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                                 Abstract 

Interactions between propagating fast waves and radio-frequency (RF) sheaths in the 

ion cyclotron range of frequencies are numerically investigated based on a cold fluid plasma 

model coupled with a sheath boundary condition. In this two-dimensional study, the capability 

of the finite element code, which was developed in previous numerical work, is extended to 

analyze self-consistent RF sheath-plasma interaction problems in a tokamak with a 

non-circular cross-section. It is found that a large sheath voltage is generated near the edges of 

the limiter-shaped deformation as a result of the conversion from fast to slow waves on the 

sheaths. The sheath voltage associated with this conversion is particularly significant in the 

localized region where the contact angle between the magnetic field line and the conducting 

wall varies rapidly along the curved sheath surface, which is consistent with the results in 

previous one-dimensional theoretical work. The dependences of the RF sheaths on various 

parameters in plasma such as the toroidal wavenumber, the edge plasma density, and the 

degree of the RF wave absorption in the core region are also examined in detail. 

PACS: 52.35.Mw, 52.40.Kh, 52.50.Qt, 52.55.Fa 
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I. INTRODUCTION 

The efficient application of auxiliary power to fusion research plasmas is an important 

topic in contemporary research. The use of radio-frequency (RF) waves in the ion cyclotron 

range of frequencies (ICRF) for heating, current drive as well as other applications, has the 

advantage of being both cost effective and flexible. Indeed, ICRF heating is expected to play a 

significant role in the international tokamak experiment, ITER.1 

While it is well recognized that ICRF wave coupling to the core plasma has been 

highly successful in many experiments, nevertheless, in certain regimes of operation, 

performance has been observed to be degraded due to edge and wall interactions. Reviews of 

experimental and theoretical work on ICRF edge and wall interactions are given in Refs. 2-3 

and a short overview of the physics can be found in Ref. 4. More recently, these issues have 

been the subject of experimental investigations on many tokamaks,5-13 and have given rise to 

a number of dedicated modeling efforts.14-21 In particular, a large body of research has 

concentrated on the ubiquitous phenomenon of RF sheaths which form when plasma and RF 

waves coexist near material surfaces. 

The fundamental mechanism for RF sheath formation is well understood.2, 22-24  

Electrons being more mobile than ions are more easily expelled from the plasma into the 

surface. A strong electric field builds up within a few Debye lengths of the wall to repel 
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electrons, attract ions, and maintain ambipolarity. The result is an RF sheath which can be 

responsible for power loss, impurity sputtering, and other unwanted interactions. 

Experimentally, RF sheaths have been observed both near the antenna and in more remote, 

“far field” locations. The voltage associated with these sheaths can often exceed thermal 

( e3~ T  where eT  is the electron temperature) sheath levels by a large factor; RF sheaths of 

more than 100 V are not uncommon. 

Among the modeling efforts, one line of investigations has concentrated on RF sheath 

interactions occurring with the antenna structure itself or with surfaces connected to the 

antenna by magnetic field lines.6,14,15,19,22,25-28 In this case, the most important wave 

polarization component is ||E  (the RF electric field component in the direction of the static, 

background magnetic field) associated with the slow wave (SW) (i.e., the electron plasma 

wave) branch. In these cases, models with slab-like geometry have proven useful for analysis; 

however, quantitative treatment of antenna interactions requires complex three-dimensional 

(3D) geometry, and is not the subject of the present paper. 

A conceptually distinct situation, and the main topic of the present paper, occurs when 

a launched fast wave (FW) propagates either in the scrape-off layer (SOL)13,16,29 or is 

weakly damped in the core and impacts the inner wall or perhaps another part of the vacuum 

vessel.30 Although the FW does not itself have a significant ||E  polarization, the boundary 
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conditions at the wall couple the FW and SW polarizations, as we shall see. This results in a 

SW component (which can be evanescent) near the wall and the appearance once again of RF 

sheaths. 

There have been a number of modeling attempts of these FW far-field 

sheaths.20,21, 31 , 32  This past work has provided some useful insights and theoretical 

motivation for the present study. In particular, it was found that when field lines make an 

oblique intersection with the wall, boundary conditions on the FW electric field, which is 

essentially perpendicular to the background magnetic field, require the generation of ||E .  

This can easily be seen, even for a metal wall for which the appropriate boundary condition is 

0E t  (where tE  refers to the electric field components tangential to the metal surface). 

The wall-induced coupling of the FW and SW turns out to be rather general, and 

remains important when the full capacitive RF-sheath boundary condition31,33 is employed. 

Consequently, the far-field sheath problem is fundamentally dependent on the wall geometry 

relative to the background magnetic field, the local FW polarization vector, and the tangential 

wave vector. The fact that previous modeling has made slab-like simplifications in the 

geometry motivates the present study. To our knowledge, it is the first work that employs all 

of the following: a global description of FW propagation in a model tokamak geometry, a wall 

shape that incorporates limiter-like deformations not conforming to flux surfaces, and the 
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capacitive sheath boundary condition (sheath BC). We shall see that all three of these features 

contribute to a deeper understanding of the far-field sheath process. In particular, the present 

paper will demonstrate explicitly the roles of wall geometry, FW propagation and cutoffs, 

strength of core (“single pass”) absorption, and the nonlinearity of the sheath boundary 

condition. The latter effect, associated with the sheath-plasma resonance in previous 

work18-21,32,33 here also can amplify the strength of RF sheaths. 

