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Abstract 

Recent measurements show that non-diffusive, intermittent transport of particles 

can play a major role in the scrape-off-layer (SOL) of fusion experiments. A possible 

mechanism for fast convective plasma transport is related to the plasma filaments or 

�blobs� observed in the SOL with fast cameras and probes. In this paper, physical 

arguments suggesting the importance of blob transport [S. I. Krasheninnikov, Physics 

Letters A 283, 368 (2001)]  have been extended by calculations using a three-field fluid 

model, treating the blobs as coherent propagating structures. The properties of density, 

temperature and vorticity blobs, and methods of averaging over ensembles of blobs to get 

the average SOL profiles, are illustrated. The role of ionization of background neutrals in 

sustaining the density blob transport is also discussed. Many qualitative features of the 

experiments, such as relatively flat density profiles and transport coefficients increasing 

toward the wall, are shown to emerge naturally from the blob transport paradigm. 
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I. Introduction 

Recently a new picture of transport in the edge and scrape-off-layer (SOL) region 

has begun to emerge from experiments and theory, which has the following elements: 

(1) Experimental data from tokamaks
1-5

 and other plasma devices
6
 suggests that 

radial transport in the SOL has a two-scale structure: the measured SOL density profiles 

have an exponential decay near the last closed flux surface (LCFS) followed by an outer 

�shoulder� region in which the profile is relatively flat. The effective diffusion coefficient 

inferred from these profiles increases towards the wall, suggesting that the transport is 

primarily convective in the �far SOL� away from the LCFS. In several tokamaks, this 

convective transport is rapid enough that the particle fueling is dominated by recycling 

from the wall, rather than from the divertor, implying that the idealized picture of divertor 

operation may need to be modified.2  

(2)  The SOL density and particle flux tend to be intermittent in space and in time. 

This behavior is seen in nonlinear turbulence codes (e.g. see Refs. 7-9) and in 

experiments10-16 using probes and turbulence imaging diagnostics. 

(3) Turbulence simulation codes7-9 and diagnostics10-16 show the existence of 

coherent structures (�radial streamers�, �filaments� and �blobs�) in the edge and SOL 

plasmas in the strongly turbulent regime. These structures are more localized 

perpendicular to the magnetic field B than along it, and sometimes involve radial 

propagation and transport of particles across the field.  

It has been suggested
17

 that these three properties are all related, viz. that the 

rapid, intermittent convection of particles can be explained by the turbulent formation and 

radial propagation of high density plasma blobs. The basic idea is the following. Consider 

a coherent structure with a higher density than the surrounding plasma, which is localized 

in the radial-poloidal plane perpendicular to B but is extended along the field lines. From 

the three-dimensional point of view, this structure looks like a filament; indeed, glowing 



 

 3

filaments have been observed in the SOL of Spherical Torus experiments.14,15 In the 

two-dimensional cross-section normal to B, these structures look like �blobs� of excess 

density, and we will adopt this terminology in the present paper. In the presence of a 

charge-dependent drift (e.g. induced by the curvature or centrifugal force), the blob 

becomes polarized and an electric field forms due to the effective �sheath resistivity�.
18

 

The resulting E ´ B drift moves the blobs to the outer wall. 

In the present paper, we extend the physical arguments of Ref. 17 by calculations 

using a three-field (density, temperature, potential) Braginskii fluid model. Here, we 

ignore the turbulent origin of the blobs and treat them simply as coherent propagating 

structures. Moreover, for most of the paper we limit the discussion to the far SOL region 

in which the diffusive background density is negligible and treat the blobs as isolated and 

non-interacting. In this model the local density, temperature and vorticity are intermittent 

in space and time, and radial transport is inherently convective. The existence of 

relatively flat density profiles extending to the wall, and effective transport coefficients 

increasing toward the wall, emerge naturally from the blob transport paradigm, 

independent of the details of the blob creation. Finally, if the blobs reach the wall before 

decaying, the resulting SOL equilibrium depends on wall recycling and ionization, and 

there is a minimum plasma flux required to sustain the equilibrium. All of these features 

of the model are in qualitative agreement with experiments. 

The plan of this paper is the following. In Sec. II we describe the approximations 

and equations in the model. In Sec. III, the properties of single blobs of density, 

temperature and vorticity blobs are elucidated, the validity conditions of the model are 

examined, and the physical picture of blob transport is summarized. In Sec. IV, we 

discuss methods of averaging over the size distribution of an ensemble of blobs to get the 

average SOL profiles. The role of ionization of background neutrals in sustaining the 

density blob transport is discussed in Sec. V. A summary and discussion of the blob 

model is given in Sec. VI.  Appendix A discusses the generalization of the blob model to 
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include a sheared flow uy(x). Appendix B gives an analytic criterion for the boundary 

between the large and small-blob transport regimes for the special case of a power-law 

distribution of blob radii. 

II. The Model 

As described in the previous section, the physical picture emerging from many 

experiments is that the SOL has two regions. The first region, located within one 

exponential density decay length of the LCFS has the following properties: the density 

profile is determined by balancing radial diffusion from the core with parallel particle 

losses to the sheaths, neutral particle effects are usually not dominant, and the X-point (if 

there is a separatrix) can give significant variation along B. The blobs are created in this 

region, probably by turbulent processes or avalanches19,20. The creation process is not 

yet understood and is outside the scope of the present paper. In the second region (the far 

SOL), we assume that the profiles are dominated by blob convection, so that the detailed 

transport of particles, energy and vorticity is intermittent in space and in time. Neutrals 

can be important in this outer region, and the profile shape depends on both the blob 

distribution and on neutral ionization, which can sustain the blob transport. In this outer 

region, spatial variation parallel to B will be neglected. The model described in this 

section applies mainly in the outer SOL region. 

We employ a simple set of equations that allows a solution for SOL blobs with 

local concentrations of density, temperature or vorticity. The model consists of the 

following vorticity, continuity and temperature equations: 

 ,p
B
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where d/dt = ¶/¶t + vE � Ñ,  vE = (c/B) b ´ Ñ^F, B = Bb is the magnetic field, k = b �Ñb 

is the magnetic curvature, J|| is the current density and u|| is the mass flow velocity  

parallel to B, n = ne = ni is the particle density, p = n(Te + Ti) and pe = nTe are the total 

and electron pressures, respectively, k|| is the parallel heat conductivity, x = n0 ásvñi is the 

neutral particle ionization rate and n0 is the neutral density, and (3/2)Ei is the total energy 

cost per ionization (including losses from non-ionizing collisions and the energy cost of 

heating the ionized electron to the temperature Te). All other symbols have their usual 

meanings. The derivation of the curvature term in Eq. (1) uses the approximation J � Ñp = 

0, which implies b � Ñp ´ Ñ(ln B) = b � Ñp ´ k, so that the factor of 2 in Eq. (1) accounts 

for both the ÑB and curvature drifts. We assume Te >> Ti for simplicity and have 

neglected a number of small terms on the right-hand sides (rhs) of Eqs. (2) and (3) that 

are higher order in the small parameters defined subsequently. None of these assumptions 

is essential, but they simplify the presentation. For typical parameters, the parallel heat 

diffusion term µ k|| dominates the temperature equation and forces Te to be nearly 

constant along the field lines. 

