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Abstract 

The stability of plasma blobs which have both density and temperature higher than 

the surrounding plasma, and can transport heat as well as particles, is considered. It is 

shown that the internal blob temperature profile Te(r) can drive azimuthal rotation or spin 

vθ(r) about the blob axis, which produces a robust m = 2 rotational instability in the 

interchange limit (k|| = 0). The theory includes the effects of the centrifugal and Coriolis 

forces, the sheared velocity vθ(r), and the axial sheath boundary condition. Estimates 

show that finite-Larmor-radius stabilization is ineffective, but the sheath conductivity can 

be strongly stabilizing. The blob rotational instability has only a small direct impact on 

the particle and energy transport, but it serves as a useful diagnostic for the underlying 

blob spin, which is an important variable in determining the blob's radial velocity. A 

separate branch of temperature-gradient-driven sheath instabilities, predicted in the 

eikonal limit, is not observed for low mode numbers. 
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I. Introduction 

The study of coherent objects arising in turbulence has a long history. In the plasma 

physics context, Horton showed that large amplitude turbulence tends to form coherent 

vortices1 when the amplitude of the potential and vorticity (related to the spin around the 

central axis) is sufficiently large compared to the linear growth rate of the underlying 

turbulence. Under certain conditions, dipolar vortices (corresponding to charge dipoles) 

were found in his two-dimensional (2D) simulations. More recently another model of 

coherent turbulent objects called “blobs”, which also involve charge dipoles, has been 

studied.2,3 A blob is defined as a plasma filament with a higher density and possibly 

higher temperature than the surrounding scrape-off-layer (SOL) plasma; it varies slowly 

along the magnetic field but rapidly across it so that the filament looks like a "blob" in 

the plane perpendicular to B. The extensive experimental motivation4-12 for this model, 

the details of the 2D theory, and the implications for fusion devices of blob transport have 

been described in these references and in a recent short review paper.13  

The blob model extends the earlier work on turbulent coherent objects by 

considering the sources and sinks for the dipolar charge. It was shown2,3 that an outwards 

force F (e.g. due to toroidal curvature in a tokamak) produces a charge separation and 

resulting charge dipole in the F×B direction through the charge-dependent F×B drift. 

Experimentally and in computer simulations, the monopole density concentration in the 

blob is always accompanied by a charge dipole. The electric field E created by this 

charge dipole leads to radial transport of the blob as a coherent object, which passively 

convects both particles and energy towards the wall, via the E×B drift. The magnitude of 

E is determined by the balancing of the particle drift source with two sinks: the loss of 

charge by current flow J|| along the field lines to the divertor sheaths,2,3 and the mixing of 

the positive and negative charges by blob spin around its axis, which act to reduce the 

internal charge polarization.14  Thus, the internal blob spin is an important dynamical 

variable. The formation and stability of blobs to curvature-driven secondary 
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instabilities15,16 is enhanced by the blob spin but its radial transport is hindered by the 

spin by partially defeating the internal charge polarization.14  

Blobs develop spin when two conditions are satisfied: (i) the parallel transport of 

charge and energy to the sheaths is sufficiently rapid to suppress parallel variation of the 

electrostatic potential and temperature along B (k|| = 0), and (ii) the blob has an internal 

temperature profile Te(r), where r is the blob radial coordinate. The case of interest here 

is a cylindrically-symmetric blob with a hot dense core, so that both n(r) and Te(r) are 

monotonically decaying profiles. The first condition ensures that the blob is electrically 

connected to the sheath and thus has a large Bohm sheath potential, eΦB(r) = CB Te(r), 

where CB = ln[(mi/2πme)1/2] ≈ 3 and the temperature is measured at the sheath. The 

second condition ensures that this potential produces a radial electric field in the blob and 

azimuthal spin around its axis. Early work on blob theory was concerned with the far 

SOL where the blobs are in thermal equilibrium with the background plasma due to the 

rapid parallel heat transport. In this limit, Te = const. and the blobs did not spin. More 

recent work has the goal of understanding blob properties near the separatrix, where the 

blobs have not yet had time to lose their hot interiors by parallel heat transport. This work 

is relevant to understanding the blob-like objects thrown off by ELMs,9,17,18 which have 

central densities and temperatures characteristic of the top of the pedestal, much denser 

and hotter than the surrounding SOL plasma. 

