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Abstract 

The theory of plasma blobs is extended to treat the stability of "non-thermalized" 

blobs, which have both density and temperature higher than the surrounding plasma and 

can transport heat as well as particles. It is shown that the internal blob temperature 

profile Te(r) can drive azimuthal rotation vθ(r) about the blob axis, which produces a 

robust m = 2 rotational instability in the interchange limit (k|| = 0), similar to those 

considered earlier for rotating theta pinch and mirror plasmas. The instability includes the 

effects of the centrifugal and Coriolis forces, the sheared velocity vθ(r), and the axial 

sheath boundary condition.  In some parameter regimes, the growth rate can be large (γτc 

>> 1, where τc is a typical blob radial convection time), and the rotational instability can 

play a role in determining the blob size distribution and radial transport. Rotation is 

expected to play a role in the evolution of blobs created by Edge Localized Modes 

(ELMs). Numerical calculations show that finite-Larmor-radius stabilization is 

ineffective for comparable ion and electron temperatures, but the sheath conductivity can 

be strongly stabilizing for reasonable parameters. A separate branch of temperature-

gradient-driven sheath instabilities, predicted in the eikonal limit, is not observed for low 

mode numbers. 
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I. Introduction 

There is growing experimental evidence1-13 from both linear and toroidal plasma 

devices that high-density plasma filaments carry a significant flux of particles across the 

scrape-off-layer (SOL) to the wall. The filaments are spatially extended along the 

magnetic field, but look like "blobs" in the plane perpendicular to B. A theoretical 

model14-17 treating the blobs as coherent, propagating objects shows that they become 

charge-polarized and acquire an induced electric field Ey in the presence of a radial force 

Fx. The blobs convect via the E×B drift in the direction of the force, e.g. down the 

magnetic field gradient in a toroidal device such as a tokamak. (For a toroidal device, our 

local coordinates x and y refer to the R and Z directions; for a rotating linear machine, x 

and y refer to r and θ. Also, z denotes the coordinate along the magnetic field.) This 

mechanism is analogous to the Rosenbluth-Longmire picture of interchange instability18 

and is similar to the mechanism19 that propels high-field-side pellets into the core plasma. 

The convective transport of particles and energy by blobs is a good candidate mechanism 

to explain the intermittency in space and time observed in SOL turbulence measurements, 

as discussed in earlier papers.14-17  In a tokamak fusion reactor, blob transport could 

reduce the divertor efficiency and increase the wall interaction, producing a higher level 

of impurities. There is an active experimental and theoretical research effort underway to 

understand the properties of blobs and to quantify the associated transport. 

In the simplest version of the blob model (appropriate for the far SOL), the electron 

temperature is assumed to be constant in space, and the model evolves only the density n 

and potential ϕ. Thus, the blob is assumed to be in thermal equilibrium with the 

background plasma (no internal temperature gradients in x,y) and to be fully connected to 

the sheaths at the end of the field line (no z dependence). If the vorticity and background 

density are assumed to be small, a blob density of the form n(x,y) = n(x) exp(−y2/2yb2) 

yields a solution of the equations with a constant radial velocity,14,15   
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where yb is the poloidal scale length of the blob (i.e. the distance over which charge 

polarization occurs), Λ is a parameter that measures the strength of the outwards force 

relative to the sheath conductivity, and the dimensionless variables of Ref. 15 are used 

(velocity, length, and time are normalized to the sound speed cs, gyroradius ρs = cs/ Ωi, 

and Ωi
−1, respectively). For example, when the outwards force is provided by the 

curvature (and radial gradient) of the toroidal magnetic field in a tokamak, one finds that 

Λ ≡ L||/R = q, where L|| is the parallel connection length and R is the major radius of the 

torus. In general, a force producing an outwards acceleration ax has Λ =  L|| ax. In what 

follows, we restrict the discussion to cylindrical blobs of radius a = xb = yb.  

An important prediction of this simple blob model is that the outwards convective 

velocity ux of the blob depends (through the charge polarization mechanism) on the blob 

size a, so that smaller blobs move faster than larger ones. Taking an ensemble average 

over blob sizes, one can show that the profiles of density n(x) and particle flux Γ(x) = nux 

depend on the blob size distribution and contain a strong convective component in the far 

SOL when the smaller blobs are dominant.15  

The force responsible for the blob motion also drives internal or "secondary" 

instabilities20,21 that fragment the blobs and thereby affect the ensemble-averaged blob 

transport (also see the review paper in Ref. 17). For large blobs, the curvature-driven 

sheath-interchange mode is the dominant instability; it causes blobs to bifurcate as they 

move across the SOL.20,21 For small blobs, the predominant instability is the Kelvin-

Helmholtz mode due to the sheared velocity vx(y);21 this mode causes the outer parts of 

the blobs to peel off and eventually destroys the coherent structure. The blobs which 

contribute to particle transport are those which are "effectively stable" on the time to 

transport across the SOL,20 i.e. blobs with γ < 1/τw, where γ is the growth rate of the 

most unstable secondary mode and τw = ∆xSOL/ux is the blob convection time across the 

SOL. If we estimate the most stable blob radius a* (in the thermalized blob limit) by 

balancing the inertial, sheath and curvature terms in the vorticity equation,21 we obtain 

 
5/1

a 






α
Λ=∗   , (2) 
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where Λ = q for the curvature force and α = 2ρs/R is the sheath conductivity parameter. 

For DIII-D parameters, this estimate yields a ≈ 15 gyroradii corresponding to a blob size 

of about 1 cm. 

