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Abstract 

High-density plasma filaments extended along the magnetic field, which look like 

"blobs" in the plane perpendicular to B, have been observed in the scrape-off -layer (SOL) 

of many plasma devices. These objects become polarized and subsequently E×B drift to 

the wall carrying a significant flux of particles. This mechanism may account for the 

observed nondiffusive, intermittent transport in the far SOL of tokamaks. Previous work 

has examined simple models of blob propagation and shown that the radial convective 

velocity ux has the scaling ux ∝ yb
−2, where yb is the poloidal blob dimension. Thus, the 

radial particle flux is sensitive to the details of the blob size and shape distributions; these 

in turn are affected by various secondary instabiliti es which cause blob fragmentation. A 

simple model of blob instabilit y (driven by curvature in the presence of sheath boundary 

conditions) is studied by 1D calculations and 2D simulations to provide insight on the 

stabilit y and dynamics of blobs. We show that a competition between the time scales for 

instabilit y and transport determines the range of allowed blob sizes and shapes and 

constrains the overall radial velocity. 
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I. Introduction 

There is growing evidence that a significant fraction of the radial particle 

transport in the scrape-off-layer (SOL) is non-diffusive and intermittent in space and 

time.1-13 This transport is convective in nature and extends to the far SOL, typically 

yielding flat density profiles and a significant particle flux near the wall.4,14,15 The 

increased recycling at the walls, as evidenced by the "main chamber recycling regime",4 

can result in reduced divertor efficiency and increased impurities. The convective 

transport is more important in discharges with higher density, and may be associated with 

the density limit.16 Thus, there is an increasing experimental and theoretical effort to 

understand the source of this convective transport. 

Recently, a theoretical model was developed17,18  that accounts for some of these 

properties. The model is consistent with the high-density plasma filaments observed in 

the SOL of NSTX. 13,19 These filaments are spatially extended along the field line but are 

localized in the plane perpendicular to B and look like "blobs" in this plane. Density 

blobs have been seen with gas puff imaging diagnostics8,11,13,19 on several experiments 

and are observed to move in both the radial (x) and poloidal (y) directions. The density 

blob theory17,18 treats the blobs as coherent structures which propagate outwards at the 

outboard midplane by a simple mechanism: the curvature drift (for tokamaks) or 

centrifugal force (for linear rotating machines) gives rise to a poloidal charge separation, 

induced poloidal electric field, and subsequent radial E×B drift.   

In the simplest version of the model (constant temperature, neglect of vorticity, no 

background density), an assumed blob density of the form n(x,y) = n(x) exp(−y2/2yb
2) 

leads to a solution with a constant radial velocity ux,  

 
2

b
x

y
u

α
β= ,  (1) 

where β ∝ 1/R is the curvature parameter, and α ∝ 1/qR is the parameter representing the 

parallel losses to the sheaths. The factor α in Eq. (1) results from the axial sheath 

boundary condition for J|| in the vorticity equation. All quantities in Eq. (1) are 
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dimensionless, using the normalizations of Ref.18 (see also Sec. II).  There are two points 

to note in Eq. (1): (i) the blob transport arises from a balance between the curvature drift 

term and the sheath conductivity,20 as represented by the factor β/α; and (ii) the radial 

velocity and radial particle flux Γ = nux are functions of the poloidal blob size yb, which 

is the distance over which the curvature-induced charge separation occurs.  

The second point suggests that the radial transport from an ensemble of blobs 

depends sensitively on the distributions of blob size and shape. The dependence of the 

radial transport on the blob size can be seen by comparing the time τc = ∆x/ux ∝ yb
2 to 

convect a radial distance ∆x with the parallel flow time τ|| = L||/cs for particle flow to the 

sheaths. Only blobs small enough that τc < τ|| will contribute to the radial transport; larger 

blobs will be depleted of particles before moving a significant distance. This same 

physics can be made more quantitative by averaging the convective particle flux over an 

ensemble of blob sizes, as discussed in Ref. 18.  

Another time scale is introduced by stability considerations, which is the subject 

of the present paper.  Secondary instabilities (driven by the blob internal pressure profile) 

can modify the blob size and shape distributions by breaking up large blobs into smaller 

ones. Since the smaller child blobs move faster than their parents, the net transport is 

increased by the instability. The interesting parameter regime is γ−1 ≤ τc << τ|| in which 

the maximum growth rate γ is fast enough to break up the blob before it moves a 

significant distance outwards or loses any particles to the sheaths. Since γ and τc both 

depend on the blob size, the condition γ τc = 1 (balancing stability and transport time 

scales) determines a cut-off on the maximum blob size in the ensemble. This 

characteristic scale length in turn sets a lower bound on the radial velocity expected for 

the blobs. 

To avoid confusion in terminology, note that we use the term blob "size" to refer 

to its linear dimensions (or area) in the plane perpendicular to B, not to be confused with 

the blob "amplitude" or "height," which is the difference between the peak blob density 

and the background density. In numerical simulations with a background density, it is 

found that the blob velocity ux also depends on the blob height, as discussed in Sec.IV.  
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There are a number of experimental measurements5-13 and simulations21 

suggesting that turbulent processes create large blobs (several cm across) in the SOL near 

the separatrix. These turbulent processes are driven by the "primary" instabilities of the 

SOL profiles near the separatrix, typically drift-resistive instabilities such as the RX 

mode.21,22 The effect of the birth processes on the size and shape distributions of the 

blobs is outside the scope of this paper. We restrict the present analysis to "secondary" 

instabilities driven by the blob pressure profile itself and study the role of these 

instabilities in fragmenting the blobs as they transport across the far SOL.  

There are two sources of secondary instability in blobs: velocity shear drive for 

the Kelvin-Helmholtz (KH) instability23,24 and curvature drive for the sheath-interchange 

mode.25,26,2 In other recent studies of blob stability, it has been shown27,28 that the KH 

instability dominates for very small blobs while the sheath-interchange mode is the most 

important instability for blobs with a >> ρs, where a is the blob radius or typical blob 

dimension and ρs is the ion gyradius. For the blobs of interest here, the inertial term in the 

vorticity equation (which contains the KH drive) is unimportant, so we will neglect 

inertia in most of the discussion. We also make a number of other approximations 

appropriate to the far SOL, such as neglecting temperature gradients and diamagnetic 

drifts. A future paper will consider the effects on blob stability of temperature gradients 

and blob rotation due to the Bohm potential, which may be important in the near SOL. 

