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A. Introduction and Overview

Motivated by the growing capability of numerical rf simulations, there is a need to
develop appropriate post-processing tools for extracting physical information from the
numerical solutions. For example, full-wave ICRF codes yield complicated rf field
patterns, and the challenge is to understand these patterns by appealing to the intuitive, but
approximate, physics-based notion of local plasma modes (global eigenmodes, transmitted
and reflected waves, and mode conversions between different types of waves).
Quantitative information on the local wavevectors, amplitudes and wave polarizations is
desired, both for basic understanding and for use in calculating the ICRF-driven flows [1-
3]. These notes will discuss numerical techniques (based on windowed Fourier transforms
and wavelets) for the local mode analysis of 1D [3] and 2D [4, 5] toroidal ICRF field
solutions, including mode-conversion scenarios, as part of the rf SciDAC project. The
approach we have followed is to start with the simplest technique and gradually work
towards more complicated methods when the simpler methods fail. In this section, we give
a brief overview of the results and defer the details until later sections.

We illustrate these methods by considering the one-dimensional (1D) case where
the function to be analyzed is a function f(x), represented by its values f; = f(x;) on a grid
of N spatial points x;. The 1D transform specifies the mapping f(x) — F(k) where k = k, 1s
also represented on a grid of N points. In the numerical examples below, we will analyze
E(x) obtained from a fast wave (FW) to ion Bernstein wave (IBW) mode-conversion case
computed by the ID AORSA code with x =R — R and k = k, e, + (n/R) e,, where R is
the major radius of the tokamak and n is the toroidal mode number. This case uses
parameters similar to those of the rf SCciDAC benchmark 2D case [4, 5] and includes the
important effect of the poloidal magnetic field on the wave physics.

The simplest approach is to use the usual discrete Fourier transform to resolve
the wave propagation data into global k modes. This identifies all the relevant physical
modes in the entire spatial domain of interest but does not yield any information as to their
spatial location, nor does it yield insight into relationships among modes such as mode
conversion.

To resolve this difficulty, one is led to consider the Windowed Fourier
Transform (WFT) technique, in which the function E(x) to be transformed is multiplied
by a window w(x). The best results are obtained using a window function that has no
sharp discontinuities, e.g. a Gaussian w(x) = Exp[—(x—x()?/(2x,,2)], where x and x,, are
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the location and width of the window. The WFT method with a constant window width
works well for a single wave or for the case of multiple waves with similar wavelengths,
but it fails for the case of multiple waves with very different wavelengths. For example, the
WEFT method is not suitable for treating the mode conversion of a long wavelength fast
wave (FW) to a short wavelength ion Bernstein wave (IBW). A large window is needed to
resolve the wavelength (or k) of the FW but does a poor job in giving the spatial location
of the IBW; a small window does a good job in resolving the IBW but does a poor job in
resolving the FW wavelength.

An analysis of this problem shows that it stems from the need to minimize two
conflicting types of errors: (1) the “Heisenberg” error Ak; = Cnt/Ax, where C is a constant
of order unity and Ax is the size of the region in which the transform is carried out (here,
the window width), and (2) the “non-local” or “gradient” error Ak, ~ (0k/Ox) Ax, where
k(x) 1s the local (eikonal) wavenumber. Note that the Heisenberg error goes away in the
limit of a large window, whereas the gradient error goes away in the limit of a small
window. So there is a competition between the two effects which produces an “optimal”
window width such that the two errors are equal. The optimal window depends on the
wavelength, i.e. X, = xy(k). Thus, we must generalize the Windowed Fourier Transform
technique to have a window width that scales with k.

The idea of a transform involving basis functions that are translated and scaled is
well-known and such objects are called “wavelets” in the mathematical and engineering
literature [6-10]. A variety of discrete and continuous wavelets have been developed for
application in fields as diverse as signal processing, image compression, and scientific data
analysis. In fact, the Morlet wavelet [6] is essentially equivalent to a windowed Fourier
transform with a scaled Gaussian window, x,, = cy/k, where c; is a constant. We
implemented this technique and evaluated its usefulness for 1D mode conversion data. The
scaled window is a big improvement over the WFT, but the scaling breaks down at k = 0.
The infinite window width at k = O leads to large gradient error and false peaks in the
spectrum. However, it is essential in treating the FW to IBW mode conversion problem
that one resolve k’s of both signs and therefore handle the behavior at k = 0.

