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Abstract

A fluid treatment of the perpendicular plasma conductivity is extended to include
the effects of arbitrary ion-neutral collision frequencgnd large perpendicular drifts. It
is shown that ion-neutral friction (charge-exchange) can give a non-monotonic
relationship between the non-ambipolar radial current and the radial electric field, leading
to a bifurcated plasma equilibrium. This bifurcation may influence the properties of the
L-H transition in the presence of neutrals. The physical origin of this effect is an interplay
between the surface-averaged equilibrium drifts and the small poloidal variations in the

pressure and parallel flow around the flux surface generated by the geodesic curvature.
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I. Introduction

Recently, a number of experiments have been devoted to studying the effect of
neutral particle influxes on the high-confinement mode (H-méd&eand it has been
shown that the neutrals can significantly affect the transition from the low to high
confinement modes (the L-H transition). The physical mechanism by which neutrals
influence this transition has not yet been identified, and it is not known whether the same
mechanism is operative in all experiments. Neutral particles have a strong influence on
the particle, momentum and energy balance in the edge plasma through processes such as
charge exchange and ionization, so there are many possible physical effects. Recent
studies indicate that it is the neutral population inside the separatrix, rather than the SOL
neutrals, that correlates with the H-mode transi#drand that the required threshold
power scales with the ion-neutral frictional damping fafes this friction is typically
dominated by ion-neutral charge exchange, in this paper we will use the terms “friction”
and “charge exchange” interchangeably.

In one model of the H-modejt is assumed that the L- and H-mode phases
correspond to different roots of the plasma ambipolarity constraint at the plasma edge, J
= op E,. Here, Jis the plasma return current induced by a non-ambipolar radial current
due to ion orbit loss, turbulence or external prob®s;is the perpendicular plasma
conductivity depending on neoclassical viscosity and other dissipative processes; and E
is the equilibrium radial electric field. If,Js non-monotonic, there will be multiple
values of E over some range of currents, and the L-H transition corresponds to a jump
from one root to another. There have been several papers on plasma bifurcations due to
damping by plasma viscosity alén@ or viscosity combined with neutral frictiGhtO
These papers typically use plasma models appropriate to the fully-ionized, relatively high
temperature plasma that exists well inside the separatrix of a tokamak. Recently, there
has been a growing interest in the properties of the edge plasma just inside the separatrix,
stimulated by the realization that the edge strongly affects the core confinement. The
edge plasma is quite different from the core in two important respects: the presence of
large radial electric fields and their concomit&wB drifts, and the presence of a
significant neutral particle population. In the present paper, we use a collisional fluid
model to show that these characteristics can leajtdibrium bifurcations driven by



ion-neutral friction alonein addition to those driven by plasma viscosity. To the best of
our knowledge, this is a new result which is complementary to the bifurcation analyses
already discussed in the literature. Recent experimental evidence suggests that not all
observed L-H transitions are related to bifurcations, but we expect that an understanding
of ambipolarity will still be fundamental. The new physics discussed in this paper may
aid in understanding the effect of neutrals on H-mode properties such as the threshold
power for L-H transitions.

If one assumes a toroidally axisymmetric equilibrium, a non-trivial ambipolarity
constraint requires that the conservation of toroidal angular momentum be broken by a
dissipative mechanism. To focus the discussion on the neutral-dominated regime in this
paper, we neglect the effect of plasma viscosity. The perpendicular plasma conductivity
op is then completely determined by the ion-neutral friction. The neutrals are treated as
poloidally uniform and stationary. (The validity conditions for these approximations are
discussed in Sec. Il.) We calculadg using a simple model: fluid equations for particle,
charge and momentum conservation, supplemented by the parallel component of Ohm’s
Law. The calculation is carried out for a parameter regime characterized by both strong
neutral friction and strong poloidal variation, which may be relevant to the edge plasma
near the separatrix in tokamaks. The resulting conductiggnsitive to the magnetic
geometry (through the geodesic curvature and the parallel connection length), to the ion-
neutral collision frequency, and to the perpendicular drift frequencies.