In addition to the physics mentioned above, blob spin can also drive internal 

rotational instabilities that can tear the blob apart. This is the subject of the present paper. 

The theory of rotational instabilities of fusion plasmas has a long history.19-22 The goal 

of the present work is to apply this well-known theory to determine whether rotational 

instabilities of a hot blob, driven by its own internal spin, play a role in determining its 

dynamics and the associated SOL particle and energy transport. We also carry out a 

simple extension of the theory to include sheath effects that are important in the SOL. 

Another motivation for this study is to determine the qualitative and quantitative 

properties of the dominant rotational mode so that it can be used as a "signature" of blob 

spin (and thus of sheath connection) in interpreting visual 2D blob data, such as provided 
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by the gas puff imaging diagnostic.10,12 This study is restricted to the k|| = 0 limit in 

which blob spin is expected to be large. The instability is driven by a combination of 

centrifugal force, Coriolis, Kelvin-Helmholtz and rotational shear effects. Both linear 

stability calculations and the result of a 2D simulation are presented. 

When sheath conductivity is included in the analysis, the stability equation also 

includes the Berk-Ryutov-Tsidulko (BRT) ∇Te-driven instabilities23 in the eikonal limit. 

In the low mode number limit of interest here, the sheath conductivity term turns out to 

have a net stabilizing effect.  

The plan of this paper is as follows. Section II discusses the characteristic time 

scales and growth rates. The stability equations are given in Sec. III, and the linear and 

nonlinear stability results are presented in Sec. IV. A summary and discussion of the 

main results of the paper is given in Sec. V. 

II. Scaling of instability growth rates     

We begin by comparing the scaling of the growth rate γR of the rotational instability 

with those of the dominant instabilities in the absence of spin: the sheath-interchange 

mode15,16 (γSI) and the Kelvin-Helmholtz (KH) mode16 driven by the sheared velocity 

vx(y) with growth rate γKH. (In this paper, x and y refer to the local radial and poloidal 

coordinates in the tokamak outer midplane.) The relative scaling of the growth rates 

determines the parameter regime in which the rotational mode dominates.  

Here, we consider only the internal temperature profile Te(r) of the cylindrically-

symmetric blobs and neglect the temperature variation Te(x) of the external background 

plasma, assuming that the latter varies on a scale length much longer than the blob radius 

a. For a hot blob, the radially decaying sheath potential implies a radial electric field with 

Er > 0, which causes the blob to rotate in the azimuthal or θ direction with an angular 

frequency Ω(r) = vθ(r)/r. The resulting centrifugal, Coriolis, and velocity-shear effects 

can drive low azimuthal-mode-number instabilities with eigenfunctions varying like 

ψ(r) eimθ. Here, (r,θ,z) are used to represent the cylindrical blob coordinates and no 
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variation in the axial coordinate z (parallel to B) is assumed in either the equilibrium or 

stability analysis.   

The blob stability can be described by the Bθ = 0, k|| = 0, βt = 8πp/B2 = 0 limits of 

the Freidberg-Pearlstein theory22 developed for theta-pinches. In Ref. 22, a radial 

differential equation (given in the next section) and an associated variational principle are 

given which include rotational, finite-Larmor radius (FLR), and line bending (k|| ≠ 0) 

effects. Balancing the driving term against the inertial term in the variational principle 

gives the following (dimensional) scaling of the growth rate:  

 E
n

2
2

L
a

k
k

ΩΩ











≈γ

⊥

θ . (1) 

Here kθ = m/r, Ω = vθ/r is the angular rotation frequency, ΩΕ = −cEr/rB ≈ (c/rB)(dΦB/dr) 

is the E×B rotation frequency, and ΦB ≈ 3Te. In the presence of FLR effects [Ω∗ ≡ 

−c/(ernB)(dpi/dr) ≠ 0], the angular frequencies are related by the equilibrium radial force 

balance condition: 

 *E Ω−Ω=Ω  , (2) 

where τ = −Ω∗/ΩΕ ∼ Ti/Te is the FLR parameter. Since Er  > 0 and dpi/dr < 0 for the 

blob, both terms in Eq. (2) have the same sign and the diamagnetic drift Ω∗ increases the 

instability drive, Ω = ΩΕ (1 + τ) with τ > 0. There is also an explicit FLR stabilization 

term (∝ Ω∗2) in the variational principle. A necessary condition for FLR stabilization is 

that the τ 2 term be larger than the (destabilizing) τ term, which requires τ >> 1. Thus, 