We have developed a simple modification to the Morlet wavelet approach that
allows us to keep its good features while still resolving the k = 0 region. We introduce
another constant k( and scale the window width as x, = cg/(k2 + ky2)!/2 so that x,, —
co’ky as k — 0. While this spoils the pure wavelet scaling in a small region, it permits us
to obtain a physical answer over the whole x-k plane. For reasons given below, we refer to
this approach as the “k-wavelet” method. It can be regarded as a WFT with a window
width that depends on k, or as a Morlet wavelet with a suitable patch at k = 0. It should
be emphasized that we do not need the “pure” wavelet scaling for our application. We are
simply using the wavelet transform for visualization and for extracting the dispersion
function k(x). We will show that the k-wavelet method provides a useful tool for
graphically obtaining this information.



In the following sections, we present some of the technical details and results of
the approaches described above. We conclude with a section describing some physics
results which can be obtained by applying the k-wavelet technique.

B. Windowed Fourier Transforms

We begin with some definitions and conventions. Let f(x) be the function to be
transformed and let it be defined and periodic on the interval [x,,xy], i.e. f(x,) = f(x,). The
function is represented numerically on an equally-spaced grid of N points, f; = f(x;) (1 =1,
2...N) where x; = x, + (1 — 1) Ax and Ax = X;;1—%; = (X, — X,)/N = 2L/N. Here, L is the
half-periodicity length, N is the number of sub-intervals and N+1 is the number of points
on the full domain [x,, x,]. Note that the N+1* value is not needed because of periodicity,
fn+1 =11 Also, let the set of coefficients {F,}, n = 1...N, denote the discrete Fourier
transform of {f;}, 1=1 to N. Although the calculation is carried out on a discrete grid, we
will sometimes adopt the continuum notation for simplicity of presentation; in this notation
the forward transform is denoted by f(x) — F(k).

We define the forward and inverse Fast Fourier Transforms (FFT) by:

1 N .
Fy = X fiexp[~(ikyxi)] , (1)
Ni=1
N .
= Y F explik,x;] , 2)
n=]
where k, = — kT (n — 1) Ak; here, Ak = /L and kp,,, = /A are the minimum and

maximum wavenumbers, respectively, that can be resolved on the grid. Note that no
restriction is made on the values of the endpoints [x,, x,] and that we use a k-grid
centered about k = 0. Both of these conventions differ from the ones used in
Mathematica, but we have constructed our transform functions to do the appropriate
transformations so that the conventions in Eqgs. (1) and (2) are implemented in our
Mathematica notebooks. The forward FFT transforms f(x) — F(k) so that all information
is lost regarding the spatial location of a wave with a particular value of k. In other words,
the k’s are “global” rather than “local”: they include all the values taken by the local k(x)
on the interval [x,, x,] covered by the transform. In order to get information on the local
k, we turn to the Windowed Fourier Transform.

The Windowed Fourier Transform (WFT) of f(x) is obtained by taking the FFT of
the product f(x) w(x), where w(x) is a window function that selects a subset of the total x
interval. We have compared step-function and Gaussian windows and found that the latter
yields better results because it has no discontinuities. Thus, we define the forward WFT by

(1 XO)

Fo(xg, Xy, k)= f exp[—(ik ,x;)] exp| - 1 3)

1
N;

Mz
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where the Gaussian w(x;) has two parameters: the window position x; and the window
width x,. If we take x, to be constant in x and independent of k, then the WFT is a
function of x(, and k (or n); in continuum notation F = F(x, k) with x, as a parameter. For
the applications of interest here, a plot of F(x, k) contains in principle the desired physical
information and we do not need the inverse WFT.

As an example to test the WFT method, we transform the rf electric field
component E.(x) computed by the 1D AORSA code [3] for a DIII-D D(H) mode
conversion reference case [4, 5]. The 1D equilibrium used here includes a model of the 2D
poloidal magnetic field, which has an important effect on the wave physics. In particular,
the wave physics above and below the midplane can be significantly different. Unless
otherwise stated, the solution used here had parameters corresponding to a horizontal slice
of the 2D equilibrium taken above the midplane. The present 1D transform analysis serves
to illustrate the pros and cons of the various transform techniques.