Key parameters in the present theory arevooﬁlcqﬁ and % = )\/L” =cq{v.
Here,we =cE/(aB) is the ExB drift frequency,wy = oL is the parallel transit
frequency, k=aR is the parallel connection length, q is the safety factor, a and R are the
minor and major radiik = v;/v is the ion mean free path for ion-neutral charge exchange,
s = (TJm)2 is the ion sound speed, and=v(T;/m;)¥/2. Our derivation ofog allows
arbitrary values oft andd, but the neglect of plasma viscosity is justified in the Pfirsch-
Schldter regime only whed < vjj/y, wherevj; is the ion-ion collision frequency. The
expression for the conductivity obtained in Sec. IV B reduces to the standarc®iElsults
thato= 0 (1 + 2¢) asv — 0ando= 0g asv — o« with o = pvc2/B2, wherep =
nm;. Whenais of order unity, we show that the function(a) is not monotonic,
implying that an equilibrium bifurcation can be driven by ion-neutral friction in the
absence of plasma viscosity. Our treatment does not contradict treatments of neutrals



based on neoclassical kinetic the®Ap.12 because the assumed parameter regime is
different [see Sec. IIl].

One obtains the following physical picture from this calculation. The poloidal
variation of the grad-B drift (or geodesic curvature) produces coupled poloidal
modulations in the density, pressure, potential, and parallel flow velocity. This is the
manifestation in the present model of the Pfirsch-Schltter flows of neoclassical theory.
The density and pressure modulations are smoothed out by a return flow of ions along the
magnetic field and by rapiExB rotation. The return flow is limited by the ion-neutral
friction. The resulting perpendicular conductivity couples the physics of radial electric
fields and ion-neutral friction, and it has a local maximum for magnitudes of the radial
electric field such that the poloidal drift and parallel flow effects are comparable.

The present work is most closely related in general approach to that of Hassam et
al13.14 on the Stringer spin-up mechanism for H-modes. They used a Braginskii fluid
model and a similar ordering of parameters to treat the effect of poloidally-varying
particle and momentum sources, but they neglected neutral friction; here we neglect the
sources and concentrate on the effect of the friction due to charge exchange.

The plan of this paper is as follows. In Sec. I, we discuss the basic equations and
give the derivation of the ambipolarity constraint in general toroidal geometry with no
approximations. The particular model used in solving the equations is discussed in Sec.
[l and the analytic solution is given in Sec. IV. A summary and discussion of the main
results is given in Sec. V.

II. Basic Equations and Ambipolarity Constraint

The starting point of the calculation is the following set of equilibrium fluid
equations for conservation of density, charge and momentum:

Olpuy=0 , 1)
DL =olp,+3s)=0, 2
%Jpr=Dp+Dﬁbuu)+p\)(u—uo), 3)



whereJ = J, + Jsis the total current density withy andJs representing the contributions
from the plasma and from external sources (or non-ambipolar procésses) is the
magnetic field, p = g+ p; is the plasma pressurg,nTj, p = nm; is the mass density,

v = np [dvly] andvy = n [0Vl are the ion-neutral and neutral-ion charge exchange
frequencies, andiy is the neutral velocity. The mass flow velocity is given by the
parallel,ExB and diamagnetic flows of the ions

C
en; B

u:u||b+§b><D(p+Z bxOp; . (4)

We assumeuo<<u, which allows us to carry out the calculation without
introducing an explicit neutral model. An examination of the neutral parallel momentum
equation shows thafigi<< y,is valid in the large neutral mean free path linky/L; >>
1, wherehg = vg/vg = V;/vg is the neutral mean free path for charge exchange amsl L
the plasma radial scale length this limit, the neutral viscosity is balanced by the ion
friction term so that yp~ (L/A0)? U

The plasma viscosity term was omitted from Eq. (3) because we restrict the
discussion in this paper to the case where the ion-neutral friction is larger than the
parallel ion viscosity in the parallel momentum balance. The neglect of parallel viscosity
requiresv >>y, wherey| is the viscous damping rate. Simple estimates gjwevi/L, in
the plateau regime an/ﬂz vi2/(viiL|ﬁ) in the Pfirsch-Schluter regime. In terms of scale
lengths, the plasma viscosity can be neglected wigp<< 1 in the plateau regime and
when Mii/LHZ << 1 in the Pfirsch-Schluter regime, wheve v;/v is the ion mean free
path for charge exchange amg is the ion mean free path for ion-ion Coulomb
collisions. For typical parameters; A< n and L << Lj; so that the validity conditions
for neglect ofup and neglect of parallel viscosity can be simultaneously satisfied.