FLR stabilization of blobs is more difficult than in the well-known theta pinch problem 

for which τ ~ 1 is sufficient to obtain stability. This conclusion is supported by our 

numerical calculations with the radial eigenmode equation including FLR effects derived 

in Ref. 22; FLR stabilization of the dominant rotational mode was found to be weak for 

Ti/Te < 10.  For this reason, in the remainder of this paper we will restrict the discussion 

to the case with Ti/Te = 0. 
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Neglecting Ω∗ and assuming that the sheath potential decays over a blob radius a, 

we can estimate the magnitude of the rotation and the growth rate. Setting Ln ~ LT ~ a 

and k⊥ ~ kθ, the rotational growth rate γR has the following dimensional scaling: 

 i

2
s

R a
~~ Ω





 ρ

Ωγ   . (3) 

In dimensionless notation3 where velocity, frequency, and length, are normalized to the 

sound speed cs = (Te/mi)1/2, cyclotron frequency Ωi = eB/mic, and gyroradius ρs = cs/ Ωi,  

respectively, Eq. (3) becomes γR ~ 1/a2. Using results from previous papers,15,16 the 

comparison with the sheath-interchange growth rate γSI and the Kelvin-Helmholtz (KH) 

growth rate γKH  is  

 
3KH3

2

SI2
B

R
a

q
~,

a

qm
~,

a

C
~ γγγ , (4) 

where CB is the Bohm sheath coefficient defined earlier, q = L||/R and a is the cylindrical 

blob radius in the plane perpendicular to B. The KH mode referenced in Eq. (4) is a 

global (low-m) mode driven by the curvature-driven sheared flow, vx(y), for a blob 

propagating radially across a background plasma,16 and the growth rate is estimated as 

γ ∼ vx/Ly ~ q/a3 using the 2D blob model result2,3 that vx = q/a2. There is also a KH 

instability associated with the rotation, which has a growth rate γ ∼ vθ/r ~ Ω ~ CB/a2, 

comparable to the mode driven by the centrifugal force. The numerical solutions of Sec. 

IV include the effects of the azimuthal rotational shear vθ(r). For the remainder of this 

paper, we will not distinguish between the centrifugal and velocity-shear drives 

associated with rotation and will simply refer to both of these as rotational instabilities. 

The main conclusion to draw from Eq. (4) is that the rotational growth rate is 

dominant for larger blobs and lower mode numbers m. Comparing the rotational and 

sheath-interchange growth rates for a fixed blob size, we find that γR > γSI for  

 ( ) 2/1
Bcrit q/aC~mm <   , (5) 
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which is also the condition to neglect the curvature term in the vorticity equation. High-m 

modes that violate Eq. (5) would be radially localized near the outside of the blob and 

would not affect the transport of the main body of the blob in a substantial way.  

Finally, one can also show that the rotational growth rate is large compared to the 

blob convection rate γc,15 defined as γc = 1/τc, where τc = a/vx ~ a3 is the time for the 

blob to convect one blob radius. Thus, γR/γc ∼ a is large for typical blobs (having a >> 1 

in units of the gyroradius) and the rotational instability is fast enough, in principle, to 

affect the blob transport.  

III. Model Equations     

The theory of  propagating density blobs and their stability is based on a simple set 

of dimensionless equations that expresses the conservation of vorticity (charge), density, 

and temperature:2,3  

 ( ) ( )nTnT
dt
d

n yB
2/1 ∇β−Φ−Φα=





 Φ∇⋅∇ −

⊥ , (6) 

 0nT
dt
dn 2/1 =α+ , (7) 

 0T
dt
dT 2/3

T =α+ , (8) 

 ∇⋅+
∂
∂= v
tdt

d
, (9) 

where Φ is the total electrostatic potential, ΦΒ is the Bohm sheath potential, and the first 

term on the right-hand-side (rhs) of the vorticity equation was expanded in the limit ϕ = 

Φ − ΦΒ << 1. Also, n is the particle density (n = ne = ni), T = Te is the electron 

temperature, Ti = 0 (neglect FLR and diamagnetic effects), α = (2ρs/L||) measures the net 

parallel current and particle loss into the sheaths, αΤ gives the energy loss into the 

sheaths, and β = (2ρs/R) is the curvature parameter. In the blob model the velocity is 

given by the E×B drift, v = b×∇∇Φ = ez×∇∇Φ. To make the equations dimensionless, time 
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has been normalized to Ωi
−1, length scales to ρs, and other quantities to reference values 

(e.g. separatrix values ns and Tes).   