The plan of our paper is as follows. In Sec. II we present the basic physics model for 

RF wave propagation and sheath interactions at the boundary. Section III introduces the 

model geometry (including wall, magnetic field, and plasma profiles) and the computational 

technique. This section goes on to discuss a computational base case which illustrates both 

direct magnetically connected and far-field sheaths. This is followed by further investigations 

which vary key parameters: wall shape, toroidal wavenumber (FW cutoff location), edge 

plasma density, and strength of core FW absorption. Finally, our conclusions are given in Sec. 

IV. 

 

 

II. MODEL FOR SHEATH-PLASMA INTERACTIONS 

In this section, we summarize the equations that govern the behavior of plasma waves 
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and the interaction between the ICRF waves and the sheaths on metal surfaces. In the 

following analysis, we assume that deuterium is the only ion species; however, the formalism 

is easily generalized to different or multiple species by appropriate modifications to the 

dielectric tensor. 

The governing equation for plasma waves is a combined form of Maxwell's equations 

described as 

,i ext02

2

0JEεE  
c

 )1(  

where the electric field E  and the external current extJ  vary on the RF time scale. Here,   

is the applied ICRF wave frequency, c  is the speed of light, i is the imaginary unit, and 0  

is the permeability in vacuum. The dielectric tensor ε  is given by the cold plasma model.34 

Throughout this study, we assume that quasi-neutrality in the plasma is retained, i.e., ie nn   

where en  and in  are the equilibrium electron and ion densities, respectively. 

At the metal wall, the sheath effect is taken into account by means of a capacitive 

sheath BC31,33, which is written as follows: 
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Here, sh  is the time-averaged sheath width, sh  is the dielectric constant in the sheath (in 

this study we assume that 0sh   , where 0  is the dielectric constant in vacuum), 

 Eεs  0n D  is the component of the electric displacement normal to the sheath (and s  is 
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the unit normal vector pointing into the plasma), and the subscript t denotes the two 

components tangential to the boundary. In a manner consistent with the Child-Langmuir 

law,35,36 the sheath width is written as follows: 
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where e  is the electric charge, shC  is an order-unity constant giving the rectification factor 

(which is fixed at 0.6 in this study), eT  is the electron temperature, and De  is the electron 

Debye length defined as   212
ee0De enT  . The first and second terms on the right-hand 

side of Eq. (3) are the RF and thermal sheath contributions to the self-consistent sheath width, 

respectively. The coefficient thC  has different forms depending on whether the contact angle 

between the magnetic field line and the wall (hereafter, this is simply called the contact angle) 

is smaller (ion poor sheath) or larger (electron poor sheath) than a critical value. Using a 

polynomial fit to transition smoothly between the two limits, thC  is given by 
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where im  and em  are the ion mass and electron mass, respectively, and nb  is defined by 

0n0n BBb   (a component of 00 BBb  ) where 0B  is the background magnetic field and 

n0B  is its component normal to the sheath. The coefficients 1a  and 2a  are determined so as 

to satisfy the continuity of thC  and nth dd bC  at critn bb  , where   21
iecrit mmb  . Since 



 8

we assume a deuterium plasma, the value of critb  is fixed at 0.02 in this study. We note that 

Eq. (3) is strictly valid for 1esh TeV  and 1esh TeV , where shV  is the instantaneous 

RF sheath voltage defined by 

 
 
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sh
sh
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with the superscripts sh and pl denoting the quantities on the sheath and plasma sides of the 

sheath-plasma interface, respectively. In intermediate cases, 1~esh TeV , Eq. (3) provides a 

smooth and approximate interpolation. 

In the present work, we consider RF sheaths arising from the interaction of FWs with 

a model limiter surface. We assume that the FWs that enter the core plasma are weakly 

damped there. In order to assure this in the framework of the cold plasma model, we introduce 

a simple ad-hoc friction in the plasma volume similar to the absorbing boundary condition 

approach used in the previous slab model.19 This approach consists of defining the ion mass 

as   iii i1ˆ  mm  and choosing the artificial collision frequency i  to decrease 

exponentially from the core plasma so as to simulate core absorption processes. (As discussed 

in Appendix A, complex ion, rather than electron, mass is required to damp the FW). In this 

study, i  is described in the following equation: 

,exp
2

2

0ii 










  )6(  

where 0i  is the maximum artificial frequency,   is the distance from the center of the core 
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plasma (defined more specifically later), and   represents the damping length. Although we 

do not show it explicitly in this paper, the complex ion mass plays an important role in 

eliminating eigenmode sensitivity of calculated FWs in a closed domain. 

The combined form of Maxwell’s equations and the sheath BC are self-consistently 

solved with the rfSOL code, which is based on a finite element method as presented in Ref. 