We employ the usual toroidal flux coordinatest($) defined by

B= Bzéz +Bg€g = Bzéz +%éz xy (5)

where) = const. denotes surfaces of constant poloidal magnetic flux. For axisymmetric
plasmasd/d¢ = 0) we have the following useful relations for any scalar Q and v&ctor
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0Q=&yRBy— P GE% , (6)
||Q-%g—§ : (7)

00A = ia?p(JRBeAqJ) lseEL% (8)
(O[A) -lijde JRBgA = 1%u<RBeAw> 9)

where A = §[A4, Jis the Jacobiam, = [d8 J =[ds/B with s the distance along the field
line, and the flux surface average <Q> is defined as

(Q = % [d6 JQ (10)

and has the property that it annihilates the operditr B

The plasma ambipolarity constraint relates the flux surface average of the external
sources [ILJy) to that of the plasma response. The simplest derivation involves solving
for Jyy, from the toroidal component of momentum balance, Eq. (3), and relatingyjt to J
by means of Eq. (2). Taking the flux surface average of this expression, we obtain the
following expression:

<RBGJ )= <RBer¢>:<D|:G)uuZR)+pvuZR>,
. (1)

d 2
30 <R Bepuwuz> + <pvuZR> .
In writing Eq. (11), we have used Eg. (9) and the vector identity
Re, D) = 0T [eyR),

which is valid for any symmetric tensor

It can be shown that Egs. (2) and (3) imply “automatic ambipolarigy"{D) in
the simple case with no source terd&l = 0), no parallel flows (b= 0), and no neutral
friction (v=0). In this limit, it follows from the parallel component of Eq. (3) thgd =



0, so that p = pif) and Jy = 0. It can be shown that automatic ambipolarity also follows
from Eqg. (11), because the term involving departures from flux surfagg$ (anishes
whenv = 0. This result follows from the solution of the equations described in Sec. IV.
Thus, the right-hand-side (rhs) of Eqg. (11) is proportional to the perpendicular plasma
conductivity arising from ion-neutral collisions (charge exchange).

It will be seen subsequently [from estimates based on Egs. (16) and (17)] that the
term involving y, is negligible compared to the second term on the rhs of Eq. (11) and
can be dropped when the poloidal gyroradius is smallpge; = (o/L)(B/Bg) << 1
whereps = ¢/Q; and Lyis the radial scale length. This ordering will be assumed here.

The ambipolarity constraint, Eq. (11), can be put in another useful form. The
source radial current density,Js related to the total radial current flowing through each
flux surface,

]
ls(W)=§dA Dg=¢dv OLg=2m dy'v(00g) , (12)
0

Making use of Eq. (9) we obtain

(RBgJgy ) = Ziﬁ) : (13)

and using the toroidal component of Eq. (4) to obtajrEg. (11) becomes

2
- CcRB
s(W) _ [pve 252 Eam 1 op; Covy ) (14)
2TV B2 Y enay B

where n= ng = Zny by quasineutrality.

A complete solution of the ambipolarity problem requires that Eq. (14) be
supplemented by two other independent constraints. Here, we use Eq. (1) and the parallel
pressure balance constraint, obtained by taking the component of Eq. (3palong

BD”%E»BD”HFM’UE%(JRB@ 0)=0 (15)

pw —
D”p+ E(D”U” —-u Ek)+ pVU” =0 , (16)



where

w B cop 1 op;

———exeﬁll———RB— g 17

B ¢ 0 ¢ B By enawE (17)
u +—D . 18
T H3||<P ||p|§ (18)

In Egs. (14) — (18) some small terms have been dropped, and it has been ehecked
posteriori that this set of equations is self-consistent in the ordering discussed
subsequently. With this caveat, we point out that these nonlinear equations are valid for a
wide class of axisymmetric toroidal configurations. The analytic solution of these
equations requires some approximations, which will be discussed in the next section.

