0) and n⊥
(the component of the index of refraction perpendicular to B0) [29]. Since
the present case (for kz = 320 m−1) satisfies |n2

⊥| ' |ckz/ω|2 �
∣∣ε‖∣∣ and∣∣ε‖∣∣� |ε⊥|, the dispersion relation is approximately given by

n4
‖ε‖ + n2

‖n
2
⊥ε‖ + n4

⊥ε⊥ = 0. (29)

A further approximate expression for the small n‖ root is obtained by bal-
ancing the last two terms in Eq. (29):

n2
‖ε‖ + n2

⊥ε⊥ = 0, (30)

which is recognized as the electrostatic limit of the SW dispersion relation.
Then, the SW root is approximately n‖ = ±4.3 or k‖ = k · b = ±7.2 m−1
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Figure 6: Filled contour plot of Im
(
E‖
)
/Kmax for n0 = 1×1017 m−3 and kz = 320 m−1 at

Kmax = 10 A/m, which is obtained by imposing the generalized sheath BC on the sheath
surface.

(neglecting the contribution of ky to k⊥). This gives a half wavelength of 0.44
m which is reasonably close to the estimated wavelength near the antenna in
Fig. 6.

The profiles of |VRF|max as a function of Kmax are compared between the
capacitive sheath model and the sheath impedance model for kz = 160 m−1

and kz = 320 m−1 in Fig. 7(a) and (b), respectively. Here, |VRF|max is the
maximum absolute value of the RF sheath voltage on the sheath surface. It
is seen in both plots that |VRF|max for the sheath impedance model is smaller
than that for the capacitive sheath model at any value of Kmax because of
the presence of the sheath power dissipation. (Therefore, the general sheath
impedance model is expected to reduce RF sheath voltages relative to the
capacitive sheath limit; an exception might occur if a resonance condition
is present.) The almost linear variations partly observed in both plots are
attributed to the fact that |Dn| /Kmax decreases with the increase in ∆sh for
the capacitive sheath model [23] and |zsh| for the sheath impedance model
(see Fig. 9 below) when the values of Kmax are sufficiently large. In such
cases, the sheath is in a quasi-insulating limit.

It is also observed that the relative difference in |VRF|max between the
two models is larger for kz = 160 m−1 than for kz = 320 m−1, especially
at low voltages. The reason for this is explained as follows. In general, the
value of the sheath impedance parameter zsh relative to the wave impedance
parameter zw determines how strongly the sheath model affects the solution.
In short, the solution is insensitive to the sheath model when |zsh/zw| � 1,
whereas it becomes sensitive when |zsh/zw| ∼ 1. At very high voltages, the
sheath impedance parameter in either model gets very large for both kz = 160
m−1 and kz = 320 m−1, and the quasi-insulating limit applies as described
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above; in such a case, we obtain |zsh/zw| � 1. On the other hand, the
sensitivity occurs when the absolute value of the RF sheath voltage is small
at low kz, which yields |zsh| ∼ 1 and |zw| ∼ 1. The dependence of zw on
kz (∼ k⊥) can be seen from the expression for zw in the electrostatic limit,

which is given by 1/zw = J‖/Φ = ωε0k⊥
(
ε⊥ε‖

)1/2
.

The plot of the maximum power per unit area on the sheath, Pmax, as a
function of Kmax for kz = 320 m−1 is shown in Fig. 8. (Hereafter, the power
per unit area on the sheath is simply called the power density.) The power
density (denoted by P ) used here is defined as

P ≡ 1

2

∣∣J (sh)
x

∣∣2 Re (zsh) =
ω2

2

∣∣D(pl)
x

∣∣2 Re (zsh)

∣∣∣∣
x=Lx

(31)

(see Appendix C for the derivation of this expression). Note that nonzero
power density is obtained only by employing the generalized sheath BC, since
Re (zsh) = 0 Ωm2 for the capacitive sheath BC. It is seen that Pmax increases
in proportion to Kmax for Kmax > 30 A/m. For this low-density plasma
(associated with a propagating SW), the maximum power density is so low
that material damage should not occur even when the absolute value of the
RF sheath voltage is close to 150 V.

Fig. 9 shows the plot of the maximum real and imaginary parts of ẑsh on
the sheath, Re (ẑsh)max and Im (ẑsh)max, as functions of Kmax for kz = 320
m−1 under the generalized sheath BC. As shown in this plot, the magni-
tude relation of the real and imaginary parts changes between Kmax = 40
A/m and Kmax = 50 A/m. This is consistent with expectations based on
recent analytical analysis [26] of the form of the electron and displacement
current admittance parameters (denoted by ŷe and ŷd in dimensionless form,

respectively) for high voltages: ŷe ∼ |VRF|−1 and ŷd ∼ |VRF|−3/4 (see also
Appendix A), so that for large enough |VRF|, ŷd will dominate. Note that the
contribution of ions to the (total) sheath admittance parameter is negligibly
small over the entire range of Kmax considered in this case.