This paper generalizes our previous model18 to include the effect of a background 

density and of dissipation on the blob equilibrium and stability. For the case of blobs 

superimposed on a background density, we will show that both the size and the relative 

height of the blob above background affect its velocity. For a fixed blob size, increasing 

the blob height relative to the background density produces faster radial propagation; in 

the limit where the background density vanishes, the maximum velocity [given in Eq. (1)] 

is obtained. This result agrees with recent simulations by Galkin.29 The background 

density also plays an important role in modifying the blob shape and stability. These 

trends may be important in understanding the experimental data. The role of dissipation 

in suppressing the smallest wavelength perturbations is important in understanding how 
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coherent, propagating objects can form out of a turbulent background. The role of 

dissipation in controlling the growth of nonlinear structures was also studied in the 

context of the Rayleigh-Taylor instability in Ref. 30. In the present paper, the effect of 

diffusion D and viscosity ν on the secondary instabilities of blobs is analyzed and a 

simple scaling (valid in the absence of inertia) is described. Finally, the 2D simulations 

illustrate several features reminiscent of the experimental data, which could not be 

inferred from simpler models. The 2D model also provides a tool for analyzing the gas 

puff imaging (GPI) data, which will be discussed in a future paper. 

The plan of this paper is the following. In Sec. II we describe the approximations 

and equations in the model. In Sec. III, the 1D stability analysis is discussed to illustrate 

the physics of blob stability. In Sec. IV the results of the 2D simulations are presented. 

Finally, a summary of the main stability results and a discussion of their implications for 

blob transport is given in Sec. V. 

II. The Model     

A. Basic Equations 

We employ a simple set of dimensionless equations that allows a solution for 

propagating density blobs17,18 and their stability. Assuming constant temperature and 

transforming to a reference frame moving with constant velocity u, we obtain the 

following vorticity and continuity equations: 

 n
ndt

d
y

22 ∇β−ϕα=ϕ∇ν+ϕ∇ ⊥⊥   , (2) 

 nnD
dt

dn 2 α−∇= ⊥ , (3) 

 xxyyyx )u()u(
tdt

d ∇+ϕ∇−∇−ϕ∇+
∂
∂= . (4) 

Here, the potential ϕ = Φ − ΦB is the deviation of the total potential Φ from the 

Bohm sheath potential (Φ = ΦB ≈ 3 Te), ϕ∇×=bv  is the E×B velocity, α = 
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(2ρs/L||) measures the net parallel current into the sheaths, β = (2ρs/R) is the curvature 

parameter, ν is the viscosity and D is the particle diffusion coefficient. To make the 

equations dimensionless, time is normalized to Ωi
−1, length scales to ρs, and other 

quantities to reference values (e.g. separatrix values ns and Tes) so that Ωi dt → dt, 

ρs∇ → ∇, eΦ/Tes → Φ, v/cs → v, n/ns → n, Te/Tes →  T, J/(nsecs) → J, ν/Ωi → ν, 

D/(ρs
2 Ωi) → D, etc., where Ωi = eB/mic is the ion cyclotron frequency and ρs = cs/Ωi is 

the (constant) gyroradius based on cs = (Tes/mi)1/2.  

We assume that the plasma filaments are localized perpendicular to B and employ 

a slab model with orthogonal coordinates (x, y, z). The x coordinate is taken in the 

direction of the major radius R, and the dimensionless curvature is written as κ κ = −(ρs/R) 

êx. The z coordinate is taken along the direction of B, so that 2b × κ κ • ∇∇ = −β ∇y and y is 

approximately in the poloidal direction at the outer midplane. Here, y = 0 denotes the 

location of the outer midplane and x > 0 corresponds to the SOL, so that motion in the 

positive x direction is outwards towards the wall . .  

B. Equili br ium and Perturbation Analysis 

We consider the two-dimensional equili brium and stabilit y problems for a 

perturbation with wavevector yyxx êkêk +=k and use the following ansatz: 

 
,e)y,x(~)y,x(

,e)y,x(n~e)y,x(nn
)t(i

)t(it

ω−⋅

ω−⋅α−

ϕ+ϕ=ϕ

+=
xk

xk

      (5) 

where overbars denote equili brium quantities and tildes denote perturbations. Note that 

the equili brium is only valid for t < τ|| ~ 1/α (the blob decay time due to parallel 

losses), which implies that the stabilit y analysis is only valid for modes with growth rates 

satisfying γ >> α. 

The  "isolated blob" equili brium (d/dt = 0) solution of Eqs. (2) – (4) valid on time 

scales t << 1/α and having a constant radial velocity ux is given by17,18 

 
)y2(y

b

2
b

2

e)x(n)y,x(n
−

η=     , (6) 
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yq
)y(nln)y( −=∇

α
β=ϕ     , (7) 

 0u,
y

q
u xy2

b
yx =ϕ∇==ϕ−∇=    , (8) 

where β/α = L||/R ≡ q was used in Eq. (7). This equilibrium does not have a poloidal 

velocity because of our assumption that the temperature is independent of x. This solution 

also neglects the effects of dissipation and a background density profile, which will be 

included subsequently. It is a useful starting point because it illustrates the effects of blob 

charge polarization and E×B propagation in their simplest form and leads to the scaling 

of radial velocity given in Eq. (1). 

This solution is valid for an arbitrary function η(x). However, it is useful to 

specify a Gaussian form for η(x), so that the equilibrium density has the symmetric form 

 
)y2(y)x2(x

b

2
b

22
b

2

een)y,x(n
−−

=     . (9) 

For arbitrary xb and yb this solution corresponds to an elliptically-shaped blob, and the 

special case xb = yb = a reduces to the cylindrical blob ansatz discussed in Ref. 18, 

])a2(rexp[n)r(n
22

b −= . The general form in Eq. (9) contains the interesting limits of 

highly-elongated blobs in the radial (xb → ∞) or poloidal (yb → ∞) directions. We will 

refer to these cases as "radially-elongated" and "poloidally-elongated" blobs, 

respectively. 

While this equilibrium is useful for analytic studies, it must be generalized to 

include the effects of a background density and of dissipation to be suitable for a 

numerical stability analysis. The curvature drive for the sheath-interchange mode is 

proportional to (β/α) (∇y n~ )/ n  ∝ iky( n~ / n ), which becomes singular for the solution in 

Eq. (9) as y/yb → ∞ and n  → 0. This allows unphysical unstable modes which are 

localized in the extreme tail of the blob. To eliminate this singularity, we add a constant 

background or "floor" density nf  to n :  
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 f
)y2(y)x2(x

b neen)y,x(n
2

b
22

b
2

+=
−−

. (10) 

Here, nb is the amplitude of the blob above the floor density at x = 0 = y. 

The equili brium solution of Eq. (2) for ϕ  is then carried out numerically, 

including both the effects of nf and ν. The floor density has several effects on the 

equili brium. It reduces ux below the value predicted in Eq. (1) by reducing the velocity 

drive term (β/α) )n(ln
2
y∇  ≈ q/L2. The density floor introduces a dependence of the 

density scale length L and the radial velocity ux on the blob height above background, 

δn(x,y) = )y,x(n – nf. For the 1D radially-elongated blob, we have δn = δn(y), which 

introduces a poloidal shear in the radial velocity, ux = ux(y). This shear has a stabili zing 

effect on the sheath-interchange mode. For the poloidally-elongated blob, ϕ  = 0 = ux, so 

there is no velocity shear. Finally, in the 2D solution of Eq. (2), the spatial variation 

δn(x,y) results in a 2D vortex flow pattern that modifies the blob shape and propagation 

velocity, as discussed in Sec. IV. 