37. The rfSOL code has undergone significant upgrades from the previous versions (applied 

to a singly periodic slab model) in order to accurately calculate sheath-plasma interactions on 

general curvilinear geometry. The key upgrades are summarized in Appendix B. The 

calculations in this paper were performed on the Hopper Cray XE6 computer system at the 

National Energy Research Scientific Computing Center (NERSC). 

 

 

III. NUMERICAL SIMULATION OF FW-SHEATH INTERACTIONS 

In our previous work, we have analyzed various two-dimensional sheath-plasma 

interaction problems in a singly periodic slab model.19,21 In the present numerical analysis, 

we consider sheath-plasma interactions, in particular FW-sheath interactions, with a spatially 

varying background magnetic field and spatially varying plasma densities in a small 

high-field tokamak. The default parameters used in the analysis are similar to those of Alcator 
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C-Mod, but instead of modeling the full X-point divertor geometry, we employ a circular 

cross-section geometry. In addition, we incorporate a limiter-shaped deformation, which is 

called “limiter protrusion” hereafter, from a circular wall in a particular range of poloidal 

angles in the model. The magnetic field geometry is that of a “cylindrical tokamak,” i.e., no 

toroidal effects are modeled; instead, it is as if the torus were cut at a particular toroidal angle 

and rolled out into a cylinder which is periodic along z , the axis of the cylinder. 

Figure 1(a) shows the problem definition which corresponds to an approximated 

geometry of the plasma region including an antenna in the poloidal cross-section of a tokamak. 

Here, the radius of the quasi-circular domain, a , and the antenna length antl  are fixed at 0.3 

m and 0.4 m, respectively, which correspond to the minor radius and antenna length of the 

Alcator C-Mod tokamak. The origin in the Cartesian coordinate system is placed at the center 

of the domain, and the poloidal angle   is defined such that 0  on the positive x -axis 

and its value is increased in the counterclockwise direction. It is assumed that the antenna is 

located at the radius m 25.0ant r  with its center position on the positive x -axis. The local 

height of the limiter protrusion, a , is given by the following equation: 
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where ph  is the maximum height of the protrusion, on  and off  are the poloidal angles at 

the edges of the protrusion ( offon   ), and slope  is the angle which determines the edge 
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slopes of the protrusion. In the present analysis, the three angles are determined such that 

180160on   , 180200off   , and 1802.1slope   . Note that in the present model the 

limiter protrusion is located on the inner side of the torus to investigate the interactions of the 

protrusion with a propagating FW. While tokamaks sometimes operate in an inner-wall 

limited configuration, actual protrusions are usually on the outboard side of the torus. We 

avoid this geometry in order to cleanly separate the role of FW sheaths from direct 

magnetically connected sheaths. 

For calculations we use the mesh as shown in Fig. 1(b), which consists of nine-node 

elements; here, a quadrilateral in the mesh corresponds to a nine-node element. As will be 

seen in the numerical results, extreme care must be exercised to accurately resolve the 

fine-scale structures near the poloidal edges of the limiter protrusion. For this purpose, the 

radial and circumferential grid resolutions are adjusted in a manner such that sufficiently fine 

resolution is secured near the edges of the deformation. Specifically, the grid points in the 

ranges of aarr ant  and  0  are distributed in the radial and circumferential 

directions according to the following equations: 
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where rN  is the number of elements included in the radial direction in the range of 

aarr ant , and 1N  and 2N  are the numbers of elements included in the 

circumferential direction in the ranges of on0    and  on , respectively. Using 

Eqs. (8) and (9), one can achieve very high accuracy near the edge of the limiter only by 

increasing the values of the uneven parameters r , 1 , and 2 . The grid points in the 

ranges of aarr ant  and  2  can also be distributed in a similar way, since we 

assume up-down symmetry in the geometry with respect to the x -axis. The grid distribution 

in the domain of antrr   is not very important (i.e., accuracy is not sensitive to the grid 

distribution in this range) for the present finite element analysis. 

The electric field in the whole domain is solved subject to the sheath BC on the entire 

boundary. The antenna surface current is given by a trigonometric function in the poloidal 

direction as follows: 
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where u  is the coordinate along the antenna on the x - y  plane; 0u  at the end of the 
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antenna in 0y . Thus, the antenna current is maximum at the center of the antenna and zero 

at the two ends. In Eq. (10), zk  is the toroidal wavenumber, e  is the unit vector in the   

direction (the same shall apply to xe , ye , and ze ), and maxK  is the maximum antenna 

current density. The spatially varying background magnetic field is given by 
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where R  and q  denote the major radius of the tokamak and the safety factor, respectively; 

here, 0q  and aq  correspond to the safety factors at 0  and a , respectively. It can 

be easily checked that the above expression satisfies 00  B  for constant zB0 . In addition, 

we assume that the electron density profile is expressed as 
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where 0e
p

n  and p
en  are the electron densities at 0p   ( 0rr  ) and p  

(approximately on the boundary of the domain for naa   ), respectively. Note that the 

magnetic axis, 0 is displaced from the geometric center of the circular part of the wall 

when 0r 0 . This permits some field lines to make a direct magnetic connection between the 
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antenna and the wall; and also permits a finite thickness SOL of open field lines, even in the 

absence of a limiter protrusion. 