These equations can be simplified by integrating along the field lines in the limit 

where all quantities are assumed to be constant along B. The terms involving parallel 

derivatives are evaluated using the boundary conditions (BCs) that |v||| = cs at the sheath 

entrance and that J|| is matched to the sheath current: 
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where cs = (Te/mi)
1/2 is the sound speed and ve = (Te/me)

1/2 is the electron thermal 

speed. Each field line is assumed to terminate at each end in grounded conducting plates 
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(no bias potential), and n is defined to be the unit vector normal to the conducting plate 

and pointing into the plasma.  

Carrying out the integration along the field line and converting to dimensionless 

form, the model equations become 

 

,p2e1nT

,p2e1nT
dt

d
n

T/2/1

T/2/12
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ù
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 0n)T(
dt

dn 2/1
=x-a+   , (6) 

 0ET
dt

dT
i

2/3
T =x+a+   , (7) 

where d/dt = ¶/¶t + b ´ Ñ^F  � Ñ,  u = (mi/2pme)
1/2, a = 2rs/L|| , aT = a SE, and SE is 

the sheath energy transmission coefficient. The parameter a  measures the net parallel 

current into the plates, aT specifies the energy loss due to parallel flow to the plates, and 

the term x Ei represents the ionization energy cost. For most of the discussion, we will 

neglect the ionization term and treat a and aT as constants. In the second form of the 

vorticity equation, the rhs was rewritten using the substitution 

 j+F=F B   , (8) 

where the Bohm potential is defined by FB º T ln u » 3T. In the limit where one-

dimensional sheath physics dominates Eq. (5), the potential is given by F = FB, so that 

j represents the contribution of two-dimensional physics (convection, turbulence) to the 

potential. 

In these equations, we have normalized times to Wi
-1, length scales to rs, and 

other quantities to reference values (e.g. separatrix values ns and Tes). Specifically, we let 

Wi dt ® dt, x/Wi ®  x, rsÑ ® Ñ, rsk ® k, eF/Tes ® F, v/cs ® v, n/ns ® n, Te/Tes 



 

 7

®  T, Ei/Tes ®  Ei, p/(nsTes) ®  p, and J/(nsecs) ® J, where Wi = eB/mic is the ion 

cyclotron frequency and rs = cs/Wi is the (constant) gyroradius based on cs = (Tes/mi)
1/2.  

Since the plasma filaments are assumed to be localized perpendicular to the 

magnetic field, we can use a slab model with orthogonal coordinates {x, y, z} such that 

the x coordinate is taken in the direction of the major radius and the z coordinate is taken 

along the magnetic field. For the remainder of this paper, the coordinates are assumed to 

be dimensionless, normalized to rs. The dimensionless curvature can be written as k = 

-(rs/R) êx and 2b ´ k � Ñ = -b Ñy, where b = 2rs/R is the parameter measuring the 

strength of the curvature drift. We let x > 0 correspond to the SOL, so that motion in the 

positive x direction is outwards towards the wall.  

Finally, it is convenient to transform into the moving frame of the blob. This 

transformation is given by d/dt ® ¶/¶t + b ´ Ñ^F � Ñ - u � Ñ, where u is the constant 

velocity of the blob in the lab frame to be determined subsequently by the solution of the 

equations.  

Collecting all of these results, we obtain the final form of Eq. (5): 

  )Tn(
n

e1T
dt

d
y

T/2/12
Ñ

b
-úû

ù
êë
é -a=FÑ

j-
^   , (9) 

 .)u()u(
tdt

d
xxyyyx Ñ+FÑ-Ñ-FÑ+

¶
¶

=  (10) 

To summarize this section, the fundamental equations of our blob model are Eqs. 

(6)-(10). The small parameters in this problem are a ~ b ~ rs/R, and Ñ^ ~ rs/rb, where rs 

is the gyroradius, R is the major radius of the tokamak, and rb is a typical blob radius. In 

the next section, we carry out a solution of these equations by expanding in the small 

parameters. 
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III. Single Blob Properties 

We first consider the properties of isolated blobs, starting with the simple physics 

of particle transport and then generalizing to obtain a unified picture of density, 

temperature and vorticity blobs. 

A. Density Blobs 

First, we consider the case where the vorticity term on the lhs of Eq. (9) is 

negligible. The localized solutions of Eqs. (6), (9) and (10) can be interpreted as 

propagating blobs of enhanced density. To make the analysis as transparent as possible, 

we assume here that T is constant in time and space (T ® 1) and expand the sheath term 

in Eq. (9) in the limit j << 1. The resulting equations are: 

 0n
n

y =Ñ
b

-ja   , (11) 

 0n)(
dt

dn
=x-a+ . (12) 

with d/dt given by Eq. (10). 

1. Solution in Cartesian Coordinates 

First, we consider the problem in the local SOL coordinates, assuming a separable 

solution of the form 

 
t

e)y(g)x(f)t,y,x(n
g-

=   , (13) 

where g = a - x. With this ansatz, Eqs. (11) and (12) reduce to 

 
g

)y(g¢

a
b

=j   , (14) 

 0n)u(n)u( xxyyyx =Ñ+FÑ-Ñ-FÑ . (15) 

Since Eq. (14) implies Ñxj = 0, the solution of Eq. (15) yields ux = -ÑyF and uy = 

ÑxFB = 0 for constant temperature. With j given by Eq. (14), we have that (b/a) (g¢/g)¢ = 
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-ux, which is constant in our frame transformation. Integrating gives a Gaussian solution, 

g(y) = nb exp[-(y2/2yb
2)], and we find that  

 0u,
y

1
u y2

b

x =
a
b

=     , (16) 

for any f(x). [For the special case f = const., one obtains a radial streamer propagating 

outwards in x.]  Note that ux is constant in space for constant yb. Also note that the 

neglect of the vorticity term on the lhs of Eq. (9) poses no restriction on this solution 

which has F µ y and Ñ^
2F = 0. 