[ll. The Physical Model

A. Approximations and Ordering

To obtain an explicit relation betweegiand E, we solve for the variation in the
flux surface of the density, pressure, potential, and parallel velocity. A consistent
ordering is needed that permits linearization of Egs. (15) and (16), with the poloidally-
varying pieces treated as perturbations of the one-dimensional cylindrical equilibrium due
to the effects of toroidicity. Thus, we assume that the poloidal variatipnpfndg is
driven by the variation of the geodesic curvature, and is of the same order as that of the
magnetic field (~a/J). In this ordering the perpendicular drift and parallel flow velocities
are small compared to the sound speed. The quadratic nonlinear beating of the plasma
perturbations with the magnetic field perturbation gives lowest order contributions to the
flux surface average in Eqg. (14), and evaluating these terms gives the desired voltage-
current relation.

The first step is to express each physical quantity as the sum of surface-averaged

and poloidally-varying contributions,

= Q+0, (19)

wherec_g: [QO, B:Q - [0 and 8<< é is required in the following treatment.
Several assumptions are then made to simplify the calculation of the perturbations. First,
we assume thatj & T, = T and that the parallel thermal conductivity is large, so that the



temperatureare constant on a flux surface. Then the pressure and density variations are

= ¢ %{—i%ﬁ , (20)
e

where ¢ = (T/m)1/2. Using the isothermal approximation in Ohm’s Law yields an

related by

ol

expression for the poloidally-varying potential:
~ T ~
ep

Finally, we neglect the poloidal variation of the neutral density, and hence of the ion-
neutral collision frequency Q—» 0), which is valid Wher@G” << v Q”. This
approximation is consistent with the ordering used in our calculation, as we now show.
We adopt an ordering in which the small parameterseare/L and pg/Lp,
wherepyg is the poloidal gyroradius. Another fundamental dimensionless parameter in the
present theory ist =vcoE/(q|2= (eq/T) (Pe/L) (LyA), which is assumed to be of order
unity in order to treat the new bifurcation physics associated with charge exchange.
Analysis of Egs. (14)-(17), (20) and (21) then gives the size of the important physical

guantities:
& _p_P_. Y _,Polo
T "¢ Lo Ly
p 3 p 3 S o Ly ) 22)
u u u u
0o Tl ey, 00 _g2Pe Tl 25
Cs Cs Cs Lo Cs

where d = A/L;;is not necessarily small. The ordering in Eq. (22) implies the existence of
well-posed flux surfaces far<< 1 and the importance of the perturbed parallel fIqu (
Oug). The last estimate is based on the flux-surface average of B times Eq. (16) noting
that (B O, pC=0, and implies thaty << Q”, which differs from the usual ordering in
neoclassical theory. Thug,does not enter the linearized equations. This ordering has
the important property that it allows the “quasilinear” (i.e. the quadratic perturbation
beat) terms in Eq. (14) to compete.

Our assumption that 01 implies orderings fodande@/T which were used in

deriving Eg. (22). The general ordering encompasses two sub-cases. In the first case, we



assumeq/T 01 so thatr 01 impliesd Opg/L << 1, in the second case we assueqe
/T>>1, implying thatd can be of order unity. In the latter case, the poloidal Mach
number M, = (uy/cg)(B¢/Bg) can be of order unity. For the first case, the neglect of
plasma viscosity is valid in both the plateau and Pfirsch-Schliter regimes; in the second
case, the neglect of viscosity can be justified in the Pfirsch-Schllter regimeAyien
sufficiently short. We will show that the ambipolarity condition takes slightly different
forms for the two cases.

B. Reduced Equations

We now apply the approximations described in the preceding section to reduce
the ambipolarity problem to its simplest form. Treating the poloidally-varying pieces as
perturbations, we linearize Egs. (15) and (16) to obtain

~  2pwBg ~ w ~
pD”u”— P 29 Kg +&;—52?OE]”Q:0 , (23)
B¢ H

prB
D”E + 61—D”G” +pVU|| = 51 29 Re , (24)

B?

where
E ERBZEL%-F%E' (25)
B BneHow oy

Here and in what follows, we keep the tildes to denote poloidally-varying quantities
(including the geodesic curvature) but omit the overbars on averaged quantities to
simplify the notation. We introduce the parametéjsand &, to permit a unified
treatment of both sub-cases described in the previous section: the casepiith1
corresponds tad; = 0,8, = 1 and the case witle@/T >> 1 corresponds t6; = 1,3, = 0.