The present paper extends previous studies of blob stability to include "non-

thermalized" blobs22 which are hotter than the surrounding plasma and therefore have an 

internal electron temperature profile Te(r). This model is important for understanding 

blob dynamics at the edge-SOL interface. A blob is "born" near the separatrix as a result 

of the nonlinear development of small-scale turbulence5-13 or meso-scale instabilities 

such as Edge Localized Modes (ELMs).23-25 The blob carries with it the density and 

temperature of its place of origin, so that the core of the blob is both denser and hotter 

than the surrounding background plasma. The loss of heat along the field lines is much 

more rapid than the particle loss, so the blob quickly cools by parallel losses and comes 

into collisional thermal equilibrium with its surroundings. However, there is a region in 

the SOL near the separatrix where the blob retains a centrally-peaked temperature profile 

Te(r). In this paper, we assume for simplicity that the temperature is constant along the 

field lines, so that the blob is fully-connected to the sheaths and has the maximum Bohm 

potential. (In the disconnected limit, the temperature drops near the end plates and the 

sheath potential is greatly reduced.) Here, the dimensionless Bohm sheath potential is 

given by ΦB(r) = CB T with CB = ln[(mi/2πme)1/2] ≈ 3, where we let eΦB/Tes → ΦB and 

Te/Tes → T, as discussed after Eq. (11). Since dTe/dr < 0, the sheath potential produces 

an outwards-pointing (positive) radial electric field Er and the resulting E×B drift causes 

the blob to rotate about its axis with a sheared velocity vθ(r).   

The dynamics of hot blobs and their interaction with external velocity shear layers 

has been discussed in detail elsewhere.22 The internal spin or rotation of the blob around 

its axis modifies both its radial velocity (by hindering the charge polarization22) and its 

stability characteristics. In the limit of rapid spin, the curvature-driven modes are 

suppressed22 and but we show here that new rotational modes arise which can go 

unstable through a combination of centrifugal force, Coriolis, Kelvin-Helmholtz and 
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rotational shear effects. When the sheath conductivity is included in the analysis, the 

stability equation also includes the Berk-Ryutov-Tsidulko (BRT) ∇Te-driven 

instabilities26 in the eikonal limit. In the low mode number limit of interest here, the 

sheath term turns out to have a net stabilizing effect. These effects, driven by the blob's 

internal temperature gradient, are the subject of the present paper. 

We are interested here in secondary instabilities of the blob itself, driven by the 

blob's internal profiles, not global rotational instabilities of the main plasma column. The 

latter instabilities are also interesting as a possible blob generation mechanism for rapidly 

rotating linear machines, but are not the subject of the present paper. The same formalism 

used for global instabilities in rotating theta pinches and mirror machines27,28 can be 

applied in both problems.  

We will show that blobs with azimuthal mode number m = 2 and k|| = 0 are unstable 

to rotational modes when (i) Ti/Te is less than an FLR stabilization threshold of about 10-

20 and (ii) the sheath parameter Sα  ≡ αa2/Ωp < 1, where Ωp ~ CB/a2 is the rotation 

frequency at the radial location where the eigenfunction peaks. Here Sα denotes the ratio 

of the sheath conductivity term to the vorticity convection term driven by the rotation. 

Physically, the condition Sα < 1 implies that the blob spin time around its axis (τs ~ Ω−1) 

is shorter than the time for its vorticity to dissipate by parallel loss (τφ ~ 1/αa2).15 The 

condition Sα < 1 is typically fulfilled for the intermediate-size blobs (a = a* >> 1) which 

are the least unstable to curvature-driven and velocity-shear modes. Using Eq. (2) with 

Λ = q, the condition a = a* implies that Sα ~ α a*
4/CB ~ q/(a*CB) << 1. Thus, the sheath 

conductivity is not strong enough to stabilize the rotational instability for typical SOL 

parameters and blob sizes. In Sec.II, we will also show that the condition for the 

rotational growth rate to be larger than other secondary instability growth rates for a blob 

of radius a and azimuthal mode number m [see Eq. (7)]  is m < (CBa/q)1/2. This relation 

shows that the rotational mode dominates for low mode numbers and large blobs.  

The plan of this paper is the following. In Sec. II we give a more detailed 

comparison of the scaling of the blob rotational growth rate with the growth rates of the 

instabilities that are dominant in the absence of blob spin. In Sec. III it is shown that the 
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well-known rotational stability equation can be derived from the blob model equations. In 

Sec. IV, the results of a 1D linear stability analysis and 2D nonlinear simulation code are 

presented for the case Ti = 0. The influence of finite-Larmor-radius (FLR) effects for Ti ≠ 

0 and sheath effects are also discussed. Finally, a brief summary and discussion is given 

in Sec. V. 

II. Scaling of instability growth rates     

To put the present work in context, we begin by comparing the scaling of the 

growth rate γR of the rotational instability with those of secondary instabilities that 

control the evolution of blobs in the thermalized (non-rotating) limit: the sheath-

interchange mode20,21 with growth rate γSI and the Kelvin-Helmholtz (KH) mode21 

driven by the linear blob motion vx(y) with growth rate γKH. The relative scaling of the 

growth rates determines the parameter regime in which the rotational mode dominates.  

Here, we take into account only the internal temperature profile Te(r) of the blobs 

and neglect the temperature variation Te(x) of the external background plasma, assuming 

for simplicity that the latter varies on a scale length much longer than the blob radius a. 