All the calculations in this study will be conducted with a nonlinear sheath BC, in 

which the electric field contribution to the sheath width (i.e., the first term in Eq. (3)) is 

included. Together with the geometry parameters already described above, we fix the 

following parameters in all the cases: 48rN , 3981 N , 502 N , 2r , and 

421     for the mesh which includes 157696 nine-node elements (note that Fig. 1(b) 

includes only 1476 nine-node elements to display the grid arrangement clearly); 

mkA 3max K  for the antenna surface current; T 40 zB , m 6.0R , 10 q , 1.1aq , 

m 04.00 x , and m 00 y  for the background magnetic field; 320
0e m 10

p



n , 

m 15.0n , and 4  for the electron density; m 05.0  for the FW damping in the core; 

eV 10e T  and MHz 80f  where f 2 . The other parameters which have not yet been 

specified are varied in the present numerical analysis. 

As an example, the electron density profile for 318
e m 10

p



n  is shown in Fig. 2. 

The parameters used in this study correspond roughly to typical Alcator C-Mod parameters, 

except for aq . The relatively small value of aq  used here enhances the angle that the 

background magnetic field makes with the vessel surface and results in larger nb  and 

stronger sheath interactions. In a real tokamak, large angles (up to 2 ) would result from 
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poloidal limiters and other hardware which protrude into the torus at particular toroidal 

locations. Detailed modeling of such structures, which requires a 3D treatment, is beyond the 

capability of the present code. 

 

A. Base case 

First of all, the characteristic FW-sheath interactions in the presence of the limiter 

protrusion are investigated by employing a set of parameters referred to as the base case. 

Together with the fixed parameters, the maximum height of the protrusion, the toroidal 

wavenumber, the edge electron density, and the maximum artificial frequency are determined 

such that m 03.0p h , 1m 7.2 zk , 318
e m 10

p



n , and  2.00i   for the base case. The 

filled contour plots of the real part of the electric field components perpendicular and parallel 

to the background magnetic field, which are defined by   yy EE ebE  ||  and bE ||E , 

respectively, are shown in Fig. 3. Here, the antenna and magnetic field lines are also 

superimposed on the plots. Figure 3 shows (i) a propagating FW impacting the limiter 

protrusion (see Fig. 3(a)); (ii) near field generated ||E  which follows the magnetic field lines 

and can potentially create direct magnetically connected sheaths (see Fig. 3(b)); and (iii) ||E  

generated by the FW-to-SW conversion near the edge of the protrusion (see Fig. 3(c)), by the 

process discussed in the introduction. For the given parameters, the analysis using the local 
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dispersion relation shows that the FW propagates across the plasma (from right to left on the 

poloidal cross-section) with a small amount of attenuation, which is slightly visible in Fig. 

3(a). Note that the emergence of the large parallel electric field component near the edge of 

the limiter protrusion is a separate phenomenon unrelated to the direct magnetic connection 

between the antenna and the conducting wall. Therefore, it should be emphasized that the 

present numerical analysis reveals two distinct types of RF sheaths: the direct magnetically 

connected sheaths and the sheaths due to the FW-to-SW conversion. By construction of the 

simulation, these sheaths are well separated spatially. The latter type of sheath is enhanced by 

rapid tangential variation of the contact angle nb , as will be demonstrated later, which was 

analytically predicted by a one-dimensional (1D) model.20,32 In the present work, we focus 

particularly on this type of sheath and investigate how the instantaneous RF sheath voltage on 

the limiter edges varies depending on the parameters which are not fixed in this numerical 

analysis. In the following analyses, we consider varying only one parameter for each case 

keeping all the other parameters the same as in the base case. 

 

B. Dependence on wall shape 

Next, the dependence of the sheath on the contact angle is investigated by varying 

only the maximum height of the limiter protrusion from the base case parameters. Here, we 

consider four different values of ph : 0 m, 0.01 m, 0.02 m, and 0.03 m (the base case). Figure 
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4 shows the variations of the instantaneous RF sheath voltage along the sheath surface for the 

four different values of ph . It is seen in Fig. 4(a) that the sheath voltage abruptly increases 

near the poloidal angles of 160 and 200 degrees for the cases where ph  is nonzero. As 

described just after Eq. (7), these poloidal angles correspond to the locations of the edge 

slopes of the limiter protrusion. More detailed information about the small-scale variations 

around 160 degrees can be seen in Fig. 4(b), which shows the variations only in a limited 

range of the poloidal angle. From this figure, it is found that the sheath voltage is 

approximately proportional to the protrusion height which controls the contact angle nb  (as 

will be confirmed in Fig. 5). Indeed, this is related to the FW-to-SW conversion observed in 

Fig. 3(c); a SW is generated in the process that a propagating FW interacts with conducting 

surfaces having small-scale length features. The magnitude of the sheath voltage depends on 

the contact angle and the rate of change of that angle along the sheath surface. Again, these 

results are consistent with earlier 1D work.20,32 On the other hand, direct magnetically 

connected sheaths near 90 and 270 degrees likely give rise to the “plateau” of the sheath 

voltage (see Figs. 3(b) and 4(a)). 