5.2. Interactions with evanescent waves in a high-density plasma

Second, we consider cases where a high-density plasma fills in the 2D slab
domain. The high density case is of particular concern because of the pos-
sibility of greater surface power dissipation, as we shall see. For sufficiently
high densities, the SW is evanescent, which may help to alleviate interactions
if the source of the waves is sufficiently removed from the material surfaces.
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Figure 7: Comparison of the profiles of |VRF|max (maximum absolute value of the RF
sheath voltage on the sheath surface) as a function of Kmax between the capacitive sheath
model (employing the capacitive sheath BC) and the sheath impedance model (employing
the generalized sheath BC) for kz = 160 m−1 (a) and kz = 320 m−1 (b). Here, the plasma
density n0 is 1× 1017 m−3.
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Figure 8: Plot of Pmax (maximum power per unit area on the sheath) vs. Kmax for n0 =
1 × 1017 m−3 and kz = 320 m−1, which is obtained by imposing the generalized sheath
BC on the sheath surface.
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surface.
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Several studies using full wave codes have investigated evanescent SWs near
bounding surfaces [5, 15, 18] motivated in part by the importance of control-
ling large parallel electric fields near the antenna [7, 10, 17]. In Ref. [5], a
model geometry was employed to illustrate the formation of boundary sheaths
from an evanescent SW, and its dependence on the SW evanescence length.
This study employed the capacitive sheath BC, retaining a self-consistent
sheath width model similar to Eq. (25). Studies were carried out in Ref. [18]
using a more realistic model of the antenna fields, invoking the capacitive
sheath BC but in a wide sheath quasi-insulating limit. Here, we consider the
evanescent SW case using the generalized sheath BC and compare results
with the capacitive BC case.

In this subsection, the plasma density n0 is fixed at 2×1018 m−3, and the
calculations are again carried out with two different values of kz: 160 m−1

and 320 m−1. The absorbing layer is not necessary in these cases, because
the waves from the antenna are evanescent (as will be described below).

Fig. 10 shows the filled contour plot of Im
(
E‖
)
/Kmax for kz = 320 m−1

at Kmax = 200 A/m. This is obtained by imposing the generalized sheath
BC on the sheath surface at x = Lx. It is observed that the SW is evanescent
along the magnetic field lines. In order to verify the accuracy of the evanes-
cence length in the x direction, the approximate dispersion relation (29) (and
hence the electrostatic limit (30)) should not be employed, since the condi-
tion |n2

⊥| �
∣∣ε‖∣∣ is not well satisfied. Instead, the full electromagnetic SW

dispersion relation generalizes Eq. (30) to

n2
‖ε‖ + n2

⊥ε⊥ = ε⊥ε‖. (32)

For the case shown in Fig. 10, this gives n‖ = ±3.8i or an e-folding length∣∣k‖∣∣−1
= 0.16 m in good agreement with the figure.

The profiles of |VRF|max as a function of Kmax are compared between
the capacitive sheath model and the sheath impedance model for kz = 160
m−1 and kz = 320 m−1 in Fig. 11(a) and (b), respectively. The results
are qualitatively similar to those shown in Fig. 7(a) and (b); for these high
density cases, we have ω/ωpi = 0.38 and this ratio is far from the capacitive
limit ω/ωpi � 1 [25], which can be the cause of the large difference in voltage
values between the sheath models for kz = 160 m−1 (in comparison with the
difference for kz = 160 m−1 in the low density case). However, compared to
the results shown in Fig. 7, we see that much higher antenna current density
(on the order of a few kA/m) is required to yield |VRF|max > 100 V for the
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Figure 10: Filled contour plot of Im
(
E‖
)
/Kmax for n0 = 2× 1018 m−3 and kz = 320 m−1

at Kmax = 200 A/m, which is obtained by imposing the generalized sheath BC on the
sheath surface.

present cases. On the other hand, it turns out that the maximum absolute
values of E‖ around |VRF|max = 150 V are of the same order in both density
cases. For example, with the use of the generalized sheath BC, we obtain∣∣E‖
∣∣
max

= 222 V/m corresponding to |VRF|max = 142 V at Kmax = 110 A/m

in Fig. 7(b) and
∣∣E‖
∣∣
max

= 153 V/m corresponding to |VRF|max = 149 V at
Kmax = 3.6 kA/m in Fig. 11(b). The reason for this is related to the difference
in characteristics of waves; as described above, the SW is propagating in the
low-density plasma, while the SW is evanescent in the high-density plasma.
Substituting Eq. (23) into the top right-hand side of Eq. (4) and noting that
Dn = −ε0εxxEx ' ε0ω