For a hot blob, the radially decaying sheath potential implies a radial electric field with Er 

> 0, which causes the blob to rotate in the azimuthal or θ direction with an angular 

frequency Ω(r) = vθ(r)/r. The resulting centrifugal, Coriolis, and velocity-shear effects 

can drive low azimuthal-mode-number instabilities with eigenfunctions varying like 

ψ(r) eimθ. Here, (r,θ,z) are used to represent the cylindrical blob coordinates and no 

variation in the axial coordinate z (parallel to B) is assumed in either the equilibrium or 

stability analysis.   

The blob stability can be described by the Bθ = 0, k|| = 0, βt = 8πp/B2 = 0 limits of 

the Freidberg-Pearlstein theory27 developed for theta-pinches. In Ref. 27, a radial 

differential equation (discussed in the next section) and an associated variational 

principle are given which include rotational, finite-Larmor radius (FLR), and line 

bending (k|| ≠ 0) effects. For present purposes, we examine the scaling of the driving term 
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in the variational principle. Balancing this term against the inertial term gives the 

following (dimensional) scaling of the growth rate:  

 E
n

2
2

L
a

k
k

ΩΩ











≈γ

⊥

θ . (3) 

Here kθ = m/r, Ω = vθ/r is the angular rotation frequency, ΩΕ = −cEr/rB ≈ (c/rB)(dΦB/dr) 

is the E×B rotation frequency, and ΦB ≈ 3Te. In the presence of FLR effects [Ω∗ ≡ 

−c/(ernB)(dpi/dr) ≠ 0], the angular frequencies are related by the equilibrium radial force 

balance condition: 

 *E Ω−Ω=Ω  , (4) 

where ϖ = Ω∗/ΩΕ ∼ Ti/Te is the FLR parameter. Since Er  > 0 and dpi/dr < 0 for the blob, 

both terms in Eq. (4) have the same sign and the diamagnetic drift increases the 

instability drive. 

In addition to the diamagnetic drift contribution to equilibrium force balance 

contained in Eq. (4), there is also an explicit FLR stabilization term (∝ Ω∗2) in the 

variational principle, which is neglected in Eq. (3). The effect of FLR on stability will be 

included in the solution of the radial stability equation in Sec. IV. For now, we anticipate 

that result and point out that FLR stabilization requires that the ϖ2 term be larger than the 

(destabilizing) ϖ term, which requires ϖ >> 1. Thus, FLR stabilization of blobs is more 

difficult than in the well-known theta pinch problem27 for which ϖ ~ 1 is sufficient to 

obtain stability.  

Neglecting Ω∗ and assuming that the sheath potential decays over a blob radius a, 

we can estimate the magnitude of the rotation and the growth rate. Setting Ln ~ LT ~ a 

and k⊥ ~ kθ, the rotational growth rate γR has the following dimensional scaling: 

 i

2
s

R a
~~ Ω





 ρ

Ωγ   . (5) 

In the dimensionless notation of Ref. 15, Eq. (5) becomes γR ~ 1/a2.  
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Using results from previous papers,20,21 the comparison with the sheath-

interchange growth rate γSI and the Kelvin-Helmholtz (KH) growth rate γKH  is  

 
3KH3

2

SI2
B

R
a

q
~,

a

qm
~,

a

C
~ γγγ , (6) 

where CB is the Bohm sheath coefficient defined earlier. The KH mode referenced in Eq. 

(6) is a global (low-m) mode driven by the curvature-driven sheared flow, vx(y), for a 

blob propagating radially across a background plasma,21 and the growth rate is estimated 

as γ ∼ vx/Ly ~ Λ/a3 using Eq. (1). There is also a KH instability associated with the 

rotation, which has a growth rate γ ∼ vθ/r ~ Ω ~ CB/a2, comparable to the mode driven by 

the centrifugal force. The numerical solutions of Sec. IV include the effects of the 

azimuthal rotational shear vθ(r). For the remainder of this paper, we will not distinguish 

between the centrifugal and velocity-shear drives associated with rotation and will simply 

refer to both of these as rotational instabilities. 

The main conclusion to draw from Eq. (6) is that the rotational growth rate is 

dominant for larger blobs and lower mode numbers m. Comparing the rotational and 

sheath-interchange growth rates for a fixed blob size, we find that γR > γSI for  

 ( ) 2/1
Bcrit q/aC~mm <   , (7) 

which is also the condition to neglect the curvature term in the vorticity equation. Finally, 

we point out that the convection rate20 of blobs across the SOL scales like γc ~ 1/a3 using 

Eq. (1), so that convection is also slow compared to rotational instability growth for 

typical blobs which are much larger than the gyroradius (a >> 1). 

III. Derivation of rotational stability equation     

In this section we show that the well-known rotational stability equation without 

FLR stabilization can be recovered from the basic equations of blob theory. The 

generalization to obtain the FLR terms is obtained heuristically. 
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A. Basic Equations 

The theory of  propagating density blobs and their stability is based on a simple set 

of dimensionless equations that expresses the conservation of charges and particles.14,15 

Here, we include the spatial variation of the electron temperature, so that the starting 

point of our analysis is based on the vorticity, continuity, and temperature equations:15 

 ( ) ( )nTnT
dt
d

n yB
2/1 ∇β−Φ−Φα=





 Φ∇⋅∇ −

⊥ , (8) 

 0nT
dt
dn 2/1 =α+ , (9) 

 0T
dt
dT 2/3

T =α+ , (10) 