Figure 5 shows the variations of the real part of yE  and nb  along the sheath 

surface with enlargement for the limiter region; the profiles of these two quantities are 

compared for the case with m 0p h  and the case with m 03.0p h  (i.e., the base case). 
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These plots show that (i) the field strength of the incoming FW in the absence of the limiter 

protrusion is a few kV/m as a whole (see Fig. 5(a)); (ii) the presence of the limiter protrusion 

dramatically increases both  yERe  and nb  (see Fig. 5(b)); and (iii) the sheath due to the 

FW-to-SW conversion is formed where nb  changes rapidly (also, see Fig. 5(b)). The point 

(iii) above is associated with the distribution of ||E  near the edge of the limiter protrusion in 

Fig. 3(c); although not shown here, the maximum value of  ||Re E  in the range of 

 220140   for m 0p h  is about 0.4 kV/m, while the maximum value of  ||Re E  in the 

same range for m 03.0p h  is about 2.2 kV/m at 164 . Thus, some of the yE  increase 

in the presence of the limiter protrusion could be due to the SW that is generated. The electric 

field strength shown in these figures is similar to that for the Alcator C-Mod experiment (i.e., 

E  is on the order of a few kV/m), and the computed sheath voltage is similar to the 

experimental measurements (100 V or more).13 In addition, these numerical results confirm 

earlier 1D modeling which could only represent the limiter protrusion using an effective 

k-vector along the sheath surface.20 

 

C. Dependence on zk  

To investigate the dependence of the sheath on zk , calculations are performed with 

only the value of zk  varied from the base case parameters. Here, we consider four different 
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values of zk : 1m 7.2   (the base case), 1m 4.5  , 1m 1.8  , and 1m 8.10  . Figure 6 shows the 

variations of the instantaneous RF sheath voltage along the sheath surface for the four 

different values of zk . It is seen that the sheath voltage dramatically reduces for large values 

of zk . This is consistent with smaller electric fields present in the boundary, which is 

confirmed in Fig. 7 showing the filled contour plot of the real part of yE  for 1m 8.10 zk . 

Here, a blue, closed curve, which denotes the locations where a cutoff of the FW occurs, is 

also superimposed on the plot. Compared to the corresponding plot for the base case (shown 

in Fig. 3(a)), it is evident for 1m 8.10 zk  that the FW is evanescent in the edge of the 

domain and does not reach the limiter protrusion. In fact, reduced sheath power dissipation 

and impurity production are frequently observed experimentally as zk  is increased.29,38-41 

The FW cutoff condition relevant in this analysis (i.e., for 12
|| n ) is given by 

  ,1
2

2
||

2

ii

2
pi


 kc




  )15(  

where pi  is the ion plasma frequency, and i  is the ion cyclotron frequency (see 

Appendix A for details). We can evaluate this condition in a slab model, approximating the 

component of k , the wave vector, in the poloidal direction by antl  and taking the edge 

magnetic field in the poloidal direction as RqaBB azp . In this approximation, we find that 

the FW in the base case ( 1m 7.2 zk ) has one branch that is not cut off while for the 

enhanced zk  case ( 1m 8.10 zk ) all branches ( antp lk  ) of the FW are cut off for 
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318
ei m 107.2  nn . This explains the difference in the wave propagation in the boundary. 

Based on the cutoff expression, we note that similar cutoff modifications can be 

achieved by changing the plasma density and the background magnetic field. Such examples 

will not be shown explicitly in this paper for reasons of brevity. The importance of the cutoff 

condition for FW propagation in the boundary region has been noted in a series of 

experimental and theoretical papers on NSTX.11,16,29 In particular, recent modeling of wave 

propagation using the AORSA code suggests strong boundary interaction and power loss in 

the case where the FW propagates in the SOL.16 In that work, sheath BCs were not employed, 

and power loss was modeling by artificial dissipation. Here we extend that treatment (in a 

simplified RF wave and geometry model) to include explicitly the FW-to-SW conversion 

effect and the resulting sheath interactions. 

 

D. Dependence on plasma density 

In order to assess potential SW-sheath interactions, the dependence of the sheath on 

the edge plasma density is investigated by varying only the edge electron density p
en  

from the base case parameters. Here, we consider four different values of p
en : 

317 m 104  , 317 m 106  , 317 m 108  , and 318 m 10   (the base case). Figure 8(a) shows the 

variations of the instantaneous RF sheath voltage along the sheath surface for the four 
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different values of p
en  (note that en  in the legend of the graph means p

en  to be 

precise). Also, Fig. 8(b) shows the filled contour plot of the real part of ||E  for 

317
e m 104

p




n . From these plots, it is noticed that the direct magnetically connected 

sheaths are enhanced in the boundary region for the low edge plasma density; even though 

there are no small-scale variations along the sheath surface, the direct magnetically connected 

sheaths yield the sheath voltage of more than 300 V for 317
e m 104

p




n . Thus, for these 

parameters the SW-sheath interaction is much stronger than the FW-sheath interaction. 