 Note that these equations apply in the moderate-collisionality, sheath-limited 

regime in which rapid electron conductivity along the field lines causes the electron 

temperature and electrostatic potential to be constant (flute approximation) and the sheath 

conductivity term [α term in Eq. (6)] to scale like Te–1/2. 

 We assume that the plasma filaments are localized perpendicular to B and employ 

a slab model with orthogonal coordinates (x, y, z) to represent the tokamak geometry. 

Here, the curvature is written as κ κ = −(ρs/R) êx with x in the direction of the major radius 

R. The z coordinate is taken along the direction of B, so that 2b×κκ•∇∇ = −β ∇y and y is 

approximately in the poloidal direction at the outer midplane. Here, y = 0 denotes the 

location of the outer midplane and x > 0 corresponds to the SOL, so that motion in the 

positive x direction is outwards towards the wall. For the stability analysis, we also 

introduce the corresponding cylindrical blob coordinate system (r, θ, z). 

Several approximations are used to simplify the linear stability analysis. We 

consider time scales smaller than the parallel loss times, t << αΤ−1 << α−1, so that the rhs 

of Eqs. (7) and (8) can be neglected. This restricts the validity of the stability analysis to 

growth rates satisfying γ ∼ Ω >> αΤ. With this approximation, we observe that the 

temperature equation (8) can be solved by the ansatz: 

 
ν= nT . (10). 

We also neglect the curvature term (∝ β) in Eq. (6), as detailed studies of curvature-

driven blob instabilities have already been published15,16 and we would like to focus here 

on the properties of instabilities driven only by rotation. The neglect of curvature is 

justified for large blobs satisfying Eq. (5). The combined effect of curvature and rotation 

is contained in the nonlinear 2D simulation discussed in Sec. IV. 

 The power law temperature profile in Eq. (10) is one example of the general class 

of "aligned" n and T profiles satisfying T = T(n). The physical justification for this 

assumption is that the blob convects both the density and temperature of its birthplace 
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outwards across the SOL so that there is a correlation between the central blob density 

and temperature. From a theoretical point of view, this assumption has the advantage that 

the temperature equation is automatically satisfied by the solution to the continuity 

equation. 

 Using these approximations and combining Eqs. (6) and (7), we obtain the 

following set of reduced equations as a starting point for the rotational stability analysis: 

 ( )B
2/1

nT
dt
d

n Φ−Φα=




 Φ∇⋅∇ −

⊥ , (11) 

 0
dt
dn = , (12) 

When Eq. (11) is linearized, the inertial term on the left-hand-side (lhs) contains the drive 

terms for the centrifugal, Coriolis, and Kelvin-Helmholtz effects. The sheath term on the 

rhs yields the drive term for the Berk-Ryutov-Tsidulko ∇Te-driven sheath instability in 

the eikonal limit.23 However, we will show that the sheath term turns out to have a net 

stabilizing effect in the low mode number limit of interest here. 

For the linearized stability analysis, we assume a 1D blob equilibrium (varying only 

in r) and linearize the equations (11) and (12) using the following ansatz: 

 
,ee)r(~)r(

,ee)r(n~)r(nn
tiim

tiim

ω−θ

ω−θ

ϕ+ϕ=ϕ

+=
 (13) 

where )r(BΦ=ϕ . Linearizing Eq. (12) gives the following solution for n~  

 ψ′−=ϕ
Ω−ω

′
−= n

r
m~

m
)r(n

r
m

n~   , (14) 

where ψ is defined by 

 ( )ψΩ−ω=ϕ m~  . (15) 

and is related to the radial component of the plasma displacement ξξ, viz. ψ = rξr/m.  
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We carry out the linearization of Eq. (11) without the sheath term (α → 0) and 

combine the result with Eqs. (14) and (15) to get the usual magnetohydrodynamic (MHD) 

result 

 0)F(n
dr
d

r
Fnm

dr
d

Fnr
dr
d 22 =ψ



 ω−−ψ−ψ

 , (16) 

where F ≡ (ω−mΩ)2 and F – ω2 = mΩ( mΩ−2ω). After some straightforward algebra, it 

can be shown that Eq. (16) is equivalent to the form given in Ref. 22 

 0r
dr

)n(d
rFn)1m(

dr
d

Fnr
dr
d 2

2
23 =ξω+ξ−−ξ

  . (17) 