Figure 1 shows 3D plots of the spectral power density P(xg, k) = [F(xg, k)72,
where f = E (x), for two values of the window width x,. In Fig. 1(a) the large window
width allows us to resolve the incident and reflected FW, but the mode-converted IBW is
not spatially localized. In Fig. 1(b) the smaller window clearly shows the IBW, but the k-
structure of the FW is lost. This example illustrates that a fixed window width can not
simultaneously resolve and localize all wavelengths.

As discussed in Sec. A, the problem illustrated by Fig. 1 stems from the need to
simultaneously minimize two conflicting types of errors: the “Heisenberg” error Ak, and
the “non-local” or “gradient” error Ak,, defined as

Ak, zgx—kAX — K)AX | 4)

Aky =C-~ |
Ax
where C = 2 gives good estimates in our numerical tests, and we take Ax ~ x,. Note that
the Heisenberg error vanishes in the limit x,;, — oo, whereas the gradient error is eliminated
in the limit x, — 0. Thus, there is a competition between the two effects which produces
an “optimal” window width. Defining the optimal x;, by the condition Ak (xy,) = Aky(x,)

yields the following expression:

- 1/2
won ) ®

which implies that the optimal window width depends on k(x) and is therefore not
constant in the (x, k) plane. This leads to the conclusion that we need to scale x, with k.
A useful starting point is to adopt a scaling along the lines suggested by the Heisenberg
formula: x, oc 1/k. This scaling is naturally implemented by using wavelet transforms.
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Fig. 1 Spectral power density P(xq, k) for the Fourier transform of Ey(x) with two window
sizes: (a) xy, = 0.25 m, and (b) x,, = 0.05 m. The label x refers to xg in this plot and the
scale is in m; the scale of K is in m-1.



C. Wavelet Transforms

Wavelet transforms [6-10] allow one to analyze a signal or a field pattern into both
space and scale (time or space) simultaneously. As with other transforms, wavelets can be
treated as either discrete or continuous functions of the independent variables. Important
applications of wavelets include signal processing, image coding, and numerical analysis.
One of the early workers in this field was Morlet, a French research scientist working on
seismic data analysis, who developed continuous wavelet transforms of practical
importance for processing scientific data. Wavelets have several potential applications of
interest to fusion. For example, they may be a useful technique in reconciling two different
aspects of turbulence: the turbulent cascade of wavenumber in Fourier space vs the
formation of coherent spatial structures in physical space. Another important application is
the one of interest here, viz. the description of wave propagation and mode conversion in
complex media, where both the local wavenumber and its spatial location are important.

The essential difference between the Fourier and wavelet approaches lies in the
spatial structure of the basis functions used in each case: spatially-extended trigonometric
functions in the Fourier approach vs. spatially-localized functions in the wavelet approach.
To take an example of present interest, the Morlet wavelet [6, 7] is given by

2
‘PM[X_XOj:exp icO[X_XOJ exp —% , (6a)
Xw Xw 2 Xy
where ¢, 1s a parameter used to control the relative sizes of the Heisenberg and non-local
errors. For present purposes, note that the Morlet function ¥)4(x) is spatially localized

around x = x, by the Gaussian envelope with a half-width given by x,,. The relation to
Windowed Fourier Transforms is made explicit by defining

xy=co/k . (6b)

Thus, the Morlet wavelet is equivalent to the Gaussian WFT with a window width o 1/k.
Eq (6b) implies that k and x, are equivalent parameters, so we will regard the wavelet as a
function of (x, k) rather than (x(, x,,). Finally, note that the conditions that (a) the eikonal
(WKB) approximation is satisfied, and (b) the eikonal wavenumber is well resolved by the
specified window width can be written as

kLy >> kxy=cop > 1, (7

where L, is the equilibrium scale length.

Before proceeding with the calculation, a brief discussion is useful to put this work
in perpective relative to the wavelet literature. There are two broad classes of wavelets:
discrete wavelet transforms (DWT) and continuous wavelet transforms (CWT). DWTs are
constructed to have the properties of zero average (“admissibility”), orthogonality, and
existence of an inverse transform. The “pyramidal algorithm” for DWTs [7-9] gives a fast
inversion and is very useful for commercial applications, such as data compression and
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signal processing, but it is not useful for extracting phase information, the application of
interest here. To get complex phase information, one needs a complex CWT, which
cannot be made orthogonal because the continuous wavelets overlap, giving redundant
information. Continuous wavelet transforms can be implemented numerically on a grid, as
done in the present work, but this technique should not be confused with true discrete
wavelet transforms, such as the Haar or Daubechies wavelets [8]. Thus, the present
application of wavelets is somewhat non-standard in that it is meant to extract phase
information (in addition to the usual scale information), in a situation where there are well-
defined waves. For this application, we are only interested in using the forward wavelet
transform and do not need to be able to invert the transform. The other DWT conditions
(admissibility, orthogonality) also do not apply here.