This simple solution has a number of interesting physical properties. The density 

blob decays on a time scale tn =1/g = 1/(a-x), which represents a balance between 

particles lost by sonic flow to the plates (the a term) and resupplied by ionization (the x 

term). A steady state can be obtained if the ionization is fast enough (x = a). A potential 

F(y) is formed because of the curvature-drift-induced charge separation in the blob 

(µ b/yb2). This charge polarization is inhibited by the parallel loss of particles (µ a). The 

associated electric field Ey gives a radial drift ux of the blob outwards across the SOL, 

and the drift is faster for smaller blobs (ux µ 1/yb
2). Pushing fluid theory to the limit, we 

find that for blobs of order the gyroradius (yb ~ 1) the radial velocity is of order the sound 

speed (ux ~ 1)! 

2. Solution in Cylindrical Coordinates 

A different point of view than in the previous section, which is perhaps more 

intuitive in the case where vorticity plays a role, is to think of a plasma filament as having 

approximate cylindrical symmetry about a magnetic field line. To pursue this line of 

thought, we introduce cylindrical blob coordinates (r, q) defined by x = r cos q, y = r sin 

q. We emphasize that these coordinates are relative to the blob axis and defined in the 

moving blob frame; they do not refer to the magnetic axis of the torus.  
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One can find solutions to Eqs. (11) and (12) in this cyclindrical coordinate system. 

Again, we neglect the vorticity term, assume constant temperature (T = 1) and start with 

the ansatz 

 

,e),r()t,,r(

,e)r(n)t,r(n

t

t

g-

g-

qj=qj

=
   (17) 

where g = a - x.  Substituting this ansatz into Eqs. (11) and (12) yields  
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Combining these equations determines the drift velocity to order 1/rb 

 0u,)r(nln
rr

1
u yx =

¶
¶

a
b

-=   . (20) 

Thus, we recover an analogous solution to the one given in slab coordinates, 

except that now the blob is confined in the r direction and has cylindrical symmetry to 

lowest order. For the frame transformation ux = const., integrating Eq. (20) gives a 

Gaussian density profile, n(r) = nb exp[-(r2/2rb
2)], so that 

 0u,
r

1
u y2

b

x =
a
b

=     . (21) 

The same picture holds with rb taking the place of yb. Again, the smallest blobs 

move fastest in the x direction (i.e. outwards), reaching the sound speed for rb ~ 1.  Since 

Eq. (18) implies j ~ r sin q and hence Ñ^
2j = 0, one may in fact retain the vorticity term 

in Eq. (9) but it has no effect. With zero vorticity, the model equations do not set a limit 

on the minimum size of the density blobs, other than the condition for the validity of fluid 
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theory itself (rb > 1). As before, the density blobs can be maintained in steady-state 

(g = 0) by ionization.  

If we assume that an ensemble of  blobs of size rb is responsible for the SOL 

density, one can estimate the SOL width (or radial scale length) from this model by 

computing the distance the blobs travel before decaying, Lnx » uxtn = (b/a)/[(a-x)rb
2]. 

Note that the SOL density profile flattens for small blobs (rb ® 0) or for strong ionization 

(x ® a). 

So far, we have assumed a constant temperature, T(x) = 1, and neglected any 

other mechanism for producing a �poloidal� velocity uy. This solution can be extended to 

include a sheared uy(x) component of the blob velocity with scale length L larger than a 

blob size (L >> rb), as discussed in Appendix A. The sheared velocity could be produced 

by biasing the divertor end plates or by the effect of a radial temperature gradient, T = 

T(x). In the Appendix, we show that the sheared uy(x) can significantly distort the blob 

shape, but the radial velocity ux is unaffected by general velocity shear. However, there 

are two effects which can slow the radial propagation of the blobs. First, when T(x) is 

included in the analysis, one finds that ux µ [T(x)]3/2 and uy µ -y ¶x [T(x)]3/2, so the 

radial velocity of the blob is reduced and the blob is stretched in y as it propagates down 

the temperature gradient in the SOL. Another effect which can reduce ux is the averaging 

over the spatial variation of the curvature required for poloidally-extended blobs. These 

effects are mentioned here for completeness, but in the rest of the paper we restrict the 

discussion to the situation described in this section in which ux = constant and uy = 0. 

Returning to the main line of argument, we have shown that density blob 

solutions exist with either rectangular or cylindrical symmetry. In the latter case, it would 

be more satisfying on physical grounds if the assumption of cylindrical symmetry were 

justified by strong rotation of the blob around its axis (vorticity), although it is not 

necessary for the mathematical consistency of the solution. In the next section, we 
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generalize the discussion by looking for solutions in which the vorticity is large and in 

which both the vorticity and temperature are time dependent. 

B. Temperature and Vorticity Blobs 

If the blobs are formed by some turbulent process ejecting material from inside 

the separatrix into the SOL, it is likely that the blobs will not only have a density higher 

than the ambient SOL density, but also a higher temperature and vorticity as well. To 

describe this situation, we solve the full set of Eqs. (6)-(10). In this section, we will focus 

the discussion on spatial variation of the density and vorticity on the scale of the blob size 

rb and neglect spatial variation on the longer scale length of the SOL profiles.  

There are two contributions to the electrostatic potential [see Eq. (8)]. As a result 

of the sheath BCs in the SOL, there is the Bohm sheath potential FB » 3T, which arises 

to confine the electrons streaming along the field lines and to ensure quasineutrality of 

the SOL plasma. If the blob has a higher temperature than its surroundings, FB(r) will be 

a decreasing function of the blob radius and will generate vorticity. Thus, blob 

temperature is one possible mechanism of symmetrizing the blob. Other sources of 

vorticity in the initial blob formation process are represented in Eq. (8) by the potential j. 

We will show that these two contributions to the vorticity decay in time by different 

physical effects. 

We restrict the present analysis to the case of cylindrically-symmetric density, 

temperature and potentials, so that the convective terms in d/dt vanish. To permit an 

analytic solution for the time dependence of these fields, we treat T(r) = T0 as spatially 

constant in the blob (so that the blob size is determined by the density profile) and neglect 

the effect of ionization.  