It is also straightforward to add the sheath conductivity term [α term in Eq. (6)] to the 

derivation. If one linearizes the sheath term retaining temperature perturbations, 

TT
~ ∇⋅ξ−= , there is a cancellation of the rotational drift terms, and the stability equation 

becomes 

 0
T

rni
)F(n

dr
d

rFnm
dr
d

Fnr
dr
d

r
2/1

2
22 =ψωα−ψ



 ω−−ψ−ψ

 . (18) 

In the remainder of the paper, we drop the overbars on all equilibrium quantities. Thus, 

we have shown that perturbing the "hot blob" model equations yields a generalization of 

the standard rotational stability equation to include sheath dissipation effects. In the 

eikonal (high-m) limit, the sheath term is the drive term for the ∇Te-driven sheath 

instability.23 

Finally, we examine the dimensionless parameters for the stability problem. Note 

that the blob radius a can be scaled out of Eq. (18) by the substitutions r → r/a, α → αa4, 

ψ → ψ/a2, Ω → Ωa2 and ω → ωa2. Thus, the normalized eigenvalue ωa2 is independent 

of a. If we represent the rotation frequency by its value at the radial location where the 

eigenfunction peaks, Ω → Ωp~CB/a2, the blob stability is characterized by two 

dimensionless parameters, m and Sα ≡ (αa4)/(Ωpa2) = (αa2)/ Ωp, describing the mode 

width and the sheath conductivity, respectively.  
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IV. Blob Stability Results   

A. Linear Stability Analysis 

We have applied the formalism of Sec. III to an equilibrium solution for rotating 

blobs. We choose a Gaussian blob density profile )r(n of unit amplitude 

 ε+ε−= − )a2(r
22

e)1()r(n , (19) 

where a is the blob radius and ε specifies the relative height of the constant floor density 

across which the blob propagates. We set ε = 0.01 to ensure a localized solution for the 

blob potential.15 The effects of varying the ratio ε on the blob velocity and stability were 

explored in Ref. 15. The blob's internal electron temperature profile is given by 

 
ν== nT)r(TTT 0e0ee  (20) 

using Eq. (10). We assume that T = const. along the field lines, implying that the blobs 

are fully connected to the sheaths and the Bohm sheath potential is given by ΦB(r) = CB 

T(r), where CB ≈ 3. The blob polarization potential due to the curvature drift, 

)y(nlnq)y( ypol ∇=ϕ , which drives its radial motion, is smaller than the Bohm potential 

( Bpol / Φϕ ~ rs/a << 1) and can be neglected in the stability analysis and in computing the 

rotation. In the Ti = 0 limit, the rotation frequency Ω(r) ≈ ΩΕ(r) is  proportional to T(r) in 

the limit ε << 1.   

In Fig. 1, the profiles n(r/a) and Ω(r/a) are shown for the base case (ν = 2). Note 

that the rotation profile is far from the familiar rigid-rotor limit (Ω = const) which is often 

invoked in studying rotational stability. Thus, in addition to purely centrifugal and 

Coriolis effects, angular-velocity-shear will also play a role in determining the blob 

stability. This effect can be stabilizing or destabilizing (Kelvin-Helmholtz instability) 

depending on the parameters. 

 The eigenfunction ψ(r) is obtained by solving Eq. (18) with F(r,ω) = (ω−mΩ)2, 

subject to the boundary conditions that ψ′/ψ = m/r as r → 0 and ψ′/ψ = −m/r as r → ∞, 

with ψ′ = dψ/dr. The results presented here were obtained using a shooting method to 

determine the eigenvalue ω by requiring that the logarithmic derivative of ψ be 
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continuous at an interior matching point. The shooting code has been checked using 

another code employing a matrix method and by comparison with an analytic solution for 

a sharp-boundary density, rigid-rotor profile.  