For the present application, we apply the Morlet wavelet on the spatial grid
defined above and define the wavelet transform f(x) - W(x, k) as

N -
W(Xo,k) :%Z fi T*(uj

i=1 Xw

2
N . — .
L3, exp{_ ico[uﬂexp _(xi=xg)”

2
i=1 Xw 2X

©)

where the 1/N factor was chosen to give the same normalization as in the WFT case and
we henceforth drop the subscript M on the wavelet function.

Equation (8) implies that the desired transform is the convolution of f(x) with ¥[(x
— Xo)/Xy]- If we were to compute this in x-space for each value of k on the k-grid, the
required number of computations would scale like N2, which is inefficient. The
convolution theorem can be used to recast the convolution into k-space FFTs [10]. The
resulting calculation scales like N In N, because for each value of k we obtain the entire
dependence on x;,. Moreover, the convolution is easy to code in Mathematica and
executes quickly using the built-in FFTs. Thus, we re-write Eq. (8) as

W(xO,k)=§3‘l(S[f(x>] 3{?*(ﬂ>D : )

Xw

where 3[f(x)] denotes the forward Fourier transform of f(x), 3! denotes the inverse
Fourier transform, and the k dependence on the rhs of Eq. (9) is implicit through the
relation k = cy/x,,. In the implementation of Eq. (9), care must be taken to ensure that
Y[(x — x¢)/xy,] is periodic, i.e. that the window function “wraps around” the boundaries of
the x interval [x,, Xp].

Aside: This is easily implemented in Mathematica by computing the list {w;},1=1to N,
where w; = W[(x; — x()/xy,] with x;, chosen to lie in the interior of the interval, e.g. x; =
(x,7x},)/2; then we rotate this list N/2 times to get the wavelet function corresponding to x;
= x, with the function properly wrapped around the x boundaries. The result of evaluating
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the rhs of Eq. (9) for the latter form of the wavelet function yields a list whose first element
corresponds to x; = x, and whose last element corresponds to x; = x,, which is gridded
representation of the desired function W(x, k).

It turns out that there is a problem with applying the Morlet transform to the ICRF
solution which can be illustrated by plotting the wavelet spectral power density, P(x, k) =
[W(xg, k)|2. A 3D plot of P(x, k) is shown in Fig. 2 for the case ¢y = 6 with f{(x) = E(x).
One sees an improvement over the WFT technique in that the wavelet method can resolve
both the FW and IBW simultaneously. However, there is a problem near k = 0 associated
with the singularity in Eq. (7): x, — o as k — 0, which introduces unphysical oscillations
in the spectrum P(k). As the window scale increases, the gradient error becomes very
large and causes the extra peaks. For ICRF calculations with incident and reflected waves
we must modify this technique to eliminate the k = O singularity. This is discussed in the
next section.

200000
150000
100000
50000
0

-50

Fig. 2 Spectral power density P(x,, k) for the Morlet wavelet transform of E,(x)
using the scaling x,, = co/k with cy= 6. Note the rapid oscillations near k = 0
which are unphysical. The label x refers to xg in this plot and the scale is in m;
the scale of kisin m~1.



D. Modified Wavelet Transforms

In this section we discuss a modified wavelet transform technique which preserves
the scaling of the Morlet wavelet at large k but satisfies two additional conditions: (i) it
describes windowed plane waves ~ exp[i kx] for all k, and (ii) it has a finite window width
(spatial scale) x,, at k = 0. Both of these conditions are satisfied by the following minor
modification of the Morlet wavelet which we call the “k-waveler”:

K (x-xp)”

2 kzxw2

‘P[k(x—xo)]:exp[ik(x—xo) exp| — (10a)

XW:;—O , (10b)
vk~ +ko?

where k() is a parameter that determines the wavelet scale at k = 0: x,(k = 0) = c¢/k.
Note that Eq. (10b) is the needed generalization of Eq. (7) to prevent the k = 0 singularity.
This form also preserves the correct phase information for both signs of k.