 ∇⋅+
∂
∂= v
tdt

d
, (11) 

where Φ is the total electrostatic potential, ΦΒ is the Bohm sheath potential, and the first 

term on the right-hand-side (rhs) of the vorticity equation was expanded in the limit ϕ = 

Φ − ΦΒ << 1. Also, n is the particle density (n = ne = ni), T = Te is the electron 

temperature, α = (2ρs/L||) measures the net parallel current and particle loss into the 

sheaths, αΤ gives the energy loss into the sheaths, and β = (2ρs/R) is the curvature 

parameter. Consistent with the blob model, we assume that the velocity is given by the 

E×B drift, v = b×∇Φ = ez×∇Φ. To make the equations dimensionless, time has been 

normalized to Ωi
−1, length scales to ρs, and other quantities to reference values (e.g. 

separatrix values ns and Tes) so that Ωi dt → dt, ρs∇ → ∇, eϕ/Tes → ϕ, v/cs → v, n/ns 

→ n, and Te/Tes →  T, where Ωi = eB/mic is the ion cyclotron frequency and ρs = cs/Ωi is 

the (constant) gyroradius based on cs = (Tes/mi)1/2.  

 We make the standard assumptions that the plasma filaments are localized 

perpendicular to B and employ a slab model with orthogonal coordinates (x, y, z) to 

represent the tokamak geometry. The x coordinate is taken in the direction of the major 

radius R, and the dimensionless curvature is written as κ = −(ρs/R) êx. The z coordinate is 
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taken along the direction of B, so that 2b×κ•∇ = −β ∇y and y is approximately in the 

poloidal direction at the outer midplane. Here, y = 0 denotes the location of the outer 

midplane and x > 0 corresponds to the SOL, so that motion in the positive x direction is 

outwards towards the wall. For the stability analysis in Sec. III B, we also introduce the 

corresponding cylindrical blob coordinate system (r, θ, z). 

For the rotational stability analysis, it is useful to make a number of simplifying 

assumptions. We restrict the discussion to time scales smaller than the parallel loss 

times, t << αΤ−1 << α−1, so that we can neglect the rhs of Eqs. (9) and (10). This restricts 

the validity of the stability analysis to growth rates satisfying γ ∼ Ω >> αΤ. With this 

approximation, we observe that the temperature equation (10) can be solved by the 

ansatz: 

 
ν= nT . (12). 

We also neglect the curvature term (∝ β) in Eq. (8), as detailed studies of curvature-

driven blob instabilities have already been published20,21 and we would like to study the 

properties of instabilities driven only by rotational physics. The neglect of curvature is 

justified for large blobs satisfying Eq. (7). 

 Using these approximations and combining Eqs. (8) and (9), we obtain the 

following set of reduced equations as a starting point for the rotational stability analysis: 

 ( )B
2/1

nT
dt
d

n Φ−Φα=




 Φ∇⋅∇ −

⊥ , (13) 

 0
dt
dn = , (14) 

When Eq. (13) is linearized, the inertial term on the left-hand-side (lhs) contains the drive 

terms for the centrifugal, Coriolis, and Kelvin-Helmholtz effects. The sheath term on the 

rhs yields the drive term for the BRT electron-temperature-gradient instability in the 

eikonal limit.26 However, we will show that the sheath term turns out to have a net 

stabilizing effect in the low mode number limit of interest here. 
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B. Perturbation Analysis 

We assume a 1D blob equilibrium (varying only in r) and linearize the equations 

(13) and (14) using the following ansatz: 

 
,ee)r(~)r(

,ee)r(n~)r(nn
tiim

tiim

ω−θ

ω−θ

ϕ+ϕ=ϕ

+=
 (15) 

where )r(BΦ=ϕ . Linearizing Eq. (14) leads to the following solution for n~  

 ϕ
Ω−ω

′
−= ~

m
)r(n

r
m

n~   . (16) 

For the moment, we neglect the sheath term (α → 0) on the rhs of Eq. (13) in order to 

derive the usual magnetohydrodynamic (MHD) result; we will add the linearized sheath 

term later to obtain the final stability equation. The linearized form of the lhs of Eq. (13) 

can be written as 

 ( ) ( ) ( )ϕ∇+ϕ∇+ϕ∇==⋅∇ ⊥⊥⊥ nD
~

n~D~nD
~

,0
~

tttXX , (17) 

where Dt = d/dt, as defined in Eq. (11) with v = b × ∇ϕ. After some algebra, it can be 

shown that 

 ( ) ( ) ( ) n~rmi~n
r
im2~nim~nmiX

~
r Ω−ωΩ−ϕΩ−ϕ′Ω−ϕ′Ω−ω−= , (18) 

 ( ) n~r~n2~nm
r
m

X
~ 2Ω+ϕ′Ω+ϕΩ−ω=θ . (19) 

Next we substitute Eq. (16) for n~ into the expressions for the components of X~ and 

make the transformation ψ→ϕ~ , defined by 

 ( )ψΩ−ω=ϕ m~  . (20) 
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The quantity ψ is related to the radial component of the plasma displacement ξ, and this 

transformation is necessary to put the eigenmode equation into the same form as in Ref. 