First, we consider blob stability in the absence of sheath conductivity (α = 0). In 

Fig. 2 we show a plot of the density profile n/n0, the rotational mode instability drive [∝ 

(r2/n) d(nΩ)/dr ], and the amplitude of the m = 2 eigenfunction |ψ| vs r/a for the case a = 

10 (in units of ρs), ε = 0.01, and ν = 2. Each profile is normalized to have a maximum 

value of approximately unity to illustrate the relative shapes. Note that the m = 2 

rotational mode eigenfunction |ψ|(r) peaks off axis in the low-density outer region of the 

blob (1 < r/a < 2) where the drive term maximizes. This means that the m = 2 rotational 

mode will not break apart the main body of the blob, but merely throw off its low-density 

outer mantle, and the effective blob radius a will not be substantially affected. This is 

illustrated by the 2D simulation discussed in the next section. 

Consistent with the k|| = 0 limit of earlier work,19,22 we find that the m = 1 

rotational mode is marginally stable. The blob rotational modes with m ≥ 3 are found to 

be stable. However, the m = 2 mode is robustly unstable in the absence of sheath effects. 

We have also checked the sensitivity of the eigenfrequency to the temperature profile. 

For the parameters m = 2, a = 10, ε = 0.01, and α = 0, we obtain the following 

eigenvalues ωa2 (normalized to be independent of a) as a function of ν:  ωa2 = −0.96 + 

0.57 i for ν = 0.5, −1.6 + 0.76 i for ν = 1.0, and −2.6 + 0.94 i for ν = 2.0.  Both the real 

and imaginary parts of the eigenvalue increase with the temperature gradient parameter ν.  

We conclude that γ a2 ~ 1 and γ a3 >> 1 over a wide range of temperature profiles for m = 

2. 

We have also investigated the effect of the sheath conductivity α on the rotational 

stability. In Fig. 3, we show γa2 for m = 2 vs the sheath conductivity parameter Sα = 

αa2/Ωp for the base case temperature profile (ν = 2.0). Here, Ωp ~ CB/a2 is the value of 

the rotation frequency at the radius r where the eigenfunction peaks, and Sα specifies the 

ratio of the sheath conductivity to the vorticity associated with the rotation. The decrease 

in growth rate with Sα illustrates the stabilizing effect of the sheath conductivity. It was 
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difficult to find numerical solutions for Sα ≥ 1 using the shooting algorithm because the 

eigenfunctions become very localized and the mode eventually stabilizes. In the limit 

Sα << 1, the blob spin time around its axis (τs ~ Ω−1) is much shorter than the time for its 

vorticity (spin or charge) to dissipate by parallel loss (τφ ~ 1/αa2) and the growth rate is 

not affected by the presence of the sheaths. Figure 3 shows that stabilization by parallel 

loss of vorticity to the sheaths requires Sα = αa2/Ωp > 1. 

In the eikonal or high-m limit (kr ~ kθ = m/r >> 1/a), one can show that Eq. (18) 

yields the following well-known local dispersion relation23,24 

 0i)( s
2

E =ωω+ω−ω , (21) 

where ωE  ≡ mΩE → mΩ in the limit Ti → 0 and ωs = α/k⊥2 → αr2/m2 for kr << kθ. This 

dispersion relation predicts unstable BRT modes driven by the internal temperature-

gradient in the limit of high sheath conductivity (Sα). However, more detailed analytic 

and numerical investigations show that the blob's cylindrical geometry, together with 

monotonically decreasing T(r) profiles, typically prevents the existence of a "radial well" 

necessary for localized absolutely-unstable modes in the eikonal limit. Physically, this 

may be related to the fact that the sheath drive ωs vanishes at r = 0 where the rotation Ω 

(proportional to the temperature-gradient) maximizes [see Fig. 1]. 

B. 2D Nonlinear Simulation 

In this section, we complement the linear 1D theory presented in Sec. IV by 

presenting results of a 2D nonlinear simulation of blob transport that solves the following 

equations 

 ( ) nn
dt
d

n yB ∇β−Φ−Φα=




 Φ∇⋅∇ ⊥ , (22) 

 0n
dt
dn =α+ , (23) 

with ΦB = ΦB0 n. All quantities are assumed to be constant along the field lines. The 

code used was a slight generalization of the one employed in a previous study of blob 
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instabilities,16 in that the Bohm sheath term (αnΦB) was added on the rhs of the vorticity 

equation to drive the rotation. This code includes the rotational, curvature and sheath 

conductivity terms but again neglects FLR effects.  