Assuming separable solutions in r and t, one can then integrate Eqs. (6) and (7) in 

time to obtain the following results: 
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where aT = a SE and tT = 2/(aT T0
1/2) is the temperature decay time.  Here T0 denotes 

the temperature of the blob as it detaches from the LCFS at t = 0. Note that the blob 

density and temperature do not decay exponentially in time, but decay by power laws 

because of the T dependence of the parallel loss terms in Eqs. (6) and (7). Since the 

density exponent 2a/aT  = 2/SE << 1 is typically much smaller than the temperature 

exponent, the temperature decays more rapidly than the density. It is straightforward to 

show that the density decays exponentially [µ exp(-aT0
1/2t)] in the limit where T is 

independent of time (aT ® 0). This limit with T0 = 1 was considered in Sec. III A and 

yields the density decay time gn = a in the absence of ionization. 

 The potential in the blob has the form  

 ,e)r()t()t,r(
t

0B
jg-

j+F=F    (23) 

where FB = 3 T0(t). The potential j0(r) in Eq. (23), which is of order (1/rb)0,  should not 

be confused with the potential j(r,q) in the previous section, which is of order (1/rb). The 

two potentials represent different physical processes acting on different time scales, as 

will become apparent. The Bohm sheath potential FB decays on the temperature time 

scale tT, which is much shorter than the density time scale tn » tTaT/a » 1/a because 

the parallel energy transport is much faster than the particle transport. This suggests that 

it is physically self-consistent to assume that the blob rotation due to  Er = -ÑrFB(r) 

symmetrizes the blob density [n(r,q) ® n(r)] on the fast time scale tT, although this effect 

has not been included in our analytic solution.  

The decay rate gj of the remaining contribution to the potential can be calculated 

as follows. We consider the limit in which j0 decays in time much faster that T, so that 

the temperature can be treated as a constant, which we set to unity. The validity condition 
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for neglecting the time dependence of T is arb
2 >> aT, as can be verified a posteriori, 

which implies rb
2 >> SE. In this limit and using the assumption of cylindrical symmetry, 

the lowest order part of Eq. (9) [neglecting the small terms proportional to b]  reduces to 

 úû
ù

êë
é -a=jÑ

¶
¶ j-

^ e1
t

2
  , (24) 

where to simplify the notation we have suppressed the subscript on j0. If j is large, the 

exponential term in Eq. (24) can be neglected and this equation yields a linear decay of 

j with time. When the potential decays to the level that j << 1, one can expand the 

exponential factor so that the rhs of Eq. (24) equals aj. Defining k2 = a/gj one can put 

this equation in the form of a Bessel�s equation: 

 0k
r

r
rr

1 2 =j+j
¶
¶

¶
¶

  . (25) 

A particular solution to this equation is j ~ J0(kr); therefore, the general solution 

for j is given by  

 
2

k/t
0

0

e)kr(J)k(fkdk)t,r( a-
¥

ò=j   . (26) 

Setting t = 0 in Eq. (26) and using the Fourier-Bessel Theorem, one can derive the 

following identity for the Fourier-Bessel amplitude 

 )kr(J)0t,r(rdr)k(f 0
0

=jò=
¥

  . (27) 

As an example, consider a blob that has an initial Gaussian distribution in radius, i.e. 

j(r, t=0) = jb exp[-(r2/2rb
2)]. Carrying out the integral we find that f(k) = jb rb

2 

exp[-(k2rb
2/2)], so that for this case the general solution is 
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¥
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Note that j0 and its associated vorticity decay in time due to the parallel current flowing 

into the plates [the a term in Eq. (24)].  

The decay of j0 for a Gaussian vorticity blob is illustrated numerically in Fig. 1, 

where we have plotted j0 in Eq. (28) vs the normalized radius r = r/rb for three values of 

the scaled time, t = 2arb
2t = 0, 3 and 6.  Figure 1 shows that the radial scale of the 

potential decreases as time elapses. This illustrates that the decay rate for each Fourier-

Bessel component of j0 is related to its scale length, gj = a/k2, and for a Gaussian blob 

the decay rate is related to its size, gj ~ arb
2 [see Eq. (28)].  Thus, the potential j 

survives the longest in the smallest blobs, whereas the decay of the Bohm potential FB is 

independent of blob size. Finally, note that gj >> gn when rb >> 1, and the latter 

inequality is required for fluid theory to be valid. Thus, the potential j also helps to 

symmetrize the density blobs. 

In summary, there are two sources of blob vorticity which can cause blob 

azimuthal rotation and symmetrization of its density. There are independent mechanisms 

for the decay of each source of vorticity: the parallel flow of energy and its transmission 

through the sheath causes FB to decay in time on the temperature time scale tT, 

whereas the flow of parallel currents to the sheaths causes j to decay with a characteristic 

timescale of  tj » gj-1 = 1/arb
2.  Both of these times are shorter than the density decay 

time  tn » tTaT/a » 1/a, so that our assumption of cylindrically-symmetric density blobs 

seems justified in the presence of an initial source of vorticity. 

C. Physical Picture and Validity Conditions 

The results of the preceding sections can be combined to obtain a unified physical 

picture of non-interacting, propagating blobs that are created with an initial vorticity, 

temperature and density higher than the SOL background values. Our calculation has 

employed an expansion in the small parameter 1/rb with the vorticity and temperature 

physics described in order unity [Sec. III B] and the density physics emerging in order 
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1/rb [Sec. III A]. In this section, we summarize the resulting physical picture and the 

validity conditions for our analysis. These conditions make use of the results that the 

decay times of j, FB (and T), and n are approximately tj » 1/arb
2, tT » 1/aT, and 

tn » 1/(a - x), respectively, where we now re-introduce the effect of ionization (x = 

const. ¹ 0) for this heuristic discussion.   

As a result of its initial vorticity, Ñ^
2(j0 +FB), the spinning blob symmetrizes the 

density, n(r,q) ® n(r). For this to occur, the rotational time around its axis (eddy time) 

must be much less than the vorticity decay time for at least one of the two sources of 

vorticity, i.e. one of the following conditions must be satisfied: 

 B
2

bT0
4

b r,r F<<aj<<a   . (29) 

The validity condition for neglecting the higher order terms (~b) in our solution for the 

time dependence of j0 was 

 5
b

2ra<<b   . (30) 

The vorticity (and lowest order potential) decays away faster than the density if both of 

the following conditions are satisfied: 

 T
2

b ,r a<<x-aa<<x-a   . (31) 

In the absence of ionization (x = 0), the inequalities in Eq. (31) reduce to 1 << rb
2 and 1 

<< SE, respectively. 