Strictly speaking, the function in Eq. (10) is not a pure Morlet wavelet because the
wavelet scaling is not preserved for small k, i.e. kx,, is not a constant as k — 0. In this
limit, it reduces to a Gabor windowed Fourier transform. One could equally well regard
this as a modified WFT approach with a window scaled according to Eq. (10b) and using
the convolution technique of Eq. (9). However, it is so close to the spirit of the wavelet
approach that we prefer to view Eq. (10) as a modified wavelet. Since it is a hybrid of the
Gabor transform as k — 0 and the Morlet wavelet as k — o, one could also refer to it as
a "Gabor-Morlet transform".

Substituting Eq. (10) into Eq. (9) yields the modified k-wavelet transform W(x,
k). A 3D plot of the wavelet spectral power density, P(x, k) = [W(xq, k)2, is shown in
Fig. 3 (see next page) for the case ¢y = 5, ky = 40 m~1. Here, W(x, k) is the wavelet
transform of the rf field component E,(x) and k = k,. One sees the incident and reflected
fast waves at +20 m~1 and the mode-converted IBW propagating at large k. The behavior
near k = 0 is now physical.

It is interesting to compare the modified wavelet approach with the original
windowed Fourier transform results. This is shown in Fig. 4 (see next page), where we
compare contour plots of the WFT analysis using x, = 0.25 m with the k-wavelet case of
Fig. 3. We see that the resolution of the long- wavelength FW is comparable in the two
plots, but the wavelet approach has much better spatial resolution of the short-wavelength
IBW at large k.



100

Fig. 3 Spectral power density P(xg, k) for the k-wavelet transform of E«(x) using
the scaling x, = cp/(k?+ kg2)1/2 with cy= 5 and kg= 40 m~1. Note that the
behavior near k = 0 is now physical and all waves are resolved. The label x
refers to xg in this plot and the scale is in m; the scale of k is in m-1.
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Fig. 4 Contour plots of the spectral power density P(xq, k) for (a) the windowed
Fourier transform of E,(x) with x,, = 0.25 m, and (b) the k-wavelet transform of
Ey(x) using the scaling x,, = cg/(k?+ ky2)1/2 with cq = 5 and kg = 40 m~1. Note
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that the wavelet approach gives much better resolution of the IBW. The label x
refers to Xg in this plot and the scale is in m; the scale of k is in m-1.

E. Physics Applications of the modified Wavelet Transform

Now that we have a working method, we can use it to extract useful physical
information from the computed rf fields. In this section, we explore some of the
applications of the k-wavelet method and generalize our discussion to include all
components of the rf field.

The contour plot in Fig. 4(b) provides information on the dependence k = k,(x) for
the incident and reflected FW and the mode-converted IBW. We see the incident FW
propagate to the left with k < 0 and encounter the mode-conversion surface near x = 1.5,
giving rise to a reflected FW with k > 0O (visible as small “fingers” on the plot) and the
IBW that propagates to the left (smaller x) with a positive k. Thus, this plot illustrates that
the IBW is a backward-propagating wave. To get more quantitative information, it is
useful to examine vertical cuts of the spectral power density P(k) = [W(x, k)|2 at fixed x.
Figure 5 compares P(k) at x; = 1.75 m in the outer plasma (dashed curve) and xy = 1.6 m
near the mode conversion layer (solid curve). The incident and reflected FW peaks are
located at k = +25 m~! and one sees the decay of the incident (reflected) wave as it
propagates to smaller (larger) x.

P
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-40 -20 0 20 40

Fig. 5 Plot of the wavelet spectral power density P(k) at fixed xq obtained by the
k-wavelet transform of E,(x) for the same parameters as in Fig. 3(b). The
dashed curve corresponds to xg = 1.75 m, located in the outer plasma; the solid
curve corresponds to xg = 1.6 m, near the mode conversion layer.

So far, we have only applied the wavelet transform to the x-component of the rf
field, E\(x). Now we generalize the treatment to the other field components and define the
spectral power density Po(xg, k) = [Wa(xg, k)|2, where W, is the k-wavelet transform of

E (x).