Considering that the FW-sheath interaction is noticeable only when the FW-to-“SW” 

conversion occurs in the present numerical analysis, having sufficiently small ||E  on the 

sheath is an important requirement to make the RF sheath voltage small.  Recall that the 

sheath width and self-consistent sheath voltage in Eqs. (3) and (5) depend strongly on 

bs  ||||0 EDn   in general since a relative ordering of the dielectric tensor components is 

  ,||  (see Ref. 34). 

To better understand the results in Fig. 8, it is necessary to examine the properties of 

the SW under the given conditions; specifically, we need to calculate the evanescence rate 

along the magnetic field lines on the cross-section for specified zk . To achieve this, let us 

temporarily define   and   coordinates such that   and   are perpendicular to and 

along the magnetic flux surfaces, respectively in the x - y  plane. Then, a rough estimate for 
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k  (the wave vector component in the direction described above; the same shall apply to 

k  later) is   lk   where l  is the radial scale length of the ||E  structure measured from 

Fig. 8(b), which is estimated as m 02.0l . The SW dispersion relation is 











 


||

2
2
|| 1


 n

n  )16(  

(where 2
||

22 nnn  ; see Appendix A for the definitions of 2n  and 2
||n ) and then using 

zz kbkbk  ||  (where zBBb p  and   2121 bbz  ); see subsection C), one can solve for 

k . Using base case parameters, except for the plasma density en  which is varied, it is found 

that the plasma density at which the value of  kIm  starts to grow is close to the lower 

hybrid plasma density, 317
e m 105.2 n , obtained by simply assuming 0  in a slab 

model. For the range of edge plasma densities illustrated, there is no SW propagation in the 

boundary region but there is always FW propagation (again, see subsection C). On the other 

hand, although the SW fields are evanescent, the rate of evanescence is reduced at low plasma 

density as the lower hybrid resonance density is approached, enhancing the direct 

magnetically connected sheaths as seen in Fig. 8(a). 

In Fig. 8(b), a relatively large ||E  due to the FW-to-SW conversion, which is 

associated with the sheath voltage of 200 V around 160  in Fig. 8(a), is also observed 

near the edge of the limiter protrusion. Therefore, the present calculation illustrates that two 

types of sheaths can be present in the same experiment and can show different dependencies 
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on parameters – not only plasma parameters but also geometric and antenna design 

parameters. A recent comprehensive study13 of the plasma potential distribution on Alcator 

C-Mod supports this picture of having multiple types of sheaths simultaneously in the same 

experiment. This can complicate the experimental diagnosis and optimization of RF 

performance. 

 

E. Dependence on central absorption 

Lastly, the dependence of the sheath on the central absorption (i.e., absorption in the 

core plasma) is investigated by varying only the maximum artificial frequency 0i  from its 

base case value. Here, we compare the results using two different values of 0i : 2.0  (the 

base case) and 4.0 . Figure 9 shows the comparison of the variations of the instantaneous 

RF sheath voltage and the real part of yE  along the sheath surface for the two cases. It is 

seen, as expected, that stronger central absorption (with increased 0i ) reduces the sheath 

voltage at the edge of the limiter protrusion and the electric field on the boundary. This result 

is good for ICRF operation in the full field ITER experiments where central absorption is 

expected to be excellent. However, it should be noted that the significant interactions between 

the RF waves and the conducting wall may occur in the start-up phase of ITER (with 

magnetic field reduced by half) where the central absorption is expected to be poor. The 
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increase of RF edge interactions in cases of poor single pass absorption has been seen in 

experiments.2,24,30 From the plots shown in Fig. 9, it is noticed that the sheath voltage shV  

changes by a larger factor compared to the electric field  yERe  when the maximum 

artificial frequency is reduced from 4.0  to 2.0 . This is due to the nonlinear dependence 

of shV  on nD  (see Eqs. (3) and (5)).   

The nonlinearity referred to in the preceding discussion has been seen in other studies 

to play an important role in RF-sheath interactions. In particular, it is associated with a strong 

enhancement of the RF sheath voltage near conditions of sheath-plasma resonance.18-21,32,33 

 

 

IV. CONCLUSIONS 

In this paper, we have studied the interactions between propagating FWs and RF 

sheaths in a non-circular poloidal cross-section of a tokamak under conditions similar to those 

in Alcator C-Mod tokamak experiments. The parameters were chosen such that SWs are 

always evanescent in the plasma. The main result of the paper is the observation of “far-field” 

sheaths generated by the FW-to-SW conversion process in a tokamak-like geometry, and the 

dependencies of such sheath on important parameters. To our knowledge, this is the first time 

that far-field sheaths have been demonstrated in a global ICRF code employing sheath BCs 
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and non-trivial geometry. 

The study here highlights the enhancement of the sheath voltage due to the FW-to-SW 

conversion, which occurs when the contact angle between the magnetic field line and the 

conducting wall varies rapidly within a small length scale. The larger the degree of mismatch 

of the wall shape with flux surfaces and the rate of change of the contact angle, the larger the 

localized sheath voltage due to generation of a large electric field component parallel to the 

background magnetic field; then, at some point the sheath voltage grows much faster than the 

increase in the parallel electric field component due to the nonlinearity of the sheath width. 