The poloidal variation of the magnetic field is described in Eq. (23)%1ywhich is
defined by

2 B2

~ _ bg _ { 0B
Kg =€g m = D”B = JBSBG %

, (26)

10



and is related to the true geodesic curvaﬁ%& bxew@ by Fe =(B¢/B) Pg.

Using Egs. (20) and (21), we can recast Egs. (23) and (24) in terms of two
variables (e.g. @nd ) with a drive term proportional 169 These equations imply that
the poloidal variation of the geodesic curvature produces a corresponding poloidal
variation in the other plasma quantities. This is the manifestation in the present model of
the Pfirsch-Schltter flows of neoclassical theory.

Next we substitute the linearized quantities into Eq. (14) and keep only the
lowest-order quadratic terms to obtain the desired ambipolarity constraint. The
m)vu|{BDterm in Eqg. (14) is treated as follows. We eIimirpme” using the nonlinear
parallel pressure balance equation, Eq. (16). Each of the terms is then manipulated to
extract an explicit curvature. The terms wilfp or [Ju; are integrated by parts to obtain
LB U Ke [see Eqg. (26)]. Finally, a term proportionalfivuCis manipulated using the
following identity, obtained by multiplying the linearized continuity equatiorptand
averaging,

2wBg

(BOy Ty} ={ =" PKa
It is also useful to note that the terms contairmnglso have the factdy and hence only
matter in case 2, where@/T >> 1. In this limit it can be shown that the perturbation of

w can be neglected in our ordering, becaw&s O¢ pg/L << €. After some algebra we
obtain

2 O
Is(W) _ [ cRBy pw[}Be +51§a”ze in 25 BRe +81——pRe 0 ) .(27)
21 B (B HB H B¢ BB;

The first term {J pvw) gives the well-known linear relation betweenahd F, and

involves only surface-averaged quantities; the contributions to this term from the
perturbations are higher order mm The remaining terms involve products of the
perturbed quantities and are of the same order as the first term.

One could carry out the solution of Egs. (23) and (24) and the integral in Eq. (27)
numerically for general axisymmetric toroidal geometry, even including X-points.
However, for the purpose of illustrating the basic physics, it is more convenient to pursue

11



an analytic solution in the cylindrical tokamak limit, as described in the following
section.
V. Analytic Solution

A. Poloidal Variation
After some straightforward algebra, the linearized equations (23) and (24) can be

rewritten in terms of the variables XEand Y =pvL E” as follows:

L”D”Y +a L”D”X = —[3 RR@ ) (28)

R -
L”D”X + (51HL||D” +DY = —61[37K9 ) (29)

where the coefficients are defined by

: 2p;L BB
o= ||EZLH*’ g= — Pitl eFHEZH | (30)

AN Te+T; RBZZ E)\

_w ~CB; RBg dp;
u= = e =
VL”B VL”BBQ en aL|J

(31)

— 9R B [0 + 0 [

LyB¢d v O

cB
w= Lt P s B T 4 RBegﬂpe OD.E
VL” B VL”BBQ en aLIJ aL|J (32)
:u—éz EEMH
L” BZ (] \Y

Here,A = vilv, q = aB/(RBy) is the cylindrical safety factor, = ~RBg (0@0y), we =

Ve/a is the poloidalExB drift frequency, andwy = v*pj/a are the diamagnetic drift

frequencies (j = i, e) with.y; = oj cB/(enJgp;. The drift frequencies are given in flux

coordinates by

cEyB cRBgB; 0p;j
0B o, =g, REOBL )

, (33)
aB aBZne oy

Wg =~

12



whereo; = +1 ando, = —1. The coefficientsx, B, p and pJ involve the perpendicular
ExB and diamagnetic drifts; the terms in Egs. (28) and (29) without these coefficients
arise from the parallel flow and the curvature-induced poloidal variations.