27. Combining Eqs. (16) and (20) gives 

 ψ′−= n
r
m

n~   . (21) 

Carrying out the transformation of Eqs. (18) and (19) using Eqs. (20) and (21), we obtain 

 ( ) ( )
r

nmm2nmX
~

i 2
r

ψΩ−ωΩ+ψ′Ω−ω= , (22) 

 ( ) ( ) ψ′Ω−ωΩ+ψ′Ω−ψΩ−ω=θ nm2)n(mnm
r
m

X
~ 22 , (23) 

which are substituted into the equation 

 0X
~

r
m

)X
~

i(r
rr

1
X
~

i r =−
∂
∂=⋅∇ θ . (24) 

The result can be put into the following form 

 0)F(n
dr
d

r
Fnm

dr
d

Fnr
dr
d 22 =ψ



 ω−−ψ−ψ

 , (25) 

where F ≡ (ω−mΩ)2 and F – ω2 = mΩ( mΩ−2ω).  

In order to compare Eq. (25) with the result of Ref. 27, a relation is needed between 

ψ and ξ. This follows from the definition of the perturbed velocity 

 ��
�v )m(i)vk(i

dt
d~ Ω−ω−=−ω−=≡ θθ , (26) 

and its identification with the E×B drift, ϕ∇×= ~ˆ~
zev . Taking the radial component of 

Eq. (26), we obtain 

 �)m(i
dt
d�

v~r Ω−ω−=≡  , (27) 

whereas the explicit calculation from the E×B drift using the transformation (20) gives 
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 ( )ψΩ−ω−=ϕ−= θ m
r
m

i~ikv~r  , (28) 

where ξ = ξr and kθ = m/r. Equating the two expressions for rv~  gives the desired relation 

between ψ and ξ: 

 
m
rξ=ψ   . (29) 

Note that combining Eqs. (21) and (29) recovers the usual MHD result that nn~ ∇⋅ξ−= . 

Inserting Eq. (29) into Eq. (25), we obtain 

 0r)F(n
dr
d

Fnm
dr

)r(d
Fnr

dr
d 22 =ξ



 ω−−ξ−ξ

 . (30) 

After some straightforward algebra, it can be shown that Eq. (30) is equivalent to the 

form given in the original paper27 

 0r
dr

)n(d
rFn)1m(

dr
d

Fnr
dr
d 2

2
23 =ξω+ξ−−ξ

  . (31) 

 To summarize the results of this section, we have provided a new derivation of a 

well-known result, obtaining the rotational stability equation of magnetohydrodynamics 

(MHD) theory in the limits Bθ = 0, k|| = 0, and βt = 0 from a particular limit of the blob 

model equations. This derivation gives us confidence that we can apply the usual 

rotational instability analysis27 to the blob equilibrium solution. Finite gyroradius effects 

can be included heuristically by using the form of the function F obtained previously27 in 

the limit Ω∗ ≠ 0, viz. 

 ( )( )Emm),r(F Ω−ωΩ−ω=ω   . (32) 

It is also straightforward to add the sheath conductivity term [α term in Eq. (8)] to 

the derivation. If one linearizes the sheath term retaining temperature perturbations, 

TT
~ ∇⋅ξ−= , there is a cancellation of the rotational drift terms and the stability equation 

becomes 
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 0
T

rni
)F(n

dr
d

rFnm
dr
d

Fnr
dr
d

r
2/1

2
22 =ψωα−ψ



 ω−−ψ−ψ

 . (33) 

In the rest of the paper, we drop the overbars on all equilibrium quantities. 

Finally, we examine the dimensionless parameters for the stability problem. The 

blob radius a can be scaled out of the system of equations (32) and (33) with the rotation 

frequency represented by Ωp ~ CB/a2, the rotation frequency at the radial location where 

the eigenfunction peaks. The system is then characterized by the three dimensionless 

parameters m, ϖ = Ω∗/ΩΕ ∼ Ti/Te, and Sα = (αa2)/ Ωp characterizing the mode width, the 

FLR physics and the sheath conductivity, respectively.  

IV. Blob Stability Results    

A. Blob Equilibrium  

We now apply the formalism of Sec. III to an equilibrium solution for rotating 

blobs. The normalized blob density profile )r(n  is specified as 

 ε+ε−= − )a2(r
22

e)1()r(n , (34) 

where the total density (blob + background) at r = 0 is normalized to unity. The 

background is assumed to consist of a constant "floor" density nf and ε = nf/(nb+nf), 

where nb is the peak blob density. We set ε = 0.01 to ensure a localized solution for the 

blob potential;20 the effects of varying the ratio ε on the blob velocity and stability were 

explored in Ref. 20 and will not be repeated here. The function T(r) given in Eq. (12) , T 

= [n(r)]ν, determines both the internal electron and ion temperature profiles for the blob, 

)r(TTT 0ee =  and )r(TTT 0ii = . As discussed in Sec. I, we assume T = const. along the 

field lines so that the blobs are fully connected to the sheaths and the Bohm sheath 

potential is given by ΦB(r) = CB T(r), where CB = ln[(mi/2πme)1/2] ≈ 3. The blob 

polarization potential, )y(nln)y( ypol ∇Λ=ϕ ,14,15  which drives the radial motion in Eq. 

(1), is smaller than the Bohm potential ( Bpol / Φϕ ~ rs/a << 1) and can be neglected in the 

stability analysis and in computing the rotation. The rotation frequency Ω(r) is 

determined by radial force balance including both the E×B and diamagnetic drifts [see 
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Eq. (4)]. For the choice of profiles in Eqs. (12) and (34), the rotational frequencies ΩΕ, 

Ω∗, and Ω are proportional to T(r) in the limit ε << 1.   