Through this conversion process, it was demonstrated in the present numerical 

analysis that a sheath voltage of more than 100 V can be generated from a propagating FW 

with a field strength of a few kV/m. Considering that the inner wall areas of real tokamaks are 

not entirely flat due to the protrusion of hardware, there is a possibility that we could observe 

a relatively wide range of spots of high sheath voltage even far from the location of the 

antenna. The existence of large plasma potentials on surfaces not magnetically connected to 

the antennas due to fast waves encountering walls and limiters has been observed on Alcator 

C-Mod.13 This effect could be especially important for the start-up scenario of the ITER 

experiments where central absorption is expected, under standard ICRF scenarios, to be poor 

in association with the operation at half the nominal magnetic field strength. 
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In addition, the dependences of the RF sheaths on the toroidal wavenumber and the 

edge plasma density were also investigated. It was demonstrated in both cases that the 

variation in the propagation characteristics of fast and slow waves in plasma plays an 

important role in the increase or decrease of the local sheath voltage. For large values of the 

toroidal wavenumber, the sheath voltage generated through the FW-to-SW conversion was 

largely decreased due to the evanescence of FWs in the boundary region. On the other hand, 

another type of sheath emerged when decreasing the edge plasma density; this is called the 

direct magnetically connected sheath, which is formed by the interaction of a SW with the 

conducting wall. Even though a SW generated from the antenna is evanescent in the present 

analysis, the rate of SW evanescence becomes lower for smaller plasma density (but larger 

than lower hybrid plasma density). Thus, a relatively large electric field component parallel to 

the background magnetic field can still reach the boundary region. As a result, it was shown 

that the sheath voltage generated by this SW-sheath interaction becomes higher than that 

generated by the FW-to-SW conversion for a sufficiently small edge plasma density value. 

The next step in the development of the finite element code will be improvement of 

the sheath BC model by adding the sheath dissipation for which a nonlinear relation might 

need to be solved self-consistently. Once this implementation is successfully achieved, it is 

hoped that we can calculate the power density on “hot spots,” which is important to assess the 
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possibility of material damage. 
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APPENDIX A: RF DIELECTRIC RESPONSE WITH FRICTION 

In this appendix, we briefly demonstrate how the addition of the ad-hoc friction 

modifies the dielectric response, especially for the FW ICRF branch. First, the system of 

equations that must be solved takes the form of Maxwell’s equations (see Eq. (1)) and the 

species momentum equation described as 

  , i jjjjjj meZm vBvEv    )1A(  
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where the subscript j  denotes ion (i) or electron (e), jm  is the mass, jv  is the flow 

velocity, jZ  is the charge number of the species j , and   is the rate of frictional 

dissipation. A short calculation reveals that this friction formulation is equivalent to the 

complex mass formulation in which a complex mass is defined in the form  i1 jj mm  

with 0 ; and then, we identify   . Assuming a Fourier mode in space in Eq. (1), the 

FW dispersion relation is given by 

   ,222
||    nn  )2A(  

where bn ||n  and nn 2n , and n  is the index of refraction. Summing over species, 

dropping   for the electrons but retaining it for the ions, and taking 1i Z , the dielectric 

tensor components in Eq. (A2) are expressed as follows: 
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where jp  is the plasma frequency defined as   21

0
2

p jjj men   , jjj meBZ 0  (again, 

j  denotes i or e), and  iˆ  . Note that the expressions in Eq. (A3) are valid for the 

ICRF. From Eqs. (A2) and (A3), we conclude that the FWs are strongly damped spatially in 

the cold fluid plasma model when  ~ , i.e., ion friction is effective for FW damping. 

Conversely, it is straightforward to show that electron friction, or equivalently complex 

electron mass (not retained in Eq. (A3)), is ineffective in damping the ICRF FW; for 

 ~e   both friction and inertia are unimportant in the electron momentum equation. 
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APPENDIX B: ACCURACY IMPROVEMENT OF THE FINITE ELEMENT CODE 

In the previous version of the rfSOL code, the integrals appearing in the discretized 

Maxwell’s equation are approximately calculated by applying the element average to the 

Jacobian and contravariant base vectors in each nine-node element (see Ref. 42). This 

approximation is efficient only if a small amount of grid distortion is retained everywhere in 

the calculation domain; therefore, this method works well for the analysis of sheath-plasma 

interactions in a slab domain since all the quadrilateral nine-node elements can be rectangular. 

In the present numerical analysis, a large amount of grid distortion can locally occur as seen 

in Fig. 1(b), and thus, the element-average technique used in our previous work should cause 

a significant error in the numerical solution. For that reason, all the integrals in the discretized 

Maxwell’s equation are numerically calculated in this study using the three-point Gaussian 

quadrature rule for the integrations with respect to   and   ( 1 ,1   ). It has been 

confirmed that the modified rfSOL code is robust with respect to various kinds of grid 

distortion in the quasi-circular domain. 