In general geometry, the factors of Ry, By in these equations, and thus the
coefficientsa, B and p, are not constant along the field line. As we are seeking an
analytic solution, we now take the cylindrical tokamak limit {Re) in which all of
these quantities are constant to lowest ordersma/Ly. In this limit, to lowest order we
have that k= gR, B;/B = 1, By/B; = a/ly, L[}, = d/db, and the geodesic curvature is
given by

Kg :%sine : (34)

where we have choséh= 0 at the outer midplane. Defining = 8;u, we obtain the
following solution for the amplitudes

X = _ Egagmz/zﬁtngcose ~ (L-fa/2)sined |
a +(1 flo)” O O (35)
Y = P (1-pa/2) {a-fia) cosd + asind} .
2 2
a +(1-pa)

Thus, both the pressure (X) and the parallel flow (Y) have components in-phase and out-
of-phase with the poloidal variation of the geodesic curvature.

B. Ambipolarity Constraint

The final form of the ambipolarity constraint in the cylindrical tokamak limit is
obtained by combining Egs. (20), (21), (27), (34) and (35) and carrying out the flux
surface average by integrating overThe result can be put in the form of a relation
between the normalized radial source current and the radial electric field:

s(W) __, % _RBg aIQE
4raR “HY enayf
2, . .
_ _RBg dpi I, 29" (L-fa)i-fa/2)
ooy — en oy H 02+(1—AG)2 H
i

(36)

13



where {i = &, In writing Eq. (36), we have used the cylindrical result that[ds/B =
2ma/Bg and for comparison with earlier work we have introduced a reference
conductivityog = (pvc2/B2) such that

omoffy oo L T p = 2 g 37

At this point, it is useful to replace the coefficients B} of the linearized equations by
new parametersé{ {4}, which characterize the radial electric field and the diamagnetic
drifts. The parametdywas defined in Eq. (37), ardg is defined as

A 8

so that

_ _HUHHE T E O
S TR

Thus, the plasma conductivigs in the presence of ion-neutral friction depends
on four independent parameters:§g&g andd =A/L. To lowest order irg, the latter
three parameters can be rewritten in terms of characteristic frequencies as

H Te Hv(ooE+mki) 0 Te [V T /zﬂ
i N 1 o= Y w

wherew, = ¢/Lis the parallel transit frequenayg is the poloidaExB drift frequency,

and(wp = (e — W) is the diamagnetic drift frequency based on the total presssure, p =
Pe + [, and the perpendicular drift frequencies are defined in Eq. (33). {Bottéy are
assumed to be comparable in sizetavhich was taken to be order unity in carrying out
the derivation. Note that the radial electric field appears only in the paramatet one
has thatf U -Eywhen T - 0. The parametefy contains the diamagnetic drifts. The
parameters q and both depend on the magnetic geometry, and for fixed geordetry
characterizes the ion-neutral collisionality.

Taking the limity - 0 in Eq. (36), one finds that — o implies {a, §, {4} — oo,
d - 0 and the plasma conductivity goes to the well-known resylt- oo, in the

14



opposite limit of small but finity such that {a, &, {5} — 0, Eq. (36) also yields the
standard resfitll that op— oy (1 + 2¢f). For intermediate ion-neutral collisionality
and large drift frequencies, our ambipolarity constraint (36) contains additional physics
which leads to a new result, viz. the possibility of multiple roots in the ambipolar
constraint and bifurcated equilibrium states due to the ion-neutral frictional force
resulting from charge exchange.

We illustrate this point by plotting the dimensionless radial current | ﬂz(ﬁo‘.p)
(I4412aR) versus the electric field parameigmwith the other parameters held fixed, for
each of the two cases discussed in 8eA. To simplify the discussin, we set =T,
in the remainder of this section. In the limit of snfglEqg. (36) can be manipulated to
give the standard linear voltage-current relatiod) ¥ & (1 + 2¢f), as expected in the
absence of viscosity. Non-monotonic behavior is obtained ghisnallowed to be of
order unity, as we now show.