C. Stability Equations 

Using the ansatz in Eq. (5) and linearizing Eqs. (2) – (4), we obtain the following 

stabilit y equations for the 1D numerical calculations: 

 [ ] χ∇β−ϕα=ϕ∇−ν+γ ⊥ y
2

x
~~)y(uki  (11) 

 [ ] ( ) ϕ∇⋅×−χ∇




=χ−γ ⊥

~)nln(in
n

1
D)y(uki

2
x kb   . (12) 

where γ = −iω is the growth rate, χ = ( )n/n~  and )y()0y(u)y(u x ϕ′+==  is the shear of 

the radial velocity. The LHS of the perturbed vorticity equation (11) contains inertial, 

viscous and velocity shear terms, while the RHS contains the sheath conductivity (α) and 

curvature (β) terms. The linearized density equation (12) balances the inertial and 

velocity shear terms on the LHS with the diffusion and perturbed E×B convective terms 

on the RHS. 

Some approximations were used in the derivation of these equations. In Eqs. (11) 

and (12), the stabili zing velocity shear term is written in the form that enters the 1D 
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radially-elongated blob calculation. For the general 2D problem, we would write ux = 

ux(x,y), but our 2D analysis in Sec. IV is nonlinear and thus does not use the linearized 

equations; hence, the 1D form of the velocity shear term is sufficient in Eqs. (11) and 

(12). In deriving the inertial term in Eq. (11), we also assumed 0
2 ≈ϕ∇⊥ , which is 

strictly true only if nf = 0. In the numerical results described in the next section it was 

checked that the inertial term retained in the vorticity equation (∝ γ) was negligible for 

the large blobs (a >> ρs) of interest here, implying that the higher-order corrections to 

this inertial term are not needed. 

 It is useful at this point to review the physical picture of the sheath-interchange 

instability in terms of Eqs. (11) and (12). If the constant density surfaces are perturbed 

(χ ≠ 0), the curvature drift causes a charge separation and the charges pile up on the 

perturbed boundary, giving rise to a perturbed potential ( 0~ ≠ϕ ). In the simplest limit 

(neglecting inertia and viscosity) this potential is obtained by balancing the sheath and 

curvature terms on the RHS of Eq. (11), χ∇αβ=ϕ y)/(~ . The perturbed potential ϕ~  

generates a perturbed electric field in the direction of k, which causes a perturbed E×B 

drift in the k×b direction, normal to the perturbed density surfaces [last term on the RHS 

of Eq. (12)]. Instability occurs if this drift reinforces the original density perturbation, 

  χ∇αβ∇⋅×−=χγ y)/()nln(i kb .  (13) 

It is important to emphasize that the curvature drive term [ )nln( ∇⋅×β kb in the present 

notation] is applied here to the local blob density profile rather than the global SOL 

profile. The growth of this "secondary instability" drives the nonlinear evolution of the 

blobs in the simulations and affects the blob size distribution. 
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III. 1D Stability Analysis 

In this section, we solve the stability equations (11) and (12) numerically for the 

equilibrium blob density profile given in Eq. (10) in the limits of poloidally-elongated (yb 

→ ∞) and radially-elongated (xb → ∞) blobs. Although the elongation is assumed infinite 

in each case to obtain a 1D stability calculation, we expect the results to be qualitatively 

valid for blobs with finite aspect ratio. The 1D calculations will be useful to understand 

the physics of the instabilities and to introduce the concepts relevant to the 2D blob 

simulations discussed in Sec. IV. 

A. Poloidally-elongated blobs 

Taking the limit yb → ∞, xb finite in Eq. (10) gives the density profile )x(nn =  

for poloidally-elongated blobs. It follows from Eq. (7) that ux = 0 = u(y) because the 

charge separation occurs over an infinite distance. (This extreme limit is considered only 

for the stability calculation, and a finite value of yb is assumed when estimating the 

transport time scale in later sections.) Letting ∇∇ → yyxx ˆkiˆ ee +∇  in Eqs. (11) and (12) 

one obtains a set of equations for )x(~ϕ and χ(x) which are solved by a matrix eigenvalue 

technique after transforming to Fourier space (∇x → i kx).  

Before discussing the numerical solution, we first examine the dispersion relation 

obtained by making the "local approximation" in the linearized equations, valid when 

kyxb >> 1. Setting kx → 0 and evaluating dx/nlnd)x(d ≡  at the location of the 

maximum density gradient on the bad curvature side (dmax → −1/L), we obtain  

 
2
s

2
y

2
y2

y2
y

2
y2

y
ak1

)L/(k
Dk

k

)L/(k
Dk

+

αβ
+−=

ν+α

β
+−=γ , (14) 

where as = (ν/α)1/2 is the viscous smoothing radius. In deriving Eq. (14), we have 

neglected the factor of γ from the inertial term in the vorticity equation, because it makes 

a negligible contribution near marginal stability.  

For D = 0 = ν, Eq. (14) gives the local sheath-interchange growth rate 

( L/k
2
y αβ=γ ).25,26 The viscosity can reduce the growth rate (when kyas > 1) but only 
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diffusion can completely stabilize the mode. For ν = 0, the marginal stability boundary is 

D = β/(αL) ≡ D0. The dependence of the stability boundary on D and ν will be discussed 

further in Sec. III C. The constant floor density nf in Eq. (10) is also stabilizing through 

its effect on the function d(x) and the local scale length L = −1/dmax. If we set nf = 0 in 

Eq. (10), d(x) ∝ x increases without bound and the local approximation is invalid; 

however, d(x) has a maximum and the value of L is well-defined when nf ≠ 0. Increasing 

the value of nf has the effect of increasing L and reducing the instability drive in Eq. (14). 

These stabilizing effects of D, ν and nf  are verified by the numerical solutions. 

The analytic theory gives the following predictions for the ky at marginal stability 

(ky = k0) and maximum growth (ky = kmax) and for the maximum growth rate γmax  

 ( ) 2/1
s0 1ak −∆=  , (15) 

 
2/12/1

smax 1ak 


 −∆= , (16) 

 
4
max

2
s

22/1

2
s

max kaD1
a

D =


 −∆=γ , (17) 

where  ∆ = D0/ D = β/(α L D). In the limit of weak diffusion (∆ >> 1), we find that 

kyas>>1 is satisfied; the condition for the local approximation  (ky xb>>1) is also satisfied 

if the viscosity is small enough or the blobs big enough to satisfy the condition as < xb.  