 The strong rotation condition, Eq. (29), may not always be satisfied, but it is not 

essential for the main results of this paper pertaining to density blob transport. For typical 

parameters, Eq. (31) is always satisfied. When the initial potential has decayed to a 

sufficiently low value, the vorticity can be neglected in Eq. (9) and the simple density 

blob solution of Sec. III A is recovered. The condition for this is just the reverse of Eq. 

(29), viz.  



 

 17

 2
bTB

4
b0 r,r a<<Fa<<j   . (32) 

On the slower density time scale, the curvature drift in the y direction polarizes the blob 

by causing the electrons and ions to move in opposite directions. This charge separation 

creates a potential j(y) and electric field Ey, which in turn result in an E´B drift of the 

blob outwards in the x direction with a radial velocity that depends on the blob size, 

 
2

b

x
r

1
u

a
b

=     . (33) 

To make a significant contribution to the particle transport, the density blobs must 

propagate a significant distance in x before decaying. The minimum distance the blobs 

must propagate for the theory to make sense is one blob radius. This ensures that the 

creation region is separate from the region where one is calculating the transport. If the 

blobs decay before leaving the creation region, they do not contribute to the transport. 

The condition that each blob drift outwards a distance much greater than one blob radius 

rb before decaying is 
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Note that ionization can sustain the blob longer against the parallel loss of particles and 

thus allows larger blobs to contribute to transport. The outward propagation of Gaussian 

blobs of radius rb gives SOL density and temperature profiles with radial scale lengths 

Lnx = ux tn and LTx = ux tT given by  
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where the second form gives the dimensional scaling with t|| = L||/(2cs) and ti = 

1/(nn ásvñi). Note that either small blobs (rb ®  0) or the effects of ionization (a-x ®  0) 

can give flat density scale lengths. However, significant ionization can occur only if the 

electron temperature exceeds the ionization energy. This requires that the temperature 

profile be broad enough, viz. that LTx be comparable to the SOL width. The self-

consistent treatment of ionization in the blob model will be discussed further in Sec. V. 

Finally, we note that Eqs. (34) and (35) imply that the gradient scale lengths are long 

compared to the blob size, which is a necessary condition for the theory to make sense. 

 Taking into account all of these results, the validity conditions for the simple 

density blob model of Sec. III A can be summarized as  
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If Eq. (34) is satisfied, both j0 and FB decay more rapidly than the density and the 

inequalities in Eq. (36) involving these potentials are automatically satisfied on the slow 

time scale of the density blobs. For typical parameters (a ~ b ~ 10
-4

) and in the absence 

of ionization (x = 0), the remaining inequalities imply that the simple density blob theory 

is valid for rb > 10 and predicts transport from blobs in the range rb < 50, where we recall 

that rb is defined in units of rs. Larger size blobs can contribute to transport when 

sustained by ionization (x ¹ 0). 

The most interesting feature of the blob model is that the outward velocity and 

penetration length of a density blob depends on its size. Thus, a quantitative estimate of 

the SOL density and particle flux can only be obtained by taking an average over the size 

distribution of the ensemble of blobs. We turn to this question in the next section. 
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IV. Blob Ensemble Averaging 

A. Ensemble-Averaged Profiles 

We now consider an ensemble of blobs with a size distribution function f(rb), 

specifying the number of blobs whose radius lies in the range drb centered on rb. For 

simplicity, we assume that all blobs have the same amplitude, nb(r = 0) = nb0, 

independent of their cross-sectional area. The corresponding ensemble average is defined 

as 

 

ò

ò
=

max

max

r

1
bbb

r

1
bbb

)r(frdr

Q)r(frdr

Q   . (37) 

Here, the lower bound of integration is cut off at the gyroradius (rb = 1). The upper cut-

off is determined by the requirement that the blob move fast enough before decaying to 

contribute to transport, i.e. rmax = (b/agn)1/3 by Eq. (34). This cut-off can also be derived 

rigorously by carrying out the transformation from the lab frame to the blob frame of 

reference and requiring a convergent integral. Since the blobs are formed at or inside the 

separatrix (x = 0) and then propagate across the SOL, we evaluate rmax at x = 0 and hold 

it fixed as the blobs propagate through the SOL.  

By integrating over the ensemble of blobs, one can obtain expressions for the 

SOL density profile n(x), the outward plasma flux G(x), and other profiles. The size 

distribution of the blobs is regarded as input to the present theory and could be inferred 

from either turbulence simulations or experimental data. Although a formal derivation of 

the density and flux integrals has been carried out, here we give a heuristic one.  

We assume that the blobs are created by some turbulent process that is 

intermittent in both space and time and which ejects the blobs into the SOL. Let t be the 

ensemble-averaged time between the creation of consecutive blobs. We assume a 

separation of scales in which blobs created in a small region near the separatrix propagate 
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radially to the region near the wall which is �far away� compared to the size of even the 

largest blobs in the system, rmax << uxt.  

We define the average density n(x) and outward plasma flux G(x) by 

 )r(u)r,x(n)x(,)r,x(n)x(n bxbbbb =G=   , (38) 

where the ensemble average <�> was defined in Eq. (37), nb(x, rb) = N(x,rb)/Vb denotes 

the average density of particles in a single blob of radius rb centered at position x, N(x,rb) 

is the total number of particles in the blob, and Vb = rb L|| uxt is the effective volume 

swept out by the blob during the time t. The quantity N is calculated in terms of the 

�local� Gaussian blob density profile of Sec. III A, n(r) = nb0 exp[-(r2/2rb
2)], as follows 
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where ux = b/(a rb2) and the assumed separation of scales allows us to extend the limit of 

integration in r to infinity. The exponential factor takes into account the parallel decay of 

the particles (assuming that the blobs leave the separatrix x = 0 at t = 0 so that they pass 

the position x at time t = x/ux) and uses the notation g = gn = a - x. Combining all of 

these definitions and carrying out the integrals gives the following results for the density 

and flux profiles: 
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where m = ag/b. The expressions in Eqs. (40) and (41) were also obtained rigorously by 

carrying out the formal transformation from the lab frame to the blob frame of reference 

and defining appropriate spatial and time averages. Note that the exponent of rb in the 

density and flux integrals differ by a factor of 2 because of the form of ux in Eq. (33). 

B. Power-Law Distributions 

Given the ubiquitous occurrence of power law distributions in simulations of 

turbulence and in Self-Organized Criticality (SOC) models,19,20 it is interesting to 

evaluate the ensemble-averaged density and flux profiles in Eqs. (40) and (41) using a 

power law distribution of blob radii, 
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The density and flux profiles are then given by 
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Similarly, one can derive an ensemble-averaged radial scale length Lx(x) and an 

�effective diffusion coefficient� Deff(x), which are given by 
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Finally, note that these definitions yield the following expressions involving the 

ensemble-averaged radial velocity ux(x): 

 
)x(L

)x(D

)x(n

)x(
)x(u

x

eff
x =

G
=   , (45) 

which serves as a check on the self-consistency of our definitions. 