In the first cased; = 0,0, = 1), Eq. (36) yields the relation

O 2 O
case 1: 1(5) = ¢ @+ %D , (41)
1+ (€ +Eg)°H

so that the function &) depends on the two parameters q §pdRecall that this case
employs the orderingsp/T 01 andd << 1, implying smalExB drifts, strong ion-neutral
collisionality and short ion-neutral mean free path. In this limit, the perpendicular drift
terms do not enter into lowest-order parallel pressure balance [ Eq. (24)].

A plot of the function ) in Eq. (41) is shown in Fig. 1 for fixed q and two
values of the diamagnetic paramefgrlt is apparent from Fig. 1 that the equatid) K
lg has either one or three solutions &mepending on the value gf. IOnly one root is
obtained for either very small or very large valuesgf ut an intermediate range gf |
> 0 yields multiple roots, associated with the local extremapf The local extrema are
produced by the4gterm in Eq. (41) and thus grow larger as g increases. For the case q =
4, &4 = 0, shown in Fig. 1(a), the ambipolar current-voltage relation is antisymmetric
about¢ = 0. For either sign of the radial current, the theory predicts a bifurcation induced
by neutral friction from a smaller to a larger valuetgf|[as the radial source current is
increased. The influence of diagmagnetic drifts is shown in Fig. 1(b) where the case q =

4, &4 =1 is shown. In this case, the functiof)I{s highly asymmetrical, having a local

15



extremum for§ (- 4. For the usual case @f; > 0 (corresponding tdp/oy < 0), the

region of multiple roots occurs f@ < 0 and | < 0. By definitiod U wg + w, so this
condition implies either tha, is small enough to satisfyod| < |wxj| or thatEy > 0
(outward-pointing radial electric field). Thus, for case 1 with moderate q and strong
diamagnetic drifts the theory predicts a bifurcation induced by neutral friction only if the
current is increased in the negative direction. Finally, we note that as q is increased at
fixed ¢4 (not shown) a second, weaker bifurcation is obtained fo0 and |1 > 0. This is
discussed further in connection with Fig. 2.

In Fig. 2 we show the boundaries&g-g parameter space corresponding to single
and multiple root solutions of the ambipolar current-voltage relatign=1{;. Below the
lowest curve, there is only a single root for any valué. olin the region between the two
boundaries, multiple roots can be obtained for certain values of | < 0 but there is only a
single root for | > 0, as illustrated in Fig. 1(b). Above the higher curve, multiple roots are
obtained for both signs of I. In this upper region, the degree of asymmetry between
positive and negative currents depends on the diamagnetic paramdjgr-/As at fixed
g, the plasma returns to the middle region where the asymmetry between the two
directions of currents is large; on the other hand{gps- O one obtains symmetry
between the positive and negative currents, as illustrated in Fig. 1(a).

Turning now to the second cas® € 1, &, = 0), Eq. (36) yields the following
ambipolarity relation

7 2" f-g° - 2e%
case 2: 1(§) =&+ 5 2.2.2 .
0 £°+ (1-28%") O

= =

(42)

where I§) depends on the two parameters q andRecall that this result corresponds to
the orderinge@/T >>1andd = 1, implying strongExB drifts, negligible diamagnetic
drifts, and weaker ion-neutral collisionality and a longer ion-neutral mean free path than
in case 1. In case 2, the perpendicltxB drift competes with the parallel flows in
lowest-order parallel pressure balance [ Eq. (24)].

A plot of the function [) in Eq. (42) is shown in Fig. 3 for the parameters q = 4
andd = 1. Here, the functiondj has antisymmetric extrema f6iJ1+d. There are several
differences between this case and the previous one. In case 2, multiple roots are obtained
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below a certain threshold in current; the condition for a unique root is that the magnitude
of | exceed a critical value og]l In case 1, multiple roots could not be obtained for small
currents. The number of roots can be larger in case 2 (up to five), becausalfifth
order polynomial when th&xB drift terms are retained. Another difference is that the
neutral-friction induced bifurcation occurs for either sign of radial current and radial
electric field, because the symmetry-breaking diamagnetic effects are unimportant in this
ordering. Finally, it should be noted that the linear part of the curve is modified by the
ExB drifts to have a larger slope here than in the previous case. In thé limito,
1(§) - &€ (1 + ) in case 2 whereasE)(— & for case 1.