For kyxb ~ 1, the non-local mode structure on the scale of the blob must be taken 

into account by carrying out the numerical solution. Figure 1 shows the non-local 

eigenfunction )x(~ϕ of the fastest growing mode superimposed on the blob density profile 

)x(n for typical parameters. The eigenfunction peaks at the maximum density gradient on 

the bad curvature (x > 0) side of the blob, and the width of the eigenfunction is 

comparable to the blob size.  

 The maximum growth rates γmax for the local and non-local solutions are 

compared in Fig. 2 (solid curves), where γmax is plotted vs blob size xb for fixed values of 

D and ν. The growth rate drops as the blob becomes larger because the pressure gradient 
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driving the instability scales like β/xb. The local and non-local solutions show reasonable 

agreement since kyxb > 1 over the range of xb shown, and the two solutions converge as 

xb → ∞ because kyxb for the most unstable mode increases with xb. Specifically, the 

wavenumber ranges from kyxb = 2.5 at xb = 10 to kyxb = 5 at  xb = 50.  

The dashed curves γc(xb) and γc(xb)/10 in Fig. 2 show the relevant convective 

time scales and will be discussed in Sec. III C.  The competition between the stability and 

transport time scales illustrated in Fig. 2 is one of the main points of this paper. 

B. Radially-elongated blobs 

Taking the other 1D limit (yb finite, xb → ∞) in Eq. (10) gives the density profile 

)y(nn =  for radially-elongated blobs, i.e. streamers. As discussed in Sec. II B, a 

numerical solution is required for )y(ϕ to retain the effects of the density floor nf and the 

viscosity ν in the vorticity equation. The density floor also sets the maximum of the 

logarithmic density gradient, d(y). 

The resulting equilibrium solution is illustrated in Fig. 3. Near y = 0, the 

numerical solution resembles the analytic solution in Eqs. (7) and (8), viz. )y(ϕ linear in 

y and )y(u x constant, but these functions begin to deviate from their analytic values near 

the maximum of the density gradient d(y). The functions d(y) and )y(ϕ go smoothly to 

zero as |y| → ∞  when nf ≠ 0. The calculation of the growth rate is unaffected by the 

periodicity boundary condition as long as the domain is much wider than the region of 

non-zero instability drive d(y). Finally, we see that the density floor and viscosity effects 

produce a strongly sheared radial velocity )y(u x  near the maximum of d(y). This effect 

enters through the third term on the LHS of Eq. (11) and is stabilizing for the sheath-

interchange modes. 

Another stabilizing factor is that the curvature is neutral in the radially-elongated 

blob geometry so there is no local instability analogous to Eq. (14). This is easily seen by 

letting ∇∇ → xxyy ˆkiˆ ee +∇ in Eqs. (11)-(13) and noting that the RHS of Eq. (13) 

vanishes because ky = 0.  However, the numerical solution shows that there is a weak 

non-local instability. The physical origin of this instability is illustrated in Fig. 4, where 

plots of the density weighting d(y) of the instability drive and the real part of the 
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eigenfunction )y(~ϕ are shown. We see that the eigenfunction matches the shape and 

parity of d(y) and has enough oscillations to acquire a definite ky, thereby restoring an 

instability drive. This instability is non-local because the eigenfunction width is 

comparable to the blob size; for the case shown kxyb = (0.05)(20) = 1.  The mode has a 

complex eigenvalue γ with a small real part. 

The combination of reduced instability drive and shear flow stabilization leads to 

weak growth rates (real part of γ) for the radially-elongated blobs, as shown in Fig. 5.  

Here, we plot the maximum growth rate vs blob size, γmax(yb). Comparing Figs. 2 and 5, 

one sees that the growth rate is much weaker in the latter case, both in absolute terms and 

relative to the transport scales. This leads to the important conclusions that: (1) the blob 

shape in the 2D simulations is likely to be more elongated in x than in y; and, (2) the 

characteristic blob size setting the transport is going to be determined by instabilities with 

ky ≠ 0.  

C. Implications for 2D stability and transport 

Our analysis of the 1D limiting cases of the linearized stability equations (11) and 

(12) demonstrated the existence of a "secondary" curvature-driven instability of the blobs 

due to their internal pressure gradients. The growth rate of this mode depends on the 

stabilizing effects of sheath conductivity, viscosity, diffusion, and the background 

density. It was shown that the background density reduces the density gradient weighting 

of the curvature drive and causes stabilizing sheared flows. The properties of this 

secondary instability are closely related to the nonlinear behavior of the blob evolution 

seen in 2D simulation codes, as discussed in Sec. IV.  

The 1D growth rate calculations are also useful for comparing the instability and 

transport time scales for the blobs. The competition between these time scales helps to set 

the range of blob sizes responsible for the transport. To define the convection time scale, 

we have to specify the poloidal blob size yb, which determines the convective velocity ux 

in Eq. (1). At this point the 1D approximation fails us, and we have to take into account 

the two-dimensional nature of the physical blobs. For simplicity of presentation, we 

assume isotropy in the following discussion of blob transport time scales. Based on the 
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linear stability analysis, we expect the elongation to be of order unity, as discussed 

subsequently, and this does not substantially affect the present discussion.  

Defining a blob radius a ≡ yb = xb, we consider the following characteristic 

equilibrium and transport times: (i) the time to diffuse one blob radius, τd = a2/D, (ii) the 

time to convect one blob radius, τc = a/ux= a3/q [by Eq. (8)], and (iii) the time τw = ∆x/ux 

to convect to the wall. For purposes of scaling, it is simpler to replace τw by the time to 

convect a certain number of blob radii; here, for definiteness we assume that the 

separatrix-wall distance is approximately 10 blob radii (for a typical blob) and replace the 

convection time to the wall by 10 τc. We also define the corresponding transport rates (γd 

= 1/τd, γc = 1/τc, γw = 1/τw → γc/10) and note that they scale with blob radius as follows: 

γd ∝ 1/ a2 and γc ∝ 1/ a3.    

The transport rates and the growth rate γ of the most unstable mode are plotted vs 

blob size for the poloidally- and radially-elongated blobs in Figs. 2 and 5, respectively. It 

is sufficient to discuss the most unstable situation, viz. the poloidally-elongated blob 

analysis in Fig. 2, where we now let xb → a. The requirement that the equilibrium be 

well-defined on the instability time scale requires γ >> γd. This inequality is satisfied for 

the range of blob sizes shown, so the curve γd(a) is omitted from the figure. There are two 

curve crossings marked by dots in Fig. 2 (γ = γc/10 and γ = γc, corresponding to blob radii 

a1 and a2, respectively, which are marked by arrows). For the parameters used in Fig. 2, 

we find that a1 = 10 and a2 = 27 (in units of gyroradii). These crossing points will be 

shown to have implications for blob transport. 