Sample density and flux profiles are shown in Fig. 2, where we plot the 

normalized profiles n(xn)/n(0) and G(xn)/ G(0) vs xn = x/rmax for p = 1 and p = 4. This 

plot corresponds to the parameters B = 30 kG, Te = 50 eV, R = 100 cm, L|| = 4pR, which 

imply a = 0.5 ´ 10-4 and b =  6.8 ´ 10-4. In this figure we consider the case without 

ionization (x = 0) in order to emphasize the effect of blob size on the profiles. For p = 1 

the large slow blobs dominate the transport. They do not penetrate very far before 

decaying due to parallel particle flow to the sheaths, yielding exponentially decaying 

profiles. For p = 4 the small fast blobs dominate the transport. Since the small blobs move 

faster, they can travel much farther before decaying and therefore produce flatter density 

and flux profiles, consistent with the estimate given in Eq. (35) from the single blob 

model.  Also note that the flux profile flattens faster (as a function of p) than the density 

profile, because it is weighted by the radial velocity.  The boundary p = pcrit between the 

two regimes illustrated in Fig. 2 can be estimated analytically for the power-law 

distribution of  blob radii, as discussed in Appendix B. 

The behavior in Fig. 2 is consistent with recent measurements on the Alcator C-

Mod tokamak.
21

 As discussed in Sec. I, C-Mod has observed flattened density profiles 

and large recycling near the wall in their �Main Chamber Recycling Regime�.
1,2

If one 

attempts to interpret such profiles in terms of a diffusive model, the effective diffusion 
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coefficient increases with x and becomes large near the wall. This behavior arises 

naturally in the blob model. The small fast blobs penetrate farther into the SOL than the 

large slow blobs, so that the ensemble-averaged ux(x) increases with distance into the 

SOL and the density profile flattens [Lx(x) increases], even in the absence of ionization 

and recycling. But Eq. (45) implies that Deff(x) = ux(x) Lx(x) so that the effective 

diffusion coefficient increases very rapidly with x in the blob model. This behavior is a 

simple consequence of the size-dependent velocity in Eq. (33). In the strong recycling 

regime, the ionization source also helps to broaden the density profile, as discussed in 

Sec. V. 

V. Role of Ionization  

There are two radial regions in the SOL in which ionization plays different roles: 

(1) near the separatrix the density profile is dominated by the balance of perpendicular 

transport with parallel flows; it decays exponentially because typically ionization of 

neutrals is not sufficient to compensate for the parallel losses (x << a); (2) near the wall 

the neutral density is larger than the plasma density and the plasma density profile is 

dominated by recycling and ionization, which can balance the parallel outflow of 

particles and lead to relatively flat density profiles.  

While not specific to blob theory, this picture of the outer SOL is enhanced when 

blobs are present. In Sec. III C we showed that ionization can enhance the SOL 

penetration of the density blobs and significantly increase Lnx. Since the source of 

neutrals is recycling at the wall, there is a synergy between blob propagation and 

recycling. The fast radial propagation of the small blobs flattens the density profile and 

increases the plasma density at the wall. This plasma flux to the wall in turn increases the 

recycling of neutrals, which increases the ionization source that sustains the blob 

transport. 
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To illustrate these points, we examine the equilibrium conditions at the wall, 

located at x = xw, using a simple model. We assume that there is a region near the wall of 

width Dx = xw - x0 in which both the plasma and neutral density profiles are flat. Here, 

x0 denotes the starting point of this inverval in which the profiles are flat. The assumption 

of constant density requires Dx << l0w = (v0/n0)w for self-consistency, where l0 is the 

neutral mean free path, v0 is the neutral thermal velocity, n0 = n<sv>i is the ion-neutral 

ionization frequency, <sv>i is the ionization rate, and the subscript w implies that the 

quantity is evaluated at the wall. For simplicity, we assume that the electron temperature 

T and ionization rate <sv>i are also constant in this narrow neutral layer and neglect the 

temperature equation. This is consistent if Dx << LTx [defined in Eq. (35)]. In order for 

ionization to occur, the electron temperature in this layer must exceed the ionization 

energy cost, Tw > Ei.  

The steady state condition (g = 0) that ionization balance the parallel flows in the 

region near the wall is 

 Sn w0w ºx=a    , (46) 

where S = <sv>i/(rs2cs) is the dimensionless ionization rate. The neutral density at the 

wall is given by the recycling condition 

 )x(Rvn wc0w0 G=    , (47) 

where Rc is the recycling coefficient. Combining these two equations gives the 

equilibrium condition 
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The equilibrium condition (48) places a constraint on the existence of the equilibrium 

solution. Since the ionization rate S(T) is a strong function of electron temperature, Eq. 

(48) determines the plasma flux to the wall, Gw = G(xw), required to sustain the 
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equilibrium for a given electron temperature T (or vice versa). For a given neutral 

species, the ionization rate S(T) is non-monotonic, becoming small for both T ® 0 and T 

® ¥ and having a maximum value Smax for some intermediate electron temperature. 

Thus, there is a minimum required flux, Gw,min, for Eq. (48) to have a solution. For Gw < 

Gw,min, an equilibrium solution does not exist and the plasma density will decay near the 

wall. The existence of a critical cross-field plasma flux to maintain the �Main Chamber 

Recycling Regime� was also noted in Ref. 2. 

This analysis illustrates the important result that if the flux Gw and temperature Tw 

in the far SOL exceed certain thresholds, one can obtain constant plasma density, neutral 

density and flux profiles from the blob model in the region near the wall. The density nw 

and flux Gw are obtained by evaluating the integrals in Eqs. (40) and (41) with g = 0, and 

the neutral density n0w = n0(xw) is obtained from the recycling condition, Eq. (47). The 

temperature Tw can be estimated from an integral analagous to Eq. (40) in which nb0 ®  

Tb0 and g ® gT ¹ 0.  A realistic treatment would take into account the spatial variation of 

n(x), n0(x) and T(x) (and hence <sv>i) across the SOL by a numerical solution of the 

coupled plasma density, neutral density and electron temperature equations, but would 

yield the same basic physics. 