The 2D simulation including the Bohm sheath effects shows good agreement with 

the 1D stability results described in the previous section. This is illustrated by a snapshot 

shown in Fig. 5 of a case with parameters a = 10, α = 3 × 10−5, β = 6.9 × 10−4 and ΦB0 

= 10, so that Sα ≈ αa4/ΦB0 = 0.03.  The blob develops an m = 2, k|| = 0 instability on a 

timescale short compared to the theoretical convection time τc = a/vx, i.e. γa3 >> 1, in 

agreement with the linear stability analysis. The frame in Fig. 5 occurs after about one τc 

and shows that the instability has undergone several e-foldings to produce an observable 

distortion of the blob. The instability peaks near the outside of the blob, as predicted by 

the linear stability analysis, and throws off an outer shell of material that wraps around to 

form a "halo" or "tail". The tail is left behind by the blob's rotation and curvature-driven 

propagation to the right. The instability shown here is clearly rotational in origin and 

differs qualitatively from the curvature-driven blob instabilities studied earlier.15,16 The 

appearance of the rotational instability in this run is consistent with the conditions 

Sα << 1 and m < (CB a/q)1/2 discussed in previous sections. A similar run with a = 30, 

implying Sα  = 2.4,  was also unstable, but the instability had a different character (not 

shown here). This is in agreement with the present theory, where Sα ≥ 1 implies strong 

stabilization of the rotational branch. 

We remark in passing that the blob dynamics (e.g. temporal variation of vx and 

vy) at later times is very interesting in the simulation corresponding to Fig. 5, as other 

rotational effects14 come into play. For example, the radial velocity of the blob is 

observed to increase after throwing off its outer mantel and it develops a poloidal 

velocity. A complete description of the simulation results will be presented elsewhere.25  

V. Summary and Discussion 

In this paper, we have studied the rotational stability of blobs with interiors hotter 

than the surrounding plasma. The study of temperature profile effects in blobs is partly 
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motivated by recent observations that ELMs produce blob-like transport.9,17,18 Large 

ELMs are typically associated with high-confinement H-modes, which have hot pedestals 

and SOL plasmas which are attached to the divertor plates. Under these conditions, the 

blobs produced by the ELM crashes are expected to have substantial size, to be connected 

to the divertor sheaths, and to transport energy as well as particles. Another motivation of 

this study is to obtain a visual "signature" for blob spin (or equivalently, sheath 

connection) that would be helpful in the analysis of the 2D data from gas puff imaging 

(GPI) diagnostics on various tokamaks.10,12 

The main results of this paper are:   

1) For typical internal density and electron temperature profiles with Ti = 0, blobs are 

linearly unstable only to the m = 2, k|| = 0 mode in the absence of sheath conductivity; 

the growth time of this mode (γ−1) is typically much faster than the blob transport 

time τc = a/ux ~ a3,  i.e. γ τc ~ γ a3 >> 1. 

2) The m = 2 eigenfunction peaks in the low-density outer part of the blob and does not 

affect the blob size very much, other than to throw off a tenuous outer mantle [see 

Fig. 4].  

3) When Ti  ≠ 0, the E×B and diamagnetic drifts reinforce each other for typical blob 

profiles, so that FLR stabilization does not occur for the parameters expected in the 

tokamak SOL.  

4) Sheath conductivity stabilizes the rotational mode when Sα  ≡ αa2/Ωp > 1, where α is 

the sheath conductivity parameter, a is the blob radius, and Ωp ~ CB/a2 is the rotation 

frequency at the radial location where the eigenfunction peaks. 

5) For finite sheath conductivity, the stability equation includes the Berk-Ryutov-

Tsidulko ∇Te instabilities in the eikonal limit (driven by the internal blob temperature 

profile), but these modes are stable for the low mode numbers of interest here. 

Based on this analysis, we conclude that blob rotational instabilities differ from 

curvature-driven ones14-16 in several respects. The low-m curvature-driven modes cause 

blob bifurcation, reducing the blob size a and increasing its radial velocity,  vx = q/a2. 