In discussing the significance of the crossing points, it is useful to introduce the 

term "essential stability." We say that a blob is "essentially stable" if the fastest growing 

mode cannot exponentiate in the time it takes the blob to transport a significant distance. 

To be specific, we choose this distance to be 10 blob radii, so that the condition for 

essential stability is γ < γc/10. By Fig. 2, this criterion is satisfied for a < a1. Small blobs 

are essentially stable to the sheath-interchange instability, whereas large blobs are 

essentially unstable and break up into smaller ones before moving a significant distance. 

This process of fragmentation serves to decrease the average radius of the ensemble of 
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blobs and to increase its average radial velocity. For blobs with a > a2 the instability 

growth rate is so fast (γ > γc) that the blob breaks up before moving a single blob radius. 

Thus, the experimentally-measured radial autocorrelation time should be roughly given 

by τ = a2/ux(a2) if it is due to blobs transporting between the probes. Blobs in the range 

a1 < a < a2 will contribute to the transport while undergoing a cascade to smaller blob 

sizes. Blobs with a < a1 make even greater contributions to the transport without 

undergoing fragmentation. Determining the size distribution for an ensemble of 

fragmenting blobs is beyond the scope of this paper, but we expect that it would be 

primarily populated by blobs in the essentially stable range a < a1. Taking a1 as an upper 

bound on the size of the blobs that carry flux to the far SOL and using Eq. (1) to estimate 

ux, we find that the corresponding lower limit on the blob radial velocity is given by ux > 

ux(a1) = (β/α)/a1
2.   

The assumption of isotropy used above is reasonably consistent with the expected 

nonlinear evolution of the blobs. The linearized stability analysis suggests that the 

essentially-stable blobs should be slightly elongated in the radial direction (in the absence 

of poloidal flows). This result follows if we assume that the nonlinear fragmentation of a 

blob produces objects whose size is determined by the wavelength of the fastest growing 

linear mode. For the case of poloidally-elongated blobs, we define the normalized 

wavevector Ky(xb) ≡ kyxb of the fastest growing mode obtained from the linear stability 

analysis in Fig. 2; we find that Ky is an increasing function of blob size. For the present 

estimate, consider the largest essentially-stable blob (xb = 10), which has Ky = 2.5. A 

reasonable assumption is that the half-width of the daughter blob corresponds to a quarter 

wavelength, i.e. yb = λ/4 where λ = 2π/ky. Combining these two relations gives xb/yb = 

2Ky/π = 5/π ≈ 1.6. For radially-elongated blobs, the linear stability analysis of Fig. 5 

gives the value of kxyb ≡ Kx(yb) for the fastest growing mode. The value of Kx increases 

with blob size and Kx > 1.0 for yb > 25. The case shown in Figs. 3 and 4 (yb = 30) is 

close to the largest essentially-stable radial blob and has Kx = 1.5. Assuming xb = λ/4 

where λ = 2π/kx leads to the result that xb/yb = π/(2Kx) = π/3.0 ≈ 1.0, which implies 

isotropy. The instabilities of the radially-elongated blobs/streamers have longer 
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wavelengths than those of the poloidally-elongated case; moreover, the growth rates are 

so weak that the effects of these modes may not actually be observed in the simulations. 

Thus, the two 1D calculations taken together suggest that the blobs will have a radial 

elongation xb/yb in the range 1-1.6, similar to what is observed in the 2D simulations 

discussed in the next section. However, sheared poloidal flows (neglected in our 1D and 

2D models) may also affect the final blob shape by stretching the blobs in the poloidal 

direction. In the presence of these flows, the blob shape would be determined by a 

competition between the sheared poloidal flow and instability time scales. 

In the calculations discussed so far, the dissipation coefficients D and ν were held 

fixed as the blob size was varied. We have also investigated the dependence of the 

stability and transport on these parameters. In the absence of inertia, it can be shown from 

either the nonlinear Eqs. (2) and (3) or the linearized Eqs. (16) and (17), that the blob 

radius a can be scaled out of the stability problem by the transformations  

    D → a D D̂≡ ,   as → as/a sâ≡ ,   γ → γ a3 γ≡ ˆ ,  ϕ → a ϕ ϕ≡ ˆ ,  n → n n̂≡ , (18) 

where n and ϕ denote either the equilibrium or perturbed potentials. Also note that 

c/ˆ γγ∝γ . It is interesting that the normalization of the growth rate to the convective time 

emerges naturally from this scaling. The crossing points discussed previously correspond 

to =γ̂ q/10 and q. In Fig. 6 we plot the equilibrium, stability and transport boundaries in 

the )D̂,â( s  plane for the poloidally-elongated blob with q = 3. The growth rates are 

calculated using the local dispersion relation in Eq. (14). The solid curves give the growth 

rate contours =γ̂ 0, q/10 and q, corresponding to c/γγ = 0, 0.1 and 1, respectively.  The 

curve farthest on the right is the marginal stability boundary ( =γ̂ 0). The region of small 

D̂andâs  below this curve is unstable and the growth rate increases towards the origin; 

the region above the marginal stability curve at large D̂andâs is stable. Moving 

leftwards from the =γ̂ 0 curve, the other two solid curves correspond to =γ̂ q/10 and q, 

respectively, which give the trajectories of the crossing points a1 and a2 in the )D̂,â( s  

plane. Using the 10 blob-radius criterion, the region of essential stability is the region 

above the curve =γ̂ q/10. Fast blob fragmentation (before moving one blob radius) 
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occurs below the curve =γ̂ q. Also shown is the upper limit on D̂ imposed by the 

requirement that the blob convect faster than it spreads due to diffusion ( cd γ<γ ). Thus, 

Fig. 6 generalizes the concepts illustrated in Fig. 2 and is useful for guiding the parameter 

choices for the 2D simulations in the next section.  

IV. 2D Simulation Results 

We have carried out 2D simulations of blob behavior in which the nonlinear Eqs. 

(2) - (4) are integrated in time. This approach is valid even when the blob is not in 

equilibrium (e.g. in the limit of large diffusion) and it allows investigation of the 

nonlinear evolution of the blobs. The 2D simulations confirm the main points from the 

1D stability analyses and illustrate qualitative features that may relate to the experimental 

observations.  

To simplify the simulation algorithm, the inertial term is neglected in Eq. (2); this 

approximation is valid for sufficiently large blobs satisfying the condition (ka)4 << α a5, 

where k is the wavenumber of the fastest growing mode and a is the blob radius 

(assuming a cylindrical blob). The ratio of the parameters α and β is fixed for all the 

results shown here (q = β/α = 1) and the viscosity is specified in terms of the smoothing 

radius as. Finally, we neglect parallel particle losses, valid for timescales t << 1/α, to 

focus attention on the physics of instability and dissipation. 