To test the quantitative accuracy of the wavelet analysis of the AORSA numerical
solution, in Fig. 6 we compare the contour plot of P,(x, k) = Pu«(x(, k) + Py(x,, k) (shown
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in red) with the 1D hot-plasma dispersion relation (heavy blue lines). As an aside, we
mention that two improvements are made in Fig. 6 as compared with Fig. 4b. More contours are
used to show the details more clearly, and we plot P.(x, k) rather than P.(x,, k). Note that P.(x,
k) is a measure of the intensity of the wavelet transform of E,(x) = (E,2 + E,2)1/2 and is
probably a more physical quantity to plot, since the E, component plays an important role
for the FW.
300r
l

Fig. 6 Comparison of the k-wavelet spectral power density P, (xy, k) (red
contour lines) with the hot-plasma dispersion relation (blue lines). The solid
(dashed) blue lines depict propagating (heavily damped) modes. The label x
refers to X in this plot and the scale is in m; the scale of k is in m-1.

There are several points of agreement between the analytic dispersion relation and
the contour plot. First, we note that the maximum positive and negative values of k for the
incident and reflected fast waves agree well with the wavelet contours; the regions where
the dispersion relation give k — 0 do not agree as well, probably because the eikonal
approximation used in the dispersion relation breaks down in that region. Second, there is
good agreement on the location of the mode conversion surface near x = 1.5 m. Finally,
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we compare the two branches of the dispersion relation for x < 1.6 m (vertical blue lines)
with the IBW contours. On each branch there is a region where the mode is heavily
damped (dashed blue line) and a region where the mode propagates (solid blue line). The
transmitted wave energy tunnels from one branch to the other. Again, the analytic results
show good agreement with the wavelet contours. We conclude that the k-wavelet
transform is useful for obtaining quantitative information about the spatial dependence of
the wavenumber.

Another important generalization is to include both amplitude and wave
polarization information in the 3D plots. As this technique is so useful, we make a short
digression from the physics to document how this is done using the shading and color
capabilities of the Mathematica 3D plotting functions. We define an amplitude function A,
saturation function S, and hue function H in terms of two input functions f{(x,k) and g(x,k)
by

_ f+g
A[f(X’ k): g(X7 k)] - Max[f + g] > (1 1a)
S[f(x, k), g(x, k)] = Min[ocAV, 1} , (11b)
H[f (x, k), g(x, k)] = Cy (% Tan  (g/f) + 5) , (11c)

In Eq. (11a), the maximum is taken over all x and k. The parameters o and v in Eq. (11b)
are used to adjust the saturation level and to determine how many contours are
illuminated. Finally, the parameters Cy and 6 in Eq. (11c) determine a linear mapping
between the ratio g/f and the angular coordinate in the color wheel. Varying these
parameters determines the color palette and its mapping onto the physical quantity g/f.
The Mathematica 3D plot function takes two functions as input, a height function and a
shading function; we take A(x, k) to be the height function and Hue[H(x,k), S(x,k), 1] to
be the shading function. Here, Hue is the Mathematica function to specify color values,
and it accepts input in the Asb (hue, saturation, and brightness) format with h, s, and b
each between 0 and 1; larger values of h are treated cyclically.

Plots illustrating the wave polarization are shown in Fig. 7 for the choice f = Py(x,
k) and g = Py«(x(, k) with plotting parameters o = 1, v=10.1, Cg = 0.7, and & = 1.8. This
produces a color palette running from light green (for P,/P;— 0) through light blue, dark
blue, lavender, to red (for P,/P, — ). Note that here the amplitude is the normalized
version of P, (x, k). In Figs. 7(a) and (b) we show two views of the 3D plot, with and
without reference grid lines. In each case, the fast wave is blue, indicating moderate E,,
but the IBW is red, showing that E, dominates. The mode conversion region has a
complicated structure with regions of smaller E,/E, than either the incident FW or the
mode converted IBW.
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Fig. 7(a) front view (without grid lines):

Fig. 7 K-wavelet transform spectral power density P | (xg, k) of the rf electric
field using the same parameters as Fig. 3. Here the color palette indicates the
linear wave polarization Ey/Ey as explained in the text. The label x refers to xg in
this plot and the scale is in m; the scale of k is in m-1.
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Figure 8 uses the same palette as in Fig. 7 to illustrate the wave polarization in
terms of the left- and right-circularly-polarized fields, E; = (E, + iEy)/\/2 and Ep = (Ey
- iEy)/\/Z, which are the characteristic polarizations of the slow and fast waves,
respectively. The palette mapping onto Er/E; extends from light green (E >> Ep)
through blue (E; ~ ER = linear polarization) to red (E; << Eg). Thus, Fig. 8 clearly
illustrates the transition from the right-circularly-polarized FW to the linearly-polarized
IBW. This figure also shows a small region of significant left-hand polarization (light
green) near the mode-conversion surface.