2
peEx/ω

2 (where ωpe is the electron plasma frequency),
we obtain the following relation between VRF and Ex:

VRF = i
mics

meω
ẑshEx, (33)

where cs = (Te/mi)
1/2 and me is the electron mass. It can be seen from

Eq. (33) that the plasma density on the sheath surface does not explicitly
appear in the expression for VRF (although ẑsh depends on the plasma den-
sity). Since VRF and Ex are similar in the two cases, the maximum absolute
values of ẑsh around |VRF|max = 150 V should also be of the same order in
both density cases. In fact, with the use of the generalized sheath BC, we
obtain |ẑsh|max = 3.28 at Kmax = 110 A/m in Fig. 7(b) and |ẑsh|max = 4.97 at
Kmax = 3.6 kA/m in Fig. 11(b) (see Figs. 9 and 13). This explains the fact
that the high density case has a higher current but a similar sheath voltage
compared with the low density case. It also suggests that the sheath power
dissipation will be larger in the high density case. We consider this next.

The plot of Pmax as a function of Kmax for kz = 320 m−1 is shown in
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Figure 11: Comparison of the profiles of |VRF|max as a function of Kmax between the
capacitive sheath model and the sheath impedance model for kz = 160 m−1 (a) and
kz = 320 m−1 (b). Here, the plasma density n0 is 2× 1018 m−3.

25



0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6
0

200

400

600

800

1000

1200

Kmax [kA/m]

P
m

ax
 [k

W
/m

2 ]

Figure 12: Plot of Pmax vs. Kmax for n0 = 2 × 1018 m−3 and kz = 320 m−1, which is
obtained by imposing the generalized sheath BC on the sheath surface.

Fig. 12. We see that an almost linear profile similar to the result shown
in Fig. 8 is obtained, but Pmax corresponding to |VRF|max ' 150 V for the
high density case is approximately 20 times greater than that for the lower
density case. This difference is understood by noting that P ∼ VRFJn; we
have shown that VRF is nearly independent of the plasma density, while
Jn ∼ ωDn ∝ εxx ∝ n0. Then, it can be concluded that the difference in
the maximum power density is mostly consistent with the difference in the
plasma density. A power density on the order of a few MW/m2 is likely to
cause irreversible damage unless the wall material is carefully selected.

Fig. 13 shows the plot of Re (ẑsh)max and Im (ẑsh)max as functions of Kmax

for kz = 320 m−1 under the generalized sheath BC. Unlike the plot shown in
Fig. 9, the relative magnitudes of the real and imaginary parts do not change
over the entire range of Kmax. At high density, where ωpi is large, ω̂ = ω/ωpi

is small and the dimensionless displacement current admittance parameter ŷd

is reduced since ŷd = −iω̂/∆̂sh (see Eq. (A.9) in Appendix A). On the other
hand, the dimensionless electron admittance parameter ŷe is purely real and
insensitive to ω̂. Since ẑsh ' (ŷe + ŷd)

−1, the higher density result in Fig. 13
exhibits a larger Re (ẑsh)max and a smaller Im (ẑsh)max relative to the lower
density result in Fig. 9.
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Figure 13: Plot of Re (ẑsh)max and Im (ẑsh)max vs. Kmax for n0 = 2 × 1018 m−3 and
kz = 320 m−1, which is obtained by imposing the generalized sheath BC on the sheath
surface.

5.3. Suppression of the sheath-plasma wave resonance

Lastly, we consider cases where a high-density plasma fills in the 2D slab
domain and relatively small values of kz are prescribed. Here, the plasma
density n0 and antenna current density Kmax are fixed at 2× 1018 m−3 and 1
A/m, respectively, and the calculations are carried out with the values of kz

in the range of 50 to 120 m−1. The absorbing layer is not necessary, because
the waves from the antenna are evanescent as described in Section 5.2.

Fig. 14(a) and (b) show the filled contour plots of Im
(
E‖
)

at kz = 50
m−1, which are obtained using the capacitive sheath BC and the generalized
sheath BC, respectively. It is seen in Fig. 14(a) that the SPW propagates
along the sheath surface, whereas it is not observed in Fig. 14(b). Here,
we select a case with very small Kmax and small ω̂ (i.e., ω̂ = 0.38 < 1)
to illustrate that the effect of the generalized sheath BC on the SPW can
be dramatic for some parameters. For this case, the dimensionless sheath
impedance parameters, which are nearly constant along the sheath surface,
are Re (ẑsh) = 0 and Im (ẑsh) = 7.6 for the capacitive sheath model (see
Eq. (22)) and Re (ẑsh) = 0.84 and Im (ẑsh) = 0.16 for the sheath impedance
model. The combined effect of the significant change of |ẑsh| together with
the sheath power dissipation through nonzero Re (ẑsh) completely eliminates
the SPW under the generalized sheath BC.
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(a)