In Fig. 7, the growth of a robust interchange instability with ky ≠ 0 is illustrated 

for a blob propagating through a very small background density (nf = 0.01) in the 

presence of weak dissipation (D = 0.01, as = 10−4). The blob was initialized at t = 0 

using the functional form in Eq. (10) with nb = 1 and a = xb = yb = 10. The mode has 

grown to a large enough amplitude to break up the blob after a few convection times (t = 

1.75 τc), where τc = a/ux with ux given by Eq. (1). In this case, the nonlinear instability 

grows fast enough to affect the transport. 

Consistent with the 1D stability analysis, essentially stable blob propagation is 

possible in the 2D simulations by using a combination of diffusion, viscosity, and a 

background density to reduce the growth rate. Large diffusion causes the blob to spread 
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as it propagates, which is not what is observed in the experiments. Thus, we use a small 

value of the diffusion coefficient in the examples shown here and rely on a combination 

of viscosity and background density to stabilize the blobs. 

The stabilizing effect of the background density is illustrated in Fig. 8 for the 

parameters D = 0.01 and as = 0 (no viscosity). Again the blob was initialized at t = 0 

using Eq. (10) with nb = 1 and a = xb = yb = 10. In this figure, we compare the evolution 

of a blob for two values of the background density: (a) nf = 0.1 and (b) nf  = 0.5. Case (a) 

is clearly in the nonlinear phase of the instability at t = 3.8 τc, whereas case (b) does not 

yet exhibit instability at the same point in time. Figure 8 shows that increasing the 

background density for fixed blob height nb slows down the blob propagation and 

increases its stability. 

The influence of the background density on the blob shape and velocity is 

illustrated for a different series of runs in Figs. 9 and 10. This simulation has non-zero 

viscosity (as = 7) but small diffusion (D = 0.005); the other parameters are given in the 

figure caption. Figure 9 shows a comparison of the blob evolution after many convection 

times (t = 12.5 τc) for three values of the background density. In the case with the 

smallest background density (nf = 0.01), the blob is unstable and has bifurcated in the 

course of the simulation; at the time shown, the two daughter blobs are poloidally 

separated and have become radially elongated. The two cases with higher background 

density (nf = 0.1 and 0.5) are still stable after more than 10 τc. Also note that the radial 

velocity and the distortion in shape are largest for the case with the smallest background 

density. The radial elongation of the blobs is due to the development of a sheared flow 

pattern, which steepens the leading edge and produces a wake at the trailing edge of the 

blob (see Fig. 9). Reducing the density floor in the simulation speeds up the blob [toward 

the theoretical value in Eq. (1)], increases the distortion in its shape, and decreases its 

stability, leading to bifurcation. (However, it should be recalled from our earlier 

discussion in Sec. II B that removing the density floor entirely would eliminate the 

sheared flow which produces the distortion in blob shape. The limit nf → 0 is singular, as 

discussed previously, because in that case ϕ ∝ ∇yn/n is unbounded for large |y|.) Finally, 
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we note that the development of a steep leading edge followed by a long trailing wake is 

a universal feature in the experimental probe data.7,12,31 

The effect of nf on the blob velocity ux for these cases is shown in Fig. 10. The 

blob displacement x(t) is plotted as a function of time for the analytic result [Eq. (1)] in 

the absence of diffusion, viscosity or background density (dashed curve in Fig. 10), and 

for the three cases of Fig. 9 with varying background densities (solid curves in Fig. 10). 

Compared with the analytic value, the velocity ux is reduced in the simulations because 

of the effects of both the density floor and the viscosity. The viscosity is held fixed in the 

three simulations shown here, so the change in slope of the curves in Fig. 10 is due 

entirely to the background density. The time history in the unstable case (nf = 0.01) 

shows a very interesting cusp-like behavior. We see that the parent blob slows down 

before bifurcating and the smaller daughter blob accelerates after the bifurcation. The 

details of this bifurcation will be shown in more detail in Fig. 11. The increased slope in 

Fig. 10 after bifurcation, which indicates a larger radial velocity, is qualitatively 

consistent with the theoretical scaling of ux with poloidal blob size in Eq. (1). 

In Fig. 11, we illustrate the physics of blob bifurcation in more detail. This figure 

shows four frames in the time history of the case described in Fig. 9(a) and Fig. 10(b). 

The initial blob in Fig. 11(a) is circular. In Fig. 11(b) the growth of an instability with ky 

≠ 0 is evident. The bean shape of the blob in this frame (with two wings projected 

forwards) is universally seen in the simulations as the secondary instability develops and 

is probably associated with the background sheared flows seeding the instability. The 

nonlinear development of the instability in frames (c) and (d) leads to a complete 

bifurcation of the initial blob into two radially-elongated blobs. The end result of this 

simulation is consistent with the discussion in Sec. III, where it was shown that the 

strongest instability is driven by poloidal modulations of the density (ky ≠ 0), suggesting 

that 2D blobs will be either isotropic in shape or somewhat radially-elongated.   

The behavior of the radial velocity ux in Fig. 10(b) can be understood from the 

evolution of the blob shape in Fig. 11. We see that the blob elongates in the poloidal 

direction [Fig. 11(b)] before it bifurcates and then compresses in the poloidal direction 
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after bifurcation as it elongates radially [Fig. 11(c)]. This behavior accounts for the slow-

down before and speed-up after bifurcation observed in Fig. 10(b). Also, note that the 

radial velocity is independent of the radial elongation because the charge polarization 

driving the outwards drift occurs in the poloidal direction. 

Finally, in Fig. 12 we show the interaction of a small and a larger blob traveling at 

the same poloidal location. Since a small blob travels faster than a large one, the small 

one catches up to the larger one if it starts out behind it. The result is a merger, as shown 

in Fig. 12. This run uses substantial diffusion and viscosity so that the large blob is stable 

without a significant background density. The effect of diffusion on the blobs is evident 

on the long time scale shown (t = 0.62 τd). 

V. Summary and Discussion 

The blob model provides a natural mechanism for SOL particle transport. One of 

the key features of the model is that the radial velocity depends on the poloidal blob size 

[Eq. (1)], because the charge separation giving rise to the E×B drift occurs over this 

distance. In this paper, we have shown that the poloidal blob size distribution is modified 

by secondary instabilities of the sheath-interchange type, driven by curvature and 

weighted by the blob pressure profile. The fastest growing interchange instabilities can be 

"global" on the scale of the blob and cause fragmentation of the blobs into smaller objects 

which propagate more rapidly than the original ones, thereby increasing the radial particle 

transport. The evolution of the blob size distribution due to instabilities and its effect on 

the radial transport is one of the main points of this paper.  