In Fig. 1, the profiles n(r/a) and Ω(r/a) are shown for the base case (ν = 2). Note 

that the rotation profile is far from the familiar rigid-rotor limit (Ω = const) which is often 

invoked in studying rotational stability. Thus, in addition to purely centrifugal and 

Coriolis effects, angular-velocity-shear will also play a role in determining the blob 

stability. This effect can be stabilizing or destabilizing (Kelvin-Helmholtz instability) 

depending on the parameters. We will return to this point later. 

B. Linear Stability Analysis  

 The eigenfunction ψ(r) is obtained by solving Eq. (33) with F(r,ω) defined by Eq. 

(32), subject to the boundary conditions that ψ′/ψ = m/r as r → 0 and ψ′/ψ = −m/r as r 

→ ∞, where ψ′ = dψ/dr. The results presented here were obtained using a shooting 

method to determine the eigenvalue ω by requiring that the logarithmic derivative of ψ be 

continuous at an interior matching point. The shooting code has been checked using 

another code employing a matrix method and by comparison with an analytic solution for 

a sharp-boundary density, rigid-rotor profile.  

First, we consider blob stability in the absence of FLR effects (Ti0 = 0) and sheath 

conductivity (α = 0). In Fig. 2 we show a plot of the density profile n/n0, the rotational 

mode instability drive [∝ (r2/n) d(nΩ)/dr ], and the amplitude of the m = 2 eigenfunction 

|ψ| vs r/a for the case a = 10 (in units of ρs), ε = 0.01, and ν = 2. Each profile is 

normalized to have a maximum value of approximately unity to illustrate the relative 

shapes. Note that the m = 2 rotational mode eigenfunction |ψ|(r) peaks off axis in the low-

density outer region of the blob (1 < r/a < 2) where the drive term maximizes.  

Consistent with the k|| = 0 limit of earlier work, we find that the m = 1 rotational 

mode is marginally stable.27  For the present parameters, the rotational modes with m ≥ 3 

are stable. Although most m modes are stable, we will show that the m = 2 mode is 

robustly unstable, at least in the absence of sheath effects. 

In Fig. 3, we show the effect of the FLR terms. We compare the stability of the m 

= 2 mode for temperature profiles of different widths (ν = 0.5, 1.0, and 2.0) and include 
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the effect of the FLR terms (Ti0/Te0 ≠0).  For each value of ν, we plot the normalized 

growth rate γa2 vs Ti0/Te0 for a case with small background density (ε = 0.01) and 

without the sheath conductivity term (α = 0). As discussed in Sec. II, the rotational 

growth rate has the scaling that γa2 is independent of a; thus, the growth rate curves in 

Fig. 3 are valid for all values of the blob radius. The figure shows that the instability 

growth rate increases with the temperature gradient (larger ν), and the FLR stabilization 

is weak for all the temperature profiles considered with Ti0/Te0 < 10. The lack of 

stabilization is explained by the discussion after Eq. (4), where it was pointed out that the 

ΩΕ and Ω∗ terms add to give a large destabilizing rotation. Hence, the rotational mode 

growth rate γ increases with ϖ = Ω∗/ΩΕ ∼ Ti/Te and has a maximum for ϖ of order unity. 

FLR stabilization requires ϖ >> 1 in order that the destabilizing ϖ term be smaller than 

the stabilizing ϖ2 term. This property of the rotating blob differs from that of theta 

pinches for which the ΩΕ and Ω∗ terms tended to cancel, making them easier to stabilize 

by FLR effects. 

Next, we consider the effect of the sheath boundary condition on the stability of 

low-m rotational modes. In Fig. 4, we show the m = 2 normalized growth rate γa2 vs the 

sheath conductivity parameter Sα = αa2/Ωp for the base case temperature profile (ν = 

2.0) with ε = 0.01 and Ti0/Te0  = 0. Here, Ωp ~ CB/a2 is the value of the rotation 

frequency at the radius r where the eigenfunction peaks, and the parameter Sα specifies 

the ratio of the sheath conductivity to the vorticity associated with the rotation. The 

decrease in growth rate with Sα illustrates the stabilizing effect of the sheath 

conductivity. It was difficult to find numerical solutions for Sα ≥ 1 using the shooting 

algorithm because the eigenfunctions become very localized and the mode eventually 

stabilizes. Physically, the condition Sα << 1 implies that the blob spin time around its 

axis (τs ~ Ω−1) is much shorter than the time for its vorticity to dissipate by parallel loss 

(τφ ~ 1/αa2) [see Ref. 15, Eq. (32)]. Since the rotational instability is driven by the lhs of 

the vorticity equation, the parallel loss of vorticity can stabilize the mode when Sα = 

αa2/Ωp > 1. 
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In the eikonal or high-m limit (kr ~ kθ = m/r >> 1/a), one can show that Eq. (33) 

yields the following well-known local dispersion relation26,29 

 0i)( s
2

E =ωω+ω−ω , (35) 

where ωE  ≡ mΩE → mΩ in the limit Ti → 0 and ωs = α/k⊥2 → αr2/m2 for kr << kθ. This 

dispersion relation predicts unstable BRT modes driven by the internal temperature-

gradient in the limit of high sheath conductivity (Sα). However, more detailed analytic 

and numerical investigations show that the blob' s cylindrical geometry, together with 

monotonically decreasing T(r) profiles, typically prevents the existence of a "radial well" 

necessary for localized absolutely-unstable modes in the eikonal limit. Physically, this 

may be related to the fact that the sheath drive ωs vanishes at r = 0 where the rotation Ω 

(proportional to the temperature-gradient) maximizes. 