We conclude this section with two additional remarks. First, it should be kept in
mind that the radial current | and the parameteks &, andd are all functions ofp, so
that the ambipolarity constraint must be solved separately on each flux surface to obtain
the radial electric field profile. Second, we point out that the non-monotonic behavior of
I(§) on a given flux surface is due to terms involving the products of the surface-averaged
perpendicular equilibrium drifts and the perturbations in the continuity and parallel
pressure balance equations, viz. the terms with coefficieatglp in Egs. (28) and (29).
These terms compete with the perturbed parallel flow in reducing the poloidal variation
of the density and pressure. This competition is sensitive to the magnitude of the neutral
friction and leads to the bifurcation in the ambipolar voltage-current relation.

V. Summary and Discussion

In this paper, we have extended the fluid treatment of the perpendicular plasma
conductivity to include the effects of arbitrary ion-neutral collision frequeraiyd large
perpendicular drifts. As discussed in Sec. |, the present calculation of the ambipolar
constraint omits the effect of parallel viscosity, and its validity therefore requhsesy”,
whereyj, is the viscous damping rate. This condition can be met for many cases of interest
in the edge plasma when the neutral density and the parallel connection length are
sufficiently large (e.g. near a separatrix in diverted plasmas). The main result of this
calculation is that ion-neutral friction can givéma@an-monotonic relationship between the
radial current and the electric fieJdeading to a bifurcated plasma equilibrium. This
bifurcation may influence the properties of the L-H transition. The physical origin of this
effect is a subtle interplay between the surface-averaged equilibrium drifts and the small
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poloidal variations in the pressure and parallel flow around the flux surface generated by
the geodesic curvature.

The bifurcation physics described in this paper requires that the flux-surface-
averagecExB drift be large enough that the paramee;t@lr\)(*)E/cq'2 be order unity. The
orderinga [IL encompasses two sub-cases. In the first ccagem ch(v << 1, which
corresponds to a weakly-rotating tokamak with a high neutral edge density; in the second
case,we/oy Dwyfv U1 The latter case corresponds to a strongly-rotating tokamak which
can have a poloidal Mach numbet, M (ug/cg)(B/Bg) of order unity. We have shown
that the ambipolarity condition takes different forms for the two cases, but the basic
bifurcation exists in both limits.

The present calculation was partly motivated by the work of Cornelis%tvab,
showed that the experimental perpendicular conductivity on TEXTOR is dominated near
the edge by ion-neutral friction [see their Figs. 11 and 12]. They also inferred that ion-
neutral friction contributes to the experimentally observed equilibrium bifurcation [see
their Fig. 3]. Here, we have exhibited the neutral-dominated bifurcation analytically from
a simple model.

This work may also be relevant to earlier studies of electrode-induced H-modes.
For example, in Ref. 15 H-modes were produced with either sign of the electrode current
and a sharp bifurcation was observed for the case | < 0 in the notation of the present
paper. It was also noted that the required electrode voltages and currents were sensitive to
the use of boronization, which may be related to changes in the neutral recycling.

More generally, this work is relevant to the recent interest in understanding how
neutrals influence the plasma edge and the H-mode. The present model suggests that ion-
neutral charge exchange can influence the L-H transition in subtle ways by affecting the
underlying ambipolarity constraint in the presence of a non-ambipolar drive due to
external probes, internal turbulence, or other sources.
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Figure Captions
Fig. 1 Plot of I'in Eq. (41) v&for q =4 and (ajq = 0 and (b¥q4 = 1.
Fig. 2 Plot of solution boundaries iy( q) space for case 1.

Fig. 3 Plot of lin Eq. (42) v&forg=4 and = 1.
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Fig. 1 Plot of Iin Eq. (41) v&for q =4 and (ajq = 0 and (b¥q4 = 1.
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6 - Multiple roots

q 4
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Fig. 2 Plot of solution boundaries i&y( q) space for case 1.
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Fig. 3 Plot of lin Eq. (42) v&for g =4 and = 1.
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