A survey of the main dependences of the growth rate was carried out in Sec. III 

using one-dimensional models (assuming infinite elongation in either the radial or 

poloidal directions). It was shown that poloidally-elongated blobs were unstable to both 

local and non-local modes with ky ≠ 0, whereas radially-elongated blobs were only 

weakly unstable to non-local modes with kx ≠ 0. For the fastest growing modes in the 

poloidally-elongated case, kyxb is order unity, which suggests that the blobs tend toward 

isotropy as they go unstable. Applying these results to two-dimensional cylindrical blobs 
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with radius a, the growth rate was compared with typical diffusive and convective time 

scales in Fig. 2, discussed in Sec. III C.  It was shown that the competition between the 

stability and transport time scales leads to two characteristic blob radii. First, there is a 

critical blob radius (a = a1) below which the blob is essentially stable during the time it 

takes to convect to the wall, whereas larger blobs (a > a1) break up before reaching the 

wall. Thus, the requirement of interchange stability puts an upper bound on the blob radii 

(a < a1), and a corresponding lower bound on the blob radial velocities [ux > (β/α)/a1
2], 

contributing to transport. Very large blobs (a > a2) go unstable and break up before 

moving one blob radius, so they will probably not be observed in the experiment. This 

implies that the experimentally-measured radial autocorrelation time should be roughly 

given by τ = a2/ux(a2) if it is due to blobs transporting between the probes. This estimate 

is in factor of 2 agreement with the measured autocorrelation times. 

We mention in passing another application of the poloidally-elongated blob 

stability analysis. By giving a "preferred" (e.g. most unstable) wavenumber ky, it 

motivates the use of projection onto a restricted set of wavenumbers (e.g. ky = 0 and ky = 

kmax) as an approximation technique for reducing the simulation problem to a set of 1D 

radial equations. This technique has been used for studying bursty transport32 and for 

studying electromagnetic corrections to blob theory and its application to the density limit 

problem.33 

The results of 2D simulations of blob dynamics were described in Sec. IV. The 

2D simulations verify the instability physics described in the linearized 1D models and 

extend the treatment to the nonlinear regime. The secondary instabilities have the effect 

of reducing the typical blob size and increasing the transport in the simulations. The 

analytic scaling of radial velocity with poloidal blob size is recovered in the appropriate 

limits and extended here to include the effects of dissipation and of a background density. 

The simulations show a rich variety of blob dynamics, including bifurcations and 

mergers, which is reminiscent of the images seen in 3D turbulence simulations21 and in 

the GPI sequences.11,13 
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An important result of the present work was the investigation of the dependence 

of the blob shape, velocity and stability on the background plasma density, which is 

neglected in the analytic density blob model.17,18 [See the discussions after Eq. (10) in 

Sec. II and of Figs. 9 and 10 in Sec. IV]. The background density increases the density 

scale length L, especially in the low-density tail. This effect reduces the charge 

polarization, which drives the radial velocity and the linear instability drive, thereby 

slowing down the blob and helping to suppress its break-up. The background density also 

modifies the blob shape, creating a steep leading edge and a trailing wake, which causes 

the blob to elongate in the radial direction. All of these effects are sensitive to the blob 

amplitude above the background, fnnn −=δ ; the analytic blob model is recovered in 

the vacuum limit (nf → 0) and the blob transport becomes unimportant in the limit of low 

amplitude (δn → 0). 

The effects of the background density may be important in comparing theory with 

experimental data. In the near SOL, there is a significant background density due to 

diffusion of particles from the core, but this background density profile nf(x) is observed 

to decay more rapidly than the blob density profile )x(n .7,12 As the blobs move further 

into the SOL, the present work suggests that the decay of the background density should 

cause the blobs to speed up, to break up into smaller fragments (which further enhances 

their transport), and to become less elongated radially. 

A number of physical effects were omitted from the present work and should be 

included in a complete theory. Fine-scaled Kelvin-Helmholtz instabilities driven by 

velocity shear were not discussed here but have been shown to play a role for small blobs 

in other recent simulations.27,28 Including these modes requires a proper treatment of the 

inertial term in Eq. (2). The present model also neglects temperature gradients in the blob 

and the background plasma, and thus omits blob rotation due to the Bohm potential 

( eT3≈Φ ) and diamagnetic flow uy(x). Including temperature-gradient effects may 

explain the near-isotropy of blob shapes observed in the GPI data. Extensions of the 

model to include these effects and comparisons of the model with experimental data will 

be the subject of future work. 
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Figure Captions     

Fig. 1 Plots of the density profile )x(n of the poloidally-elongated blob (solid curve, 

labeled "n") and the normalized eigenfunction )x(~ϕ of the most unstable mode 

(dashed curve, labeled "phi") for ky = 0.25, xb =  10, D = 0.001, ν = 0.1, q = 3, 

and nf = 0.01. 

Fig. 2 Plots of the dimensionless instability growth rate and transport rates vs radial blob 

size xb for poloidally-elongated blobs. Here, γ and xb are in units of Ωi and ρs, 

respectively. Shown are (a) γmax(xb) for the non-local numerical solution (lower 

solid curve), (b) γmax(xb) for the local analytic solution (upper solid curve),  (c) 

γc(xb)/10 (lower dashed curve) and (d) γc(xb) (upper dashed curve). The 

parameters are D = 0.001, ν = 0.1, q = 3 and nf = 0.01. The dots and arrows 

indicate the crossings of the stability and transport curves at xb = a1 and a2, as 

explained in the text. 

Fig. 3 Equilibrium profiles for the radially-elongated blob. Shown are the density 

weighting n/)y(n)y(d ′=  for the curvature drive (solid curve, labeled "d"), the 

equilibrium potential )y(ϕ (short-dashed curve, labeled "phi"), and the radial 

velocity )y(u x  with arbitrary normalization (long-dashed curve, labeled "u") for 

the parameters yb =  30, D = 0.001, ν = 0.1, q = 3, and nf = 0.01. 

Fig. 4 Comparison of n/)y(n)y(d ′=  with arbitrary normalization (solid line, labeled 

"d") and the real part of the most unstable eigenfunction )y(~ϕ (dashed line, 

labeled "phi") for the radially-elongated blob with parameters kx = 0.05, yb =  20, 

D = 0.001, ν = 0.1, q = 3 and nf = 0.01. 

Fig. 5 Plots of the dimensionless instability growth rate and transport rates vs poloidal 

blob size yb for radially-elongated blobs. Here, γ and yb are in units of Ωi and ρs, 

respectively. Shown are (a) γmax(yb) for the non-local numerical solution (solid 

curve), (b) γc(yb)/10  (lower dashed curve), and (c) γc(yb) (upper dashed curve). 

The parameters are D = 0.001, ν = 0.1, q = 3 and nf = 0.01. The arrow indicates 

the crossing of the stability and transport curves. 
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Fig. 6 Equilibrium, stability and transport boundaries in the )D̂,â( s plane for poloidally-

elongated blobs with q = 3. The parameters sâ = as/a and D̂ = aD scale the blob 

radius a out of the stability problem. 