The integrals which appear in the discretized sheath BC are also strictly calculated 

without the use of the element-average technique described in Ref. 37. To demonstrate this, 

the discretization procedure for the sheath BC is reviewed below. First of all, the sheath BC 
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shown in Eq. (2) is rewritten as follows: 

 ,tt EχsE   )1B(  
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Note that sh  and sh  are functions of   (the tangential direction with respect to the 

sheath surface and perpendicular to the z  direction) since De  and thC  vary along the 

sheath surface. Forming the inner product of Eq. (B1) with the weight function SW , and then 

integrating it over the sheath region SΓ  yields 

   .0d 
S

S
tt

S 
Γ

ΓEχsEW  )3B(  

In the present numerical analysis, the weight function and electric field are, respectively, 

defined as 

  ,
~ˆe ˆ SSiSSS

ii
zk

ii NN z WWW    )4B(  

   ,e ˆ  iSS tzk
jj

zN   EE  )5B(  

where S
iN  and S

jN  are the piecewise quadratic interpolation functions with respect to  , 

and the subscripts i  and j  denote the global node number on the domain of the surface 

SΓ . Here the summation convention applies to the subscripts i  and j , and the superscript S 

is attached to explicitly show that the quantity is positioned on SΓ . Considering that Eq. (B3) 
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needs to be satisfied for arbitrary weight functions, one gets 
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S
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Let us consider the discretization of the   component of Eq. (B6), i.e., 
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Assuming that s  and χ  are interpolated as kkN ss S  and SS
llN χχ  , respectively, using 

their nodal values ks  and S
lχ , and substituting Eq. (B5) into Eq. (B7), we obtain 
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The integrals in Eq. (B9) are rigorously calculated without the use of a numerical integration 

method. The quantity Sˆ
jE  needs to be expressed using Sˆ

xjE  and Sˆ
yjE  as 

,ˆˆˆ SSS
yjjyxjjxj EEE  eeee   )10B(  

where je  is the unit vector in the   direction at the node j . Then the expression of iG  is 

easily divided into real and imaginary parts as follows: 
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where the superscripts R and I denote the real and imaginary parts of the quantity, respectively. 

In the rfSOL code, a Newton-Raphson method is employed to solve the nonlinear system of 
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the discretized equations. Therefore, the derivative expressions of the discretized sheath BC 

with respect to the nodal values of the electric field components are required. For example, 

the derivative expression of  R
iG  with respect to  RSˆ

xmE  (where the subscript m  denotes the 

global node number) is given by 
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Note that the summation convention does not apply to the subscript m , and the relation 

between S
mχ  and S

mε , i.e., 

  S
,sh

3
,sh

S  mmmmm εχ    )14B(  

is employed to obtain Eq. (B12). Following the same procedure, one can obtain the derivative 

expressions of  R
iG  with respect to the other real and imaginary parts of the electric field 

components, and the derivatives of  I
iG . Although not shown in this appendix, one can also 

carry out the discretization of the z  component of Eq. (B6) and obtain its derivative 

expressions by following the procedure described above. 
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(a) 

 

(b) 

FIG. 1. Geometry of the calculation domain and the mesh used: (a) problem definition; and 

(b) variable mesh which consists of nine-node elements. The geometry corresponds 

approximately to the poloidal cross-section of a tokamak. 
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FIG. 2. The electron density profile for 318
e m 10

p



n  as a function of  . 

 

 

(a) 
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(b) 

 

(c) 

 

FIG. 3. (Color online) Filled contour plots of  yERe  (a),  ||Re E  (b) and its expanded 

view near the edge of the limiter protrusion (c) for the base case. Note that the FW-to-SW 

conversion occurs where nb  changes rapidly. 
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(a) 

 

(b) 

FIG. 4. (Color online) Instantaneous RF sheath voltage shV  vs. the poloidal angle   for 

four different heights of the limiter protrusion: (a) wide-range profiles; and (b) localized 

profiles at the edge of the limiter. The peak sheath voltage of about 115 V occurs for the case 

where m 03.0p h  (the base case) and decreases monotonically with decrease in ph . 
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(a) 

 

(b) 

 

FIG. 5. Plots of the real part of yE  and nb  as functions of the poloidal angle   for 

m 0p h  (a) and m 03.0p h  (the base case) (b). 
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(a) 

 

(b) 

FIG. 6. (Color online) Instantaneous RF sheath voltage shV  vs. the poloidal angle   for 

four different values of zk : (a) wide-range profiles; and (b) localized profiles at the edge of 

the limiter. The peak sheath voltage of about 115 V occurs for the case where 1m 7.2 zk  

(the base case) and decreases with increase in zk . 
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FIG. 7. (Color online) Filled contour plot of  yERe  for the case of 1m 8.10 zk . Here, the 

blue line denotes the FW cutoff. Notice that the FW evanescent electric fields do not reach the 

limiter protrusion. 
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(a) 

 

(b) 

FIG. 8. (Color online) (a) Instantaneous RF sheath voltage shV  vs. the poloidal angle   for 

four different values of the edge plasma density p
en ; and (b) filled contour plot of  ||Re E  

for the case of 317
e m 104

p




n . The peak sheath voltage of about 330 V occurs for the 

case where 317
e m 104

p




n  and decreases with increase in p
en . 
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(a) 

 

(b) 

 

FIG. 9. Comparison of the instantaneous RF sheath voltage shV  (a) and the real part of yE  

(b) as functions of the poloidal angle   along the sheath surface between the cases of 

 2.00i   (the base case) and  4.00i  . 
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