(b)

Figure 14: Comparison of the filled contour plots of Im
(
E‖
)

for n0 = 2 × 1018 m−3 and
Kmax = 1 A/m at kz = 50 m−1, which are obtained using the capacitive sheath BC (a)
and the generalized sheath BC (b).
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The profiles of |VRF|max as a function of kz are compared between the
capacitive sheath model and the sheath impedance model in Fig. 15. It can
be seen that the SPW resonances appear at some particular values of kz

when the capacitive sheath BC is used. On the other hand, no resonance
appears with the generalized sheath BC imposed on the sheath surface; the
maximum sheath voltages are much lower than those obtained under the ca-
pacitive sheath BC and vary almost linearly from 4.44 × 10−2 V at kz = 50
m−1 to 3.87 × 10−2 V at kz = 120 m−1. (Recall that the antenna current
density is very small in this example.) When the resonance occurs on the
sheath surface, the y component of the wave vector of the SPW, kSPW,y, is
given by kSPW,y = 2πm/Ly, where m is the mode number. In Fig. 15, we see
that the SPW resonances at m = 1, 2, and 3 occur when the values of kz

are 115.6, 102, and 74 m−1, respectively. These numerical results reasonably
agree with the analytical solution, as shown in Fig. 16; here, the sheath width
∆sh is fixed at 5.87 × 10−5 m (corresponding to the Bohm sheath contribu-

tion, i.e., ∆sh =
{

ln
[
(mi/me)

1/2
]}3/4

λDe) in the analytical solution. (The

analytical expressions for the wave vector components of the SPW based on
electromagnetic theory are derived in Appendix D.) The mismatch between
the analytical solution and the numerically obtained resonance conditions in
Fig. 16 may be attributed to the fact that the analytical solution curve is ob-
tained using the second-order SW approximation instead of the full quartic
equation (for n‖ or n⊥) for the SPW.

6. Conclusions

In this paper, we presented a new numerical scheme for analyzing self-
consistent RF sheath-plasma interactions in RF plasma heating used to
achieve nuclear fusion in tokamak devices. In a similar way to the previous
approach using the capacitive sheath BC [23], a combined form of Maxwell’s
equations and the generalized form of the sheath BC are both discretized by
finite element methods, and the obtained discretized equations are combined
into a vector equation. In addition, the relation between the RF voltage
across the sheath and the total current density (including the particle and
displacement current densities) in the sheath is incorporated into the vector
equation to additionally obtain the local RF sheath voltage as part of the
numerical solution. The sheath impedance parameter used in this relation
has both capacitance and resistance contributions and is characterized by
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Figure 16: Plot of kSPW,y vs. kz for n0 = 2 × 1018 m−3 and Kmax = 1 A/m: the solid
curve denotes the analytical solution (obtained from Eqs. (D.6) and (D.7) in Appendix D
with the use of ∆sh = 5.87×10−5 m) and the solid circles denote the resonance conditions
obtained using the code for the capacitive sheath (see Fig. 15). The horizontal dashed
lines indicate the values of kSPW,y corresponding to the resonances at m = 1, 2, and 3.

30



four dimensionless input parameters in general [25].
In Sections 4 and 5, we have solved some sheath-plasma interaction prob-

lems with the direction of the background magnetic field perpendicular to
the sheath surface(s). This simplified condition reduces the dimensionality
of the sheath impedance parameter in such a way that it can be expressed
as a function of two independent variables. The validity of the developed
code (new rfSOL code) was confirmed through a comparison with an analyt-
ical solution in the 1D closed domain filled by a uniform plasma. It was also
demonstrated that the proposed scheme does not reduce to the previous finite
element scheme even in the capacitive sheath limit due to the difference in
the expression for the rectified sheath voltage; note that the present version
is based on an improved physics model. In the numerical analysis using the
2D slab domain filled by low- and high-density plasmas, it was found that the
difference in the maximum absolute value of the RF sheath voltage between
the capacitive sheath model and the sheath impedance model is large when
the sheath voltage is not extremely large at a lower wave vector component
(specified in the direction perpendicular to the antenna current and parallel
to the sheath surface) and a high-density plasma (see Fig. 11(a)). Because
the generalized sheath impedance model contains a resistive contribution, we
have been able to demonstrate for the first time a self-consistent full wave
calculation that includes the sheath power dissipation. It was shown that
for high-voltage sheaths (∼ 100 V) in a high-density plasma, the maximum
power per unit area on the sheath can be on the order of a few MW/m2,
which may be enough to cause damage to material surfaces in fusion de-
vices. Furthermore, it was demonstrated that the presence of the sheath
resistance can suppress the sheath-plasma wave resonances, which occur in
the capacitive sheath limit, under certain conditions.