For Sα << 1 and Ti0/Te0 < 10, the growth rate of the m = 2 rotational instability is 

large enough that it can have important implications for blob transport. Table I shows the 

normalized complex eigenfrequency ω a2 for three temperature profiles using the 

parameters ε = 0.01, Ti0/Te0 = 0 and α = 0. Both the real and imaginary parts of the 

eigenvalue increase with the temperature gradient parameter ν. For the three profiles 

considered, we find the universal result that γa2 is order unity (independent of the blob 

radius a). Since a is measured here in units of the gyroradius, a >> 1 for the typical blobs 

observed in experiments, and γa2 ~ 1 implies that γa3 >> 1. This means that the instability 

growth time τ = γ−1 is short compared to the time for the blob to convect one blob radius, 

τc = a/ux ~ a3. Thus, the rotational modes are expected to impact the blob transport. The 

extent of their effect depends on the details of the eigenfunction; Fig. 2 shows that the 

eigenfunction affects mainly the outer portion of the blob, so we expect that the main 

effect of the rotational instability will be to cause the blob to shed some of its density in 

the outer mantel. This is illustrated by the 2D simulation discussed in the next section. 
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Table I 

m = 2 eigenfrequency for parameters a = 10, ε = 0.01, Ti0/Te0 = 0 and α = 0 

 

 ν = 0.5 ν = 1.0 ν = 2.0 

ω a2 −0.96 + 0.57 i −1.6 + 0.76 i −2.6 + 0.94 i 

 

C. 2D Simulation 

In this section, we complement the linear 1D theory presented in Sec. IV B by 

presenting results of a 2D nonlinear simulation of blob transport that solves the following 

equations 

 ( ) nn
dt
d

n yB ∇β−Φ−Φα=




 Φ∇⋅∇ ⊥ , (36) 

 0n
dt
dn =α+ , (37) 

with ΦB = ΦB0 n. All quantities are assumed to be constant along the field lines. The 

code used was a slight generalization of the one employed in a previous study of blob 

instabilities,21 in that the Bohm sheath term (αnΦB) was added on the rhs of the vorticity 

equation to drive the rotation. Note that the 2D code includes the rotational, curvature and 

sheath conductivity terms but neglects FLR effects.  

The 2D simulation including the Bohm sheath effects shows good agreement with 

the 1D stability results described in the previous section. This is illustrated by a snapshot 

shown in Fig. 5 of a case with parameters a = 10, α = 3 × 10−5, β = 6.9 × 10−4 and ΦB0 

= 10, so that Sα ≈ αa4/ΦB0 = 0.03.  The blob develops an m = 2, k|| = 0 instability on a 

timescale short compared to the theoretical convection time τc = a/ux, i.e. γa3 >> 1, in 

agreement with the linear stability analysis. The frame in Fig. 5 occurs after about one τc 

and shows that the instability has undergone several e-foldings to produce an observable 

distortion of the blob. The instability peaks near the outside of the blob, as predicted by 

the linear stability analysis, and throws off an outer shell of material that wraps around to 
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form a "halo" or "tail". The tail is left behind by the blob' s rotation and propagation to the 

right. The instability shown here is clearly rotational in origin and differs qualitatively 

from the curvature-driven blob instabilities20,21 studied earlier. The dominance of the 

rotational instability in this run is consistent with the conditions Sα << 1 and m < (CB 

a/q)1/2 discussed in previous sections. A similar run with a = 30, implying Sα  = 2.4,  was 

also unstable, but the instability had a different character (not shown here). This is in 

agreement with the present theory, where Sα ≥ 1 implies strong stabilization of the 

rotational branch. 

We remark in passing that the blob dynamics (e.g. temporal variation of vx and 

vy) at later times is very interesting in the simulation corresponding to Fig. 5, as other 

rotational effects22 come into play. For example, the radial velocity of the blob is 

observed to increase after throwing off its outer mantel and it develops a poloidal 

velocity. A complete description of the simulation results will be presented elsewhere.30  

V. Summary and Discussion 

In this paper, we have studied the rotational stability of non-thermalized blobs, for 

which the interior is hotter than the surrounding plasma. The study of temperature profile 

effects in blobs is motivated by recent observations that ELMs produce blob-like 

transport.9,23-25 Large ELMs are typically associated with high-confinement H-modes, 

which have hot pedestals and SOL plasmas which are attached to the divertor plates. 

Under these conditions, the blobs produced by the ELM crashes are expected to have 

substantial size and to transport energy as well as particles.  

In the "fully-connected" limit discussed here, the blob profiles are assumed to be 

constant along the field line, extending to the sheaths at the divertor plates (or other 

boundary surface). In this limit, the internal blob electron temperature profile Te(r) 

produces a Bohm sheath potential ΦΒ(r) = CB Te(r) ≈ 3 Te(r) and radial electric field Er = 

−∇rΦΒ so that the blob spins about its axis. This rotation influences the blob transport in 

several ways. In a separate paper,22 it is shown that the rotation can inhibit the charge 

polarization mechanism, thereby reducing the blob radial velocity and suppressing blob 
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instabilities20 driven by curvature. In the present paper, we have shown that new 

instabilities arise in spinning blobs, driven by the centrifugal and Coriolis forces and by 

angular-velocity-shear. These instabilities cause the blob to shed density from its outer 

mantel and to deform in shape. The residual density thrown off from the spinning blob is 

left behind and does not contribute to transport. A quantitative assessment of the 

consequence of the rotational instability on the blob transport is beyond the scope of this 

paper. However, the present work, together with Ref. 22, show the importance of internal 

temperature gradient effects on the blob dynamics. 