VI. Summary and Discussion 

In this paper, we have examined the theory of non-interacting blobs in the absence 

of a background plasma (appropriate to the far SOL region) based on a simple three-field 

fluid model described in Sec. II. The blobs were treated as coherent propagating 

structures with local concentrations of density, temperature and vorticity. The physics of 

single blobs was investigated in Sec. III. It was shown that the vorticity symmetrizes the 

density and decays away before propagating a significant distance. The blob temperature 

also decays faster than its density, because parallel energy transport is faster than parallel 

particle transport. Also, ionization can partly counteract the parallel loss of particles, but 
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enhances the decay of the temperature. The density blobs convect plasma to the wall due 

to a charge separation driven by the curvature drift (in toroidal devices) or the centrifugal 

force (in rotating linear machines). This charge separation gives rise to an electrostatic 

potential j(y) and electric field Ey which causes an outward drift ux. The most important 

feature of the blob model is that ux is inversely proportional to the area of the blob (µ 

rb
2), so that smaller blobs propagate faster than larger ones. This sensitivity to the blob 

size requires that the average SOL profiles be defined in terms of an ensemble average 

over a blob size distribution function, as discussed in Sec. IV.   

The present analysis suggests that the propagation of density blobs17 is a possible 

explanation for the non-diffusive, intermittent SOL transport observed in many fusion 

experiments. Even the simple model used here has several properties (inherent to blob 

physics) that are in qualitative agreement with data for the �far SOL� in various 

experiments. These properties can be summarized as follows: 

(1) the local density, temperature and vorticity are intermittent in space and time (i.e. 

dn/n ~ 1); 

(2) the temperature and vorticity of the blobs decay in time faster than the density; 

(3) the radial transport of particles is convective, and the average radial velocity and 

effective diffusion coefficient increase towards the wall; 

(4) the average blob size decreases towards the wall; 

(5) the density and particle flux at the wall is finite, and the profiles are flat in some 

regimes; 

(6) the SOL equilibrium depends on wall recycling and ionization, and there is a 

minimum plasma flux to the wall required to sustain the equilibrium. 

In regard to the last point, we have noted in Sec. V that there is a synergy between the 

blob propagation and the recycling: the blobs increase the plasma flux to the wall, which 

increases the recycling; the recycling in turn increases the ionization that helps fuel the 
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blob particle transport to the wall. This reasoning suggests that neutral density should be 

an important parameter controlling the blob transport.  

 As a first attempt at a more quantitative theory, in Sec. IV B we considered power 

law blob-size distributions, f(rb) = 1/rb
p. We found that the large blobs dominate the 

density and flux profiles for p < pcrit and the small blobs dominate for p > pcrit, where 

pcrit = 2 for gn ¹ 0 in our normalization of the ensemble average, Eq. (37) [see Appendix 

B]. The SOL profiles are significantly flatter in the large-p limit because of the higher 

velocity of the smaller blobs. It would be interesting to do a statistical analysis of the 

results of experimental data and turbulence simulations to obtain the relevant power law 

distributions for the observed blobs. 

 A detailed discussion of experimental data is beyond the scope of this paper, but it 

should be pointed out that recent statistical analyses of turbulence data have some points 

of contact with the present model. SOL diagnostics on several experiments have 

measured statistically-rare large-amplitude events with long correlation times that are 

consistent with the existence of large-scale, spatially-coherent, radially-propagating 

structures.13,22,23 This behavior tends to be more pronounced in the far SOL region and 

at high plasma density. The propagating structures can be responsible for a significant 

fraction of the inferred radial particle and energy transport in the far SOL.13,22,23  

In the main body of the paper, some approximations were made which should be 

generalized for comparison with experiments. First, motion in the y direction was 

neglected by treating the temperature as spatially constant. Extension of the theory to 

include a sheared velocity component uy(x) and temperature gradient T(x) is discussed in 

Appendix A, where it is shown that a sheared uy(x) distorts the blob shape, but does not 

affect the radial velocity ux if T is constant in x. The constant-T approximation may be 

appropriate for the far SOL in the large convection limit. When T decreases with x, 

propagation to a cooler region can reduce ux and cause the blob to stretch in the y 

direction. It is also noted in Appendix A that geometric effects could affect the radial 
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velocity of blobs having large poloidal extent. Finally, in the present theory the density 

blob velocity ux depends on its spatial extent rb but is independent of its amplitude nb. 

This may be related to our neglect of a background density. One might expect nonlinear 

coupling of the blob to the background to affect its velocity of propagation across the 

SOL and introduce a dependence on nb. These effects should be included in a quantitative 

theory, but are outside the scope of the present paper. 

 More generally, the present work has not investigated the physics of blob 

creation, nor the explicit connection between the blobs and the saturated coherent 

structures observed in turbulence simulations and data. It is hoped that the results of this 

paper will motivate such studies and provide a framework for the analysis of 

experimental data. 
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Appendix A 

In this Appendix, we generalize the discussion in the main body of the paper to 

include a background temperature gradient T(x) and a sheared poloidal blob velocity, 

vy(x), as is sometimes observed in the experiments and simulations. An important 

question relevant to the radial transport is whether these physical effects modify the radial 

blob velocity vx. The notation in this Appendix is slightly modified from the main text: 

here, we use the dimensional form of the equations and v denotes the blob velocity. 

We employ the following ansatz for the blob velocity  

 vx = constant in space and time, (A1) 
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 )t,x(vv 0y =   . (A2) 

Here v0 denotes the total y velocity, including both a driven velocity component (e.g. due 

to biasing of divertor end plates) and the self-consistent response of the blob to the 

imposed flow, which is calculated below. Using the fact that E ´ B drifts give 

incompressible flow (Ñ � v » 0 neglecting the small curvature term) and working to 

lowest order in 1/rb, the density equation becomes 
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The solution to this equation is n = n(x¢,y¢), where x¢ and y¢ are the constants of motion 

obtained by solving the trajectory equations in the primed frame of reference 
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subject to the initial conditions 

 y)tt(y,x)tt(x ==¢¢==¢¢ . (A6) 

Setting t¢ = 0 without loss of generality, the solution to these equations is given by 

 tvxx x-=¢  , (A7) 
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This solution is valid for any function v0(x,t) and any choice of n(x¢,y¢).  