0.75
0.5
0.25

200 300

Fig. 8 K-wavelet transform spectral power density P (xg, k) of the rf electric
field using the same parameters as Fig. 3. Here the color palette indicates the
circular wave polarization ER/E|_ as explained in the text. The label x refers to X
in this plot and the scale is in m; the scale of k is in m-1.

In Fig. 9 we use a modified palette to illustrate the subtle change of polarization
near the H minority cyclotron resonance at x = 1.7 m. By increasing Cy to 20, we magnify
the palette to show small changes in polarization. (Thus, the mapping of colors onto
Er/E; are quite different in Figs. 8 and 9.) This reveals some structure in Fig. 9 near the
minority cyclotron resonance.
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Fig. 9 K-wavelet transform spectral power density P (xq, k) of the rf electric
field using the same parameters as Fig. 3. Here the color palette has been
modified to show small changes in the wave polarization Eg/E| and is used to
illustrate the wave structure near the minority cyclotron resonance. The label x
refers to Xg in this plot and the scale is in m; the scale of k is in m-1.

Finally, we use the k-wavelet transform to illustrate an interesting and important
physics point that has emerged from the recent studies [13] of mode conversion using the
2D AORSA code. It has been shown that ICRF mode conversion is sensitive to the
poloidal magnetic field, which determines whether the fast wave converts to an ion
Bernstein wave (IBW) or an ion cyclotron wave (ICW). For the base case studied here,
the mode conversion yields different daughter waves above and below the midplane. In
Fig. 10, we compare two horizontal slices to illustrate this effect. Above the midplane
[Fig. 10(a)] the incoming FW converts to a backward-propagating IBW, as also seen in
the previous figures. Below the midplane [Fig. 10(b)] the FW converts to a forward-
propagating ICW,
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Fig. 10 (a) Above the midplane (b) Below the midplane

300 300
250 | 250 |
200 | 200 |
150 | 150 ;

x X
100 | 100 ;
50 50 |
0 0
1.2 14 1.6 1.8 2 2.2 1.2
X X

Fig. 10 K-wavelet transform spectral power density P (xg, k) of the rf electric
field for horizontal slices (a) above the midplane, and (b) below the midplane.
The label x refers to xg in this plot and the scale is in m; the scale of k is in m-1.

F. Conclusions

In this paper, we have defined a modified transform that has desirable properties
for the local analysis of waves in plasmas. This transform has the following limiting cases:
as k — 0 it reduces to the windowed Fourier transform of Gabor; in the limit of large k,
the transform becomes the well-known Morlet wavelet. The name "k-wavelet" introduced
here was meant to suggest that the wavelet properties depend on k, because the low-k
Gabor transform does not satisfy the usual self-similar wavelet scaling (in which all
wavelet functions are obtained by translation and dilation of the same mother wavelet) [7].
Thus, a more accurate description of our modified transform would be to call it the
"Gabor-Morlet transform."

We have shown that the “k-wavelet” or "Gabor-Morlet" transform can provide a
useful diagnostic for wave properties in complex situations. This includes situations such
as mode conversion where multiple waves with vastly different wavelengths are present
simultaneously. For 1D numerical solutions, the wavelet technique has been shown to
provide quantitative information on the dispersion [e.g. k,(x) at fixed o] and polarization
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[e.g. E{(X)/Er(x)] of each mode in the plasma. The methods used here can also be
generalized to obtain the two-dimensional wavevector k; = (k,, ky) for 2D rf field
solutions, E = E(x,y). However, the 1D analysis illustrated here is expected to be
qualitatively valid if ky << k. The Fourier and wavelet techniques developed here may
also be useful in analyzing turbulent and coherent structures (e.g. “blob” transport [11,
12]) in computer simulations and experimental data for comparison with theoretical
predictions.
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