The next step will be improvement of the expression for the sheath
impedance parameter so as to deal with cases where the background magnetic
field makes an oblique angle with the sheath surface. It should be empha-
sized that the finite element scheme presented in this study can be straight-
forwardly applied to such general cases as long as the sheath impedance
parameter is smooth with respect to four dimensionless input parameters.
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Appendix A. An explicit expression for the dimensionless sheath
admittance parameter

In this appendix, we explicitly show the approximate analytical forms to
express the dimensionless sheath admittance parameter ŷsh for a background
magnetic field perpendicularly intersected with the sheath surface, which are
used in the numerical examples in Sections 4 and 5. Although in general ŷsh

is a function of Ω̂, bn, ω̂, and ṼRF (see Section 2), this simplest case reduces

the dimensionality to ŷsh

(
ω̂, ṼRF

)
. All of the fits provided in this appendix

only apply over the range 0 < ω̂ < 8 and 0 < Ṽpp < 20, where Ṽpp is the
dimensionless peak-to-peak voltage which is related to ṼRF by Ṽpp = 2ṼRF.

The fits given in this appendix were obtained from a series of compu-
tations using the numerical model presented in Ref. [25]. A total of 210
runs covering the parameter space of ω̂ and Ṽpp in the indicated ranges were
carried out and fit to polynomial expressions using the forms indicated in
the following. The physics basis for a better parameterization, making use of
asymptotic analytical results and rational functions allowing infinite domains
in the parameters, is described in Ref. [26]. More details of these fits will be
provided elsewhere.

The dimensionless sheath admittance parameter is written as

ŷsh = ŷi + ŷe + ŷd, (A.1)

including the contributions of ions, electrons, and displacement current.
First, the dimensionless ion admittance parameter ŷi is found to be well
described by scaling the frequency dependence at an intermediate value of
voltage, Ṽpp = 10, as follows:

ŷi

(
ω̂, Ṽpp

)
≡
F2

(
Ṽpp

)
F2 (10)

ŷ′i

ω̂
F1 (10)

F1

(
Ṽpp

)
 , (A.2)
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where

F1 (χ) ≡1.0042− 4.0348× 10−2χ + 1.5929× 10−3χ2

− 2.8424× 10−5χ3 + 6.4358× 10−2 tanh (0.5χ) ,
(A.3)

F2 (χ) ≡0.10853− 6.2442× 10−3χ + 2.4235× 10−4χ2

− 4.1991× 10−6χ3 + 8.9064× 10−3 tanh (0.5χ) ,
(A.4)

ŷ′i (χ) ≡ G1 (χ) eiG2(χ), (A.5)

G1 (χ) ≡1.3542× 10−4 − 5.2148× 10−2χ + 0.28344χe−χ

+ 3.0533× 10−2χ2 − 6.4774× 10−3χ3

+ 6.0997× 10−4χ4 − 2.1658× 10−5χ5,

(A.6)

G2 (χ) ≡− 1.5283 + 0.72924χ− 0.17952χ2

+ 1.9827× 10−2χ3 − 8.1711× 10−4χ4

+ 1.8339 tanh (0.91χ) .

(A.7)

Second, the dimensionless electron admittance parameter ŷe is

ŷe

(
Ṽpp

)
≡1.4913− 0.39149e−Ṽpp − 0.35029Ṽpp

+ 4.3703× 10−2Ṽ 2
pp − 2.9807× 10−3Ṽ 3

pp

+ 1.0448× 10−4Ṽ 4
pp − 1.4687× 10−6Ṽ 5

pp.

(A.8)

Lastly, the dimensionless displacement current admittance parameter ŷd is
given by

ŷd

(
ω̂, Ṽpp

)
≡ −i

ω̂

V̂rect

(
Ṽpp

)3/4
, (A.9)

where

V̂rect (χ) ≡3.0670 + 6.2485× 10−2χ + 4.6812× 10−2χ2

− 2.4363× 10−3χ3 + 4.6927× 10−5χ4.
(A.10)

It is important to note that these expressions are differentiable in the real
and imaginary parts of the RF sheath voltage VRF. This is required in the

rfSOL code because the derivatives of zsh with respect to Re
(
V̂RF

)
and
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Im
(
V̂RF

)
at each node on the sheath surface need to be computed in the

present Newton–Raphson method (see Appendix B). At node i′ on the sheath
surface, the dimensional sheath impedance parameter zsh,i′ is obtained from
the dimensionless sheath admittance parameter ŷsh,i′ and some dimensional
quantities at the node (denoted by the subscript i′) as follows:

zsh,i′ =
λDe,i′

ε0ωpi,i′
ŷ−1

sh,i′ =
λDe,i′

ε0ωpi,i′
ẑsh,i′ . (A.11)

The inaccuracy in the present fits is about 10 % in the worst cases; how-
ever, it is much better over most of the range of interest. As mentioned in
the beginning, the parameterization of the sheath admittance parameter will
be further improved in the future in order to achieve better accuracy and
remove the necessity to set upper limits of ω̂ and Ṽpp.