The Gaussian density blob solution of Sec. III A2 is recovered by choosing 
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and the potential j arising from the curvature-drift polarization of the blob [see Eq. (11)] 

is given by  
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Substituting Eq.(A9) into Eq. (A10), one obtains 
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and using Eqs. (A2) and (A11) we obtain the final form of the blob E ´ B drift velocity: 
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where w(x) = vy(t = 0) is the imposed y velocity and the second term in Eq. (A13) is the 

self-consistent response. Finally, note that Eq. (A9) implies that the centroid (xc, yc) of 

the blob (point of maximum density) is given by x¢ = 0 = y¢, and Eqs. (A7) - (A8) imply 

that xc = vx t,  yc = -h(x,t). 

 The general solution in Eqs. (A7) � (A13) has the following important property 

for any choice of v0(x,t). The assumption of spatially constant vx in Eq. (A1) requires 

constant temperature, because Eq. (A12) implies that vx µ T3/2. Thus, when T is 

independent of x, constant vx is compatible with a sheared vy(x).  This means that the 

poloidal velocity shear by itself cannot affect the radial velocity of the blobs, although it 

can greatly distort their shape. Experimental data suggests that T independent of x may be 

a good approximation in the far SOL where the blob transport dominates.  

 To illustrate another property of this solution, we consider the particular case  
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so that Eqs. (A8) and (A13) give 

 .
L

tv
1w)t(u,etw)t,x( xLtvx ÷

ø

ö
ç
è

æ
--==h

-
 (A15) 

The centroid position is then given by 

 
Ltv

cxc
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-== . (A16) 

Equation (A16) shows that the center of the blob moves with a constant vx but its velocity 

in the y direction changes sign for large t. The centroid position yc starts out at zero, 

moves down and then returns to zero as t ® ¥.  A corresponding plot of the entire blob 

shows that the blob elongates and distorts diagonally for small t, but returns to its initial 

circular shape at large t. What is depicted by this solution is that the blob eventually 

propagates in x to a region where the imposed vy and its shear are negligible compared to 

the flow from the self-consistent potential, which acts to restore the blob to its 

cylindrically symmetric form. This example illustrates that the type of complicated 

behavior observed in some simulations (e.g. blobs moving back and forth) can be 

recovered from this simple extension of our blob model. 

For completeness, we should mention that there are two situations in which vx 

may change as the blob propagates across the SOL. A perturbative calculation with T(x) 

= (1 � x/L �), where x/L is assumed small, suggests that the blobs slow down because vx 

µ T3/2 and that they elongate in the y direction. The latter result comes from Eqs. (A8) 

and (A13), since vx = vx(x) gives a term in vy = -y ¶xvx(x) with ¶x = ¶ /¶x. Thus, a 

temperature gradient can modify the radial blob velocity, but this is likely to be a small 

effect in the far SOL.  For blobs that have a large poloidal extent, another effect comes 

into play, viz. that the effective curvature driving the radial motion must be averaged 

poloidally and may vary radially, especially if the rotational transform is a strong 
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function of x due to the presence of an X-point.  These effects are outside the scope of the 

present paper. 

Appendix B 

Here, we derive an analytic condition for the boundary between the two transport 

regimes illustrated in Fig. 2 for the power-law blob size distribution f(rb) = 1/rb
p. It was 

shown in Fig. 2 that the main contributors to the particle transport depend on the power 

law exponent p: the transport is dominated by the large blobs for small p (yielding 

exponentially-decaying density and flux profiles) and by the small blobs for large p 

(giving flatter profiles).  

The critical exponent p = pcrit separating these two regimes can be determined by 

investigating the properties of the integrals in Eq. (43). The technique we use to 

determine pcrit is to calculate the functions n(p) and G(p) in the limit rmax ® ¥. If the 

large blobs dominate one of the integrals in Eq. (43), this integral will diverge in the limit 

rmax ® ¥, yielding a value of n or G that is either infinite or zero, depending on whether 

the singular integral is in the numerator or denominator. The largest value of p for which 

this behavior occurs is defined to be pcrit. On the other hand, if the integrals are all finite 

and non-zero as rmax ® ¥, we conclude that the small blobs gave the dominant 

contribution. 

The results of these calculations are summarized in Table 1 for the cases g = 0 and 

g ¹ 0. For g = 0, the integrals in the numerator and denominator of Eq. (43) yield simple 

polynomials in rmax. In the limit rmax ® ¥, this analytic result predicts an infinite density 

for p £ 5 and an infinite flux for p £ 3. The upper bound in each case is defined as the 

value of pcrit for the corresponding physical quantity, as shown in Table I. The large 

blobs dominate these integrals for p £ pcrit and should do so also in the more relevant 

physical limit where rmax is finite.  For g = 0 and p > pcrit, the density and flux are finite 
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as rmax ® ¥, and we conclude that the small blobs dominate the integrals (for all values 

of rmax).   

When g ¹ 0, the integrals in the numerators of the density and flux can be 

expressed in terms of Exponential Integrals as rmax ® ¥ and are always finite. The 

denominator is again a polynomial which diverges as rmax ® ¥ for p £  2 implying that 

the large blobs dominate the integral. In this limit the analytic result yields a vanishing 

density and radial flux. The absence of radial flux is consistent with the inequality given 

in Eq. (34).  For g ¹ 0, the limit rmax ® ¥ violates Eq. (34). The physical interpretation is 

that the large blobs do not have time to move radially before decaying, and thus their 

(dominant) contribution to the flux vanishes. For g ¹ 0 and p > 2, the smallest blobs 

dominate the SOL transport, yielding a finite density and flux.  

This analytic result may be of some guidance in interpreting experimental data or 

the results of turbulence simulations. It also makes a qualitative prediction. Comparing 

the two cases in Table I suggests that the large-blob transport regime can be extended by 

ionization (i.e. pcrit can be increased by decreasing the parallel loss rate g).  
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Table 1   Critical exponents for discriminating the two regimes of density and flux 

               (large blobs dominate for p £ pcrit, small blobs for p > pcrit)

 

Case Physical Quantity pcrit 

g = 0 n 5 

 G 3 

g ¹ 0 n 2 

 G 2 
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Figure Captions 

 

Fig. 1  j0(r) for t = 0, 3 and 6 [from Eq. (28)], where r = r/rb and t = 2arb
2t. 

Fig. 2  Density (solid line) and flux (dashed line) profiles vs xn = x/rmax for (a) p = 1 and 

(b) p = 4 in the absence of ionization (x = 0) 
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Fig. 1  j0(r) for t = 0, 3 and 6 [from Eq. (28)], where r = r/rb

and t = 2arb
2t. 
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Fig. 2  Density (solid line) and flux (dashed line) profiles vs xn = x/rmax 

for (a) p = 1 and (b) p = 4 in the absence of ionization (x = 0) 
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