Fig. 7 Strongly unstable density blob in the nonlinear phase. The blob was initialized 

using Eq. (10) with xb = yb = 10, nb = 1 and nf = 0.01; the other parameters are D 

= 0.01, as = 10−4, and t =1.75 τc. 

Fig. 8  Blob propagating on a floor density nf of (a) 0.1 and (b) 0.5 after the elapsed time 

t = 3.8 τc.  The blob was initialized using Eq. (10) with xb = yb = 10 and nb = 1; 

the other parameters are D = 0.01 and as = 0. Case (a) is clearly in the nonlinear 

phase (γ t >> 1) whereas case(b) is not yet unstable. 

Fig. 9  Blob propagating on a floor density nf of (a) 0.01, (b) 0.1 and (c) 0.5 for the 

parameters D = 0.005 and as = 7. The blob was initialized using Eq. (10) with xb 

= yb = 10 and nb = 1. The elapsed time is t = 12.5 τc.   

Fig. 10 Blob displacement x vs t/τc for the analytic result in Eq. (1) with D = as = nf  = 0 

(dashed line), and the three cases shown in Fig. 9 (solid curves). The latter cases 

have a floor density nf of 0.01, 0.1, and 0.5, respectively, with D = 0.005 and as = 

7.  Note that the nf = 0.01 case exhibits slow-down before bifurcation and speed-

up afterwards. The reduced ux for the solid curves is due to both the effects of 

non-zero background density and viscosity. 

Fig. 11 Blob propagation with finite viscosity showing weak instability and subsequent 

bifurcation for the case nf = 0.01 in Fig. 10 at four values of t/τc: (a) 0, (b) 6, (c) 

9, and (d) 12. 

Fig. 12 Merger of a small and large blob for the parameters D = 0.005, as = 10 and nf =  

0.01.  The simulation results are shown at three values of t/τc: (a) 0, (b) 4.5, and 

(c) 9. 
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Fig. 1 Plots of the density profile )x(n of the poloidally-elongated blob (solid curve, 

labeled "n") and the normalized eigenfunction )x(~ϕ of the most unstable mode 

(dashed curve, labeled "phi") for ky = 0.25, xb =  10, D = 0.001, ν = 0.1, q = 3, 

and nf = 0.01. 
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Fig. 2 Plots of the dimensionless instability growth rate and transport rates vs radial blob 

size xb for poloidally-elongated blobs. Here, γ and xb are in units of Ωi and ρs, 

respectively. Shown are (a) γmax(xb) for the non-local numerical solution (lower 

solid curve), (b) γmax(xb) for the local analytic solution (upper solid curve),  (c) 

γc(xb)/10  (lower dashed curve) and (d) γc(xb) (upper dashed curve). The 

parameters are D = 0.001, ν = 0.1, q = 3 and nf = 0.01. The dots and arrows 

indicate the crossings of the stability and transport curves at xb = a1 and a2, as 

explained in the text. 
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Fig. 3 Equilibrium profiles for the radially-elongated blob. Shown are the density 

weighting n/)y(n)y(d ′=  for the curvature drive (solid curve, labeled "d"), the 

equilibrium potential )y(ϕ (short-dashed curve, labeled "phi"), and the radial 

velocity )y(u x  with arbitrary normalization (long-dashed curve, labeled "u") for 

the parameters yb =  30, D = 0.001, ν = 0.1, q = 3, and nf = 0.01. 
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Fig. 4  Comparison of n/)y(n)y(d ′=  with arbitrary normalization (solid line, labeled 

"d") and the real part of the most unstable eigenfunction )y(~ϕ (dashed line, 

labeled "phi") for the radially-elongated blob with parameters kx = 0.05, yb =  20, 

D = 0.001, ν = 0.1, q = 3 and nf = 0.01. 
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Fig. 5 Plots of the dimensionless instability growth rate and transport rates vs poloidal 

blob size yb for radially-elongated blobs. Here, γ and yb are in units of Ωi and ρs, 

respectively. Shown are (a) γmax(yb) for the non-local numerical solution (solid 

curve), (b) γc(yb)/10  (lower dashed curve), and (c) γc(yb) (upper dashed curve). 

The parameters are D = 0.001, ν = 0.1, q = 3 and nf = 0.01. The arrow indicates 

the crossing of the stability and transport curves. 
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Fig. 6 Equilibrium, stability and transport boundaries in the )D̂,â( s plane for poloidally-

elongated blobs with q = 3. The parameters sâ = as/a and D̂ = aD scale the blob 

radius a out of the stability problem. 
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Fig. 7 Strongly unstable density blob in the nonlinear phase. The blob was initialized 

using Eq. (10) with xb = yb = 10, nb = 1 and nf = 0.01; the other parameters are D 

= 0.01, as = 10−4, and t =1.75 τc. 
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Fig. 8  Blob propagating on a floor density nf of (a) 0.1 and (b) 0.5 after the elapsed time 

t = 3.8 τc.  The blob was initialized using Eq. (10) with xb = yb = 10 and nb = 1; 

the other parameters are D = 0.01 and as = 0. Case (a) is clearly in the nonlinear 

phase (γ t >> 1) whereas case(b) is not yet unstable. 
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Fig. 9 Blob propagating on a floor density nf of (a) 0.01, (b) 0.1 and (c) 0.5 for the 

parameters D = 0.005 and as = 7. The blob was initialized using Eq. (10) with xb 

= yb = 10 and nb = 1. The elapsed time is t = 12.5 τc.   

Fig 9
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Fig. 10 Blob displacement x vs t/τc for the analytic result in Eq. (1) with D = as = nf  = 0 

(dashed line), and the three cases shown in Fig. 9 (solid curves). The latter cases 

have a floor density nf of 0.01, 0.1, and 0.5, respectively, with D = 0.005 and as = 

7.  Note that the nf = 0.01 case exhibits slow-down before bifurcation and speed-

up afterwards. The reduced ux for the solid curves is due to both the effects of 

non-zero background density and viscosity. 
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Fig. 11 Blob propagation with finite viscosity showing weak instability and subsequent 

bifurcation for the case nf = 0.01 in Fig. 10 at four values of t/τc: (a) 0, (b) 6, (c) 

9, and (d) 12. 

 

Fig 11

- 20 0 20 40 60 80
- 40

- 20

0

20

40

- 20 0 20 40 60 80
- 40

- 20

0

20

40

- 20 0 20 40 60 80
- 40

- 20

0

20

40

- 20 0 20 40 60 80
- 40

- 20

0

20

40

y

x x

y

(a) (b)

(c) (d)



   
 

 40 

 

 

 

Fig. 12 Merger of a small and large blob for the parameters D = 0.005, as = 10 and nf =  

0.01.  The simulation results are shown at three values of t/τc: (a) 0, (b) 4.5, and 

(c) 9. 
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