Appendix B. Newton–Raphson method

The present finite element equations and the equations to satisfy the
current-voltage relation in the sheath are put together and expressed as

L = R, (B.1)

where

L =
(
F

(R)
x(1), . . . , F

(R)
x(NP), F

(R)
y(1), . . . , F

(R)
y(NP), F

(R)
z(1), . . . , F

(R)
z(NP),

F
(R)
υ(1), . . . , F

(R)
υ(NB), G

(R)
τ(1), . . . , G

(R)
τ(NB), G

(R)
z(1), . . . , G

(R)
z(NB),

F
(I)
x(1), . . . , F

(I)
x(NP), F

(I)
y(1), . . . , F

(I)
y(NP), F

(I)
z(1), . . . , F

(I)
z(NP),

F
(I)
υ(1), . . . , F

(I)
υ(NB), G

(I)
τ(1), . . . , G

(I)
τ(NB), G

(I)
z(1), . . . , G

(I)
z(NB),

H
(R)
(1) , . . . , H

(R)
(NS), H

(I)
(1), . . . , H

(I)
(NS)

)
,

(B.2)

R =
(
R

(R)
x(1), . . . , R

(R)
x(NP), R

(R)
y(1), . . . , R

(R)
y(NP), R

(R)
z(1), . . . , R

(R)
z(NP),

0, . . . , 0, 0, . . . , 0, 0, . . . , 0,

R
(I)
x(1), . . . , R

(I)
x(NP), R

(I)
y(1), . . . , R

(I)
y(NP), R

(I)
z(1), . . . , R

(I)
z(NP),

0, . . . , 0, 0, . . . , 0, 0, . . . , 0,

0, . . . , 0, 0, . . . , 0) .

(B.3)

34



Here, Fx, Fy, and Fz are the x, y, and z components of F , which corresponds
to the discretized expression of Eq. (1) excluding the external current term,
respectively, and Fυ is the component of F normal to the boundary; similarly,
Rx, Ry, and Rz are the x, y, and z components of R, which corresponds to
the discretized expression of the external current term in Eq. (1), respectively
(see Ref. [23]). (Note that, in fact, the real parts of Rx, Ry, and Rz are zero
since Jext is a real vector.) Further, Gτ and Gz are the τ and z components
of G, which corresponds to the discretized expression of the sheath BC on
the sheath surface (see Section 3) or Et for the conducting-wall BC on the
core-edge plasma boundary; H = 0 is the current-voltage relation (again, see
Section 3). The superscripts (R) and (I) denote real and imaginary parts,
respectively; NP, NB, and NS in the subscripts are the total numbers of nodes
in the plasma (excluding the boundaries), on the boundaries (including both
the sheath surface and the core-edge plasma boundary), and on the sheath
surface, respectively. (The total number of nodes on the core-edge plasma
boundary is then NB−NS.) The numbers in the subscripts, each of which is
shown with a parenthesis, are used as identification numbers for independent
equations. The task here is to find the solution U of the equation

f (U) = L−R = 0 (B.4)

through the Newton–Raphson method. Here, U is the real column vector
which consists of the real and imaginary parts of Êi and V̂RF,i′ , where i =
1, . . . , NP + NB and i′ = 1, . . . , NS. Note that the column vectors L and R
cannot be replaced with the corresponding complex column vectors because
the method requires the derivatives of ṼRF,i′ (= e |VRF,i′ | /Te,i′) which are
non-analytic in the complex variable sense.

Let us assume that an intermediate solution U (n) is evaluated in the n-th
iteration. Then, a set of linear equations for the correction δU (n) is obtained
by applying a Taylor series expansion to Eq. (B.4) and then neglecting high-
order terms of the resultant equation, which is expressed as

K(n) · δU (n) = −f
(
U (n)

)
, (B.5)

where

K(n) = (∇Uf)T
∣∣∣

U (n)
. (B.6)

Here, ∇U is the nabla operator with respect to U in the abstract space of
dimension 6 (NP + NB) + 2NS, and T is the transpose operation. Notice
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that the expression of K(n) is partly explicitly obtained using the discretized
expressions of a combined form of Maxwell’s equations (see Ref. [23]) and the
sheath BC (see Eqs. (12) and (13)). The derivative expressions of the real
and imaginary parts of the sheath impedance parameter zsh with respect to
the real and imaginary parts of V̂RF at each node on the sheath surface are
approximately obtained by employing the symmetric difference quotient.