(The charge polarization occurs over a distance of order a so that the polarization 
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potential scales as ϕ ~ 1/a and the resulting electric field as Ey ~ 1/a2.)  In contrast to this 

situation, the unstable m = 2 rotational mode peaks farther out in radius [Fig. 2] and does 

not affect the high-density part of the blob. This leads us to conclude that the effect of 

rotational instability on the particle and energy transport is small, although rotational 

charge mixing14 in the blob can greatly reduce the transport. The m = 2 rotational 

instability causes the blob to shed particles from its outer low-density mantle and to 

deform in shape [Fig. 4]. The pinwheel shape shown in Fig. 4 is characteristic of this 

mode, differing both from the bifurcation events15 induced by curvature-driven modes 

and from the mushroom shapes16 observed in simulations of the Kelvin-Helmholtz 

instability, and may serve as a useful signature of blob spin (and sheath connection) in the 

analysis of the 2D GPI data.  

It is useful to examine the characteristic length scales of the various instabilities. 

Previously numerical simulations showed that the Kelvin-Helmholtz instability driven by 

vx(y) is dominant for a << a*, whereas the curvature-driven sheath-interchange mode is 

observed when a >> a*.16 Here, a*.= (q/α)1/5 is the fundamental blob scale in the 

absence of spin and dissipation, for which the inertial, sheath and curvature terms balance 

in the vorticity equation. Assuming a = a* to obtain a maximal ordering, we can write the 

condition that the m = 2 rotational mode growth rate be larger than the curvature-driven 

mode [Eq. (5)] in the form a* < ash = (CB/α)1/4.  Here, the quantity ash is the scale length 

at which sheath conductivity stabilization of rotational modes becomes effective, i.e. Sα = 

1 implies a = ash.  For a wide range of tokamak parameters, one finds that a* ≤ ash. Thus, 

in practice curvature, rotational, and sheath effects all play a role in determining the blob 

stability.  

 To put this work in a broader context, we note that there has been recent progress 

in the understanding of 2D blob transport under the action of curvature2,3 and rotation,14 

and the extension of the blob transport model to the 3D collisional regime.26 This work 

needs to be supplemented by studies of blob creation and destruction (e.g. by secondary 

instabilities) to determine the effective transport. With the present paper, we now have an 

understanding of secondary instabilities due to curvature, velocity shear, and rotation, 
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which should provide a good foundation for comparing the blob model with large scale 

turbulence simulations and experimental data. 
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Figure Captions     

Fig. 1 Plots of the blob density profile n(r) (solid line) and the rotation frequency profile  

|Ω(r)| in arbitrary units (short dashed line), with all profiles normalized to have a 

maximum value of unity. The parameters are a = 10, ε = 0.01, ν = 2, and α = 0. 

Fig. 2 Plots of the blob density profile n(r) (solid line), rotational drive (r2/n) d(nΩ)/dr 

(long dashed line), and eigenfunction |ψ(r)| (short dashed line), with all profiles 

normalized to have a maximum value of order unity. The parameters are m = 2, a 

= 10, ε = 0.01, ν = 2, and α = 0. 

Fig. 3 Plot of the m = 2 normalized growth rate γa2 vs the sheath parameter αa2/Ωp  for 

the base case temperature profile (ν = 2.0) with ε = 0.01. The decrease in growth 

rate with αa2/Ωp illustrates the stabilizing effect of the sheath conductivity α.  

Blob rotational effects are important when αa2/Ωp  << 1, where Ωp is the value of 

the rotation frequency at the radius where the eigenfunction peaks. 

Fig. 4 Snapshot of a spinning blob taken from a 2D simulation solving Eqs. (22) and 

(23) for the parameters a = 10, α = 3 × 10−5, β = 6.9 × 10−4 and ΦB0 = 10. This 

frame shows the development of an m = 2 instability with γ ~ Ω. The instability 

peaks near the edge of the blob and throws out a thin mantle of plasma. At later 

times in the simulation, this mantle is left behind as the blob spins and translates 

to the right.  
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Fig. 1 Plots of the blob density profile n(r) (solid line) and the rotation frequency profile  
|Ω(r)| in arbitrary units (short dashed line), with all profiles normalized to have a 
maximum value of unity. The parameters are a = 10, ε = 0.01, ν = 2, and α = 0. 
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Fig. 2 Plots of the blob density profile n(r) (solid line), rotational drive (r2/n) d(nΩ)/dr 
(long dashed line), and eigenfunction |ψ