In the interchange (k|| = 0) limit studied in this paper, the only unstable azimuthal 

mode has m = 2. The m = 1 mode is marginally stable for typical profiles, and modes 

with m ≥ 3 are stable, even neglecting FLR effects and sheath conductivity. Based on 

previous work,27 we expect that blobs with structure along the field line (k|| ≠ 0) might 

also be unstable to m = 1 modes. We have shown that FLR stabilization is weak for Ti/Te 

~ 1 because Er < 0 in the hot blobs, so that the E×B drift and diamagnetic drift reinforce 

one another rather than cancel. However, sheath conductivity stabilizes the rotational 

modes when Sα = αa2/Ωp > 1 where Ωp is the rotational frequency Ω ∼ CB/a2 evaluated 

at the location where the eigenfunction peaks. The condition for rotational instability to 

dominate the curvature and sheath effects can be expressed as a ~ a* << ash, where ash = 

(CB/α)1/4. 

 Nonlinear 2D simulations show qualitative agreement with the linear stability 

analysis. Further analysis of the simulations is needed to establish the effect of the 

rotational instabilities on the overall blob transport.    
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Figure Captions     

Fig. 1 Plots of the blob density profile n(r) (solid line) and the rotation frequency profile  

|Ω(r)| in arbitrary units (short dashed line), with all profiles normalized to have a 

maximum value of unity. The parameters are a = 10, ε = 0.01, ν = 2, and Ti0/Te0 

= 0, and α = 0. 

Fig. 2 Plots of the blob density profile n(r) (solid line), rotational drive (r2/n) d(nΩ)/dr 

(long dashed line), and eigenfunction |ψ(r)| (short dashed line), with all profiles 

normalized to have a maximum value of order unity. The parameters are m = 2, a 

= 10, ε = 0.01, ν = 2, and Ti0/Te0 = 0, and α = 0. 

Fig. 3 Plot of the m = 2 normalized growth rate γa2 vs Ti0/Te0 for three temperature 

profiles (ν = 0.5, 1.0, and 2.0) with ε = 0.01 and α = 0. The instability growth rate 

increases with the temperature gradient (larger ν), and FLR stabilization is weak 

for all temperature profiles when Ti0/Te0  is order unity. Note that these are 

universal growth rate curves with respect to blob radius (γa2 is independent of a). 

Fig. 4 Plot of the m = 2 normalized growth rate γa2 vs the sheath parameter αa2/Ωp  for 

the base case temperature profile (ν = 2.0) with ε = 0.01 and Ti0/Te0  = 0. The 

decrease in growth rate with αa2/Ωp illustrates the stabilizing effect of the sheath 

conductivity α.  Blob rotational effects are important when αa2/Ωp  << 1, where 

Ωp  is the value of the rotation frequency at the radius where the eigenfunction 

peaks. 

Fig. 5 Snapshot of a spinning blob taken from a 2D simulation solving Eqs. (36) and 

(37) for the parameters a = 10, α = 3 × 10−5, β = 6.9 × 10−4 and ΦB0 = 10. This 

frame shows the development of an m = 2 instability with γ ~ Ω. The instability 

peaks near the edge of the blob and throws out a thin mantle of plasma. At later 

times in the simulation, this mantle is left behind as the blob spins and translates 

to the right.  
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Fig. 1 Plots of the blob density profile n(r) (solid line) and the rotation frequency profile  
|Ω(r)| in arbitrary units (short dashed line), with all profiles normalized to have a 
maximum value of unity. The parameters are a = 10, ε = 0.01, ν = 2, and Ti0/Te0 
= 0, and α = 0. 
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Fig. 2 Plots of the blob density profile n(r) (solid line), rotational drive (r2/n) d(nΩ)/dr 
(long dashed line), and eigenfunction |ψ(r)| (short dashed line), with all profiles 
normalized to have a maximum value of order unity. The parameters are m = 2, a 
= 10, ε = 0.01, ν = 2, and Ti0/Te0 = 0, and α = 0. 
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Fig. 3 Plot of the m = 2 normalized growth rate γa2 vs Ti0/Te0 for three temperature 
profiles (ν = 0.5, 1.0, and 2.0) with ε = 0.01 and α = 0. The instability growth rate 
increases with the temperature gradient (larger ν), and FLR stabilization is weak 
for all temperature profiles when Ti0/Te0  is order unity. Note that these are 
universal growth rate curves with respect to blob radius (γa2 is independent of a). 

 

Fig 3 



     
 

 27 

 
 
 
 
 
 
 
 
 

 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ga2

a Wa /
2

p  
 
 
 
Fig. 4 Plot of the m = 2 normalized growth rate γa2 vs the sheath parameter αa2/Ωp  for 

the base case temperature profile (ν = 2.0) with ε = 0.01 and Ti0/Te0  = 0. The 
decrease in growth rate with αa2/Ωp illustrates the stabilizing effect of the sheath 
conductivity α.  Blob rotational effects are important when αa2/Ωp  << 1, where 
Ωp  is the value of the rotation frequency where the eigenfunction peaks. 
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Fig. 5 Snapshot of a spinning blob taken from a 2D simulation solving Eqs. (36) and 

(37) for the parameters a = 10, α = 3 × 10−5, β = 6.9 × 10−4 and ΦB0 = 10. This 
frame shows the development of an m = 2 instability with γ ~ Ω. The instability 
peaks near the edge of the blob and throws out a thin mantle of plasma. At later 
times in the simulation, this mantle is left behind as the blob spins and translates 
to the right.  
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