The intermediate solution is then improved by adding the correction:

U (n+1) = U (n) + δU (n). (B.7)

The above process is iteratively conducted until the solution is fully con-
verged. The present scheme adopts the following convergence criterion:∣∣∣∣∣ δÊ

(n)
xi

Ê
(n+1)
xi

∣∣∣∣∣
max

,

∣∣∣∣∣ δÊ
(n)
yi

Ê
(n+1)
yi

∣∣∣∣∣
max

,

∣∣∣∣∣ δÊ
(n)
zi

Ê
(n+1)
zi

∣∣∣∣∣
max

,

∣∣∣∣∣δV̂
(n)
RF,i′

V̂
(n+1)
RF,i′

∣∣∣∣∣
max

< εerr (B.8)

for
∣∣∣Ê(n+1)

xi

∣∣∣, ∣∣∣Ê(n+1)
yi

∣∣∣, ∣∣∣Ê(n+1)
zi

∣∣∣ > Emin and
∣∣∣V̂ (n+1)

RF,i′

∣∣∣ > Vmin. For the calcula-

tions in the 2D slab domains, the parameters εerr, Emin, and Vmin are fixed
at 10−5, 10−3 V/m, and 10−3 V, respectively.

Appendix C. Sheath power dissipation

In this appendix, we aim at rederiving the expressions for the sheath
power dissipation (per unit length and per unit area) based on the 2D slab
geometry of our model problem and comparing the calculated profiles of the
power dissipation (per unit area) for code verification. An analytical demon-
stration using the relation between the power dissipation and the Poynting
flux is also presented in Ref. [22].

First, the expression for the total power dissipated in the entire sheath
region is given by

Ptot ≡
∫

sheath

1

4

(
J (sh) ·E(sh)∗ + J (sh)∗ ·E(sh)

)
dV, (C.1)

where the asterisk denotes complex conjugate. As described in Section 2,
the electric field in the sheath is expressed by E(sh) = −∇Φ

(sh)
ω . Further,

the approximation J (sh) · E(sh) ' J
(sh)
n E

(sh)
n is valid in the sheath region by

noting that |kt|∆sh � 1, where the subscripts n and t refer to the components
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normal and tangential to the sheath surface, respectively. Then, Eq. (C.1)
can be rewritten as

Ptot ' −1

4

∫
sheath

(
J (sh)

n

∂Φ
(sh)∗
ω

∂n
+ J (sh)∗

n

∂Φ
(sh)
ω

∂n

)
dV, (C.2)

where n denotes the normal coordinate defined at the sheath surface. Let
us consider the sheath formed on one side of the 2D slab domain defined in
Fig. 5. In the given coordinate system, the power per unit length in the z
direction, P̂tot, in the range 0 ≤ y ≤ Ly is

P̂tot = −1

4

∫ Ly

0

[∫ Lx+∆sh

Lx

(
J (sh)

x

∂Φ
(sh)∗
ω

∂x
+ J (sh)∗

x

∂Φ
(sh)
ω

∂x

)
dx

]
dy. (C.3)

The integration with respect to x can be easily performed by noting that
J

(sh)
x is constant over the sheath when both the particle and displacement

currents are included [25]. Using the definition of the RF sheath voltage VRF

(see Eq. (3)), we obtain

P̂tot =
1

4

∫ Ly

0

(
J (sh)

x V ∗
RF + J (sh)∗

x VRF

)
dy. (C.4)

Substituting Eq. (4) into Eq. (C.4) (noting that J
(sh)
n → −J

(sh)
x ) yields

P̂tot =
1

2

∫ Ly

0

∣∣J (sh)
x

∣∣2 Re (zsh) dy =

∫ Ly

0

Pdy, (C.5)

where P is the local power density defined in Section 5.1.
Second, we consider another expression for the total sheath power dissi-

pation by employing Poynting’s theorem

∇ · 〈S〉+ 〈J ·E〉 = 0, (C.6)

where S = E × B/µ0 is the Poynting vector, and the time average of the
product of A and B is defined by 〈AB〉 = (A∗B + AB∗) /4. Integrating
Eq. (C.6) over the entire sheath region and using the definition (C.1) yields

Ptot = −
∫

sheath

∇ ·
〈
S(sh)

〉
dV. (C.7)
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Then, with the use of Gauss’ theorem, the power density per unit length,
P̂tot, corresponding to Fig. 5 is given by

P̂tot =

∫ Ly

0

〈
S(sh)

x

〉
dy

∣∣∣∣
x=Lx

. (C.8)

Note that
〈
S

(sh)
x

〉
= 0 on the surface of the metal wall at x = Lx +

∆sh (due to the conducting-wall BC). Consequently, substituting S
(sh)
x =(

E
(sh)
y B

(sh)
z − E

(sh)
z B

(sh)
y

)
/µ0 into Eq. (C.8) and using the continuity of E

and B at the sheath-plasma interface, we obtain

P̂tot =

∫ Ly

0

〈Sx〉 dy

∣∣∣∣
x=Lx

=
1

2µ0

∫ Ly

0

Re
(
EyB

∗
z − EzB

∗
y

)
dy

∣∣∣∣
x=Lx

. (C.9)

Here, 〈Sx〉 and the components of E and B are the quantities on the plasma
side.

Although the integrated values in Eqs. (C.5) and (C.9) must be the same,
the local power density P and the local time-averaged Poynting vector com-
ponent 〈Sx〉 on the sheath surface are different in general. This can be
confirmed by the following relation:

P = 〈Sx〉|x=Lx
− d

dy

∫ Lx+∆sh

Lx

〈
S(sh)

y

〉
dx. (C.10)

Fig. C.17 shows the plot of P and 〈Sx〉 as functions of y at the sheath-
plasma interface (x = Lx) for n0 = 1×1017 m−3 and kz = 320 m−1 under the
generalized sheath BC, which corresponds to the result at Kmax = 10 A/m in
Section 5.1. Here, the magnetic flux density at node i in the domain Ω , which
is denoted by Bi, is calculated using the following nodal averaging technique
after the converged solution is obtained (see Eq. (5) for the definition of Ni):

Bi =
1

iω

∫
Ω

Ni∇×EdΩ∫
Ω

NidΩ
. (C.11)

It is seen that these profiles do not overlap each other. However, the inte-
grated values of P and 〈Sx〉 in the range 0 ≤ y ≤ Ly are 2.958 × 10−2 and
2.961 × 10−2 kW/m, respectively, which indicates that the numerical result
obained by the new rfSOL code well satisfies the required condition for P̂tot.
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Figure C.17: Comparison of the profiles of P and 〈Sx〉 along the sheath surface for n0 =
1 × 1017 m−3 and kz = 320 m−1 at Kmax = 10 A/m, which are obtained using the
generalized sheath BC.

Appendix D. Sheath-plasma wave in the capacitive sheath model

In Section 5.3, we notice the presence of the SPW when the capacitive
sheath BC is used. Here, we derive the conditions for the SPW in electromag-
netic theory, which can be used to interpret the numerical results in Section
5.3.

Since we assume that the direction of the background magnetic field B0

is perpendicular to the sheath surface, the capacitive sheath BC shown in
Eq. (24) can be rewritten as

E⊥ = ik⊥∆shbnε‖E‖, (D.1)

where the subscripts ⊥ and ‖ denote the components perpendicular and par-
allel to B0, respectively, and we note that bn = −1 at x = Lx in Fig. 5. For
the electromagnetic SW, the relationship between the electric field compo-
nents is given by

E⊥ = −
n⊥n‖

ε⊥ − n2
‖
E‖. (D.2)

A condition for the SPW is obtained by combining Eqs. (D.1) and (D.2) (to
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eliminate E⊥ and E‖) as follows:

i =
ε⊥ − n2

‖

n‖

∆shω

c
bnε‖. (D.3)

In addition, at the sheath-plasma interface, we obtain the following expres-
sion of n2

⊥ from the electromagnetic SW dispersion relation:

n2
⊥ =

ε‖
ε⊥

(
ε⊥ − n2

‖
)
. (D.4)

The condition n2
⊥ > 0 is required for the SPW to propagate along the sheath

surface, while the condition n2
‖ < 0 is required for the SPW to be evanescent

away from the wall. These two conditions are satisfied when
∣∣∣n2

‖

∣∣∣ > |ε⊥|, since

ε‖ < 0 and ε⊥ < 0 for a high-density plasma. Further, for the simulations
which have the sheath at the right wall, the sign of Im

(
n‖
)

needs to be
negative, i.e., n‖ = −i

∣∣n‖∣∣ (or k‖ = −i
∣∣k‖∣∣), considering that the modes vary

as eikxx ∼ e|k‖|x. Thus, from Eq. (D.4) we obtain

n‖ = −i

∣∣∣∣ε⊥ε‖ (ε‖ − n2
⊥
)∣∣∣∣1/2

. (D.5)

Substituting Eq. (D.5) and bn = −1 into Eq. (D.3) yields

1 = ∆2
shk

2
⊥n2

⊥
ε⊥ε‖

n2
⊥ − ε‖

. (D.6)

This expression can be rewritten in the form of a quadratic equation for k2
⊥.

After taking the positive root of the quadratic equation (due to n2
⊥ > 0), the

y component of the wave vector of the SPW, kSPW,y, is given by

kSPW,y =
(
k2
⊥ − k2

z

)1/2
. (D.7)

The positive real root of Eq. (D.7) with the parameters used in Section 5.3
is plotted in Fig. 16, as denoted by a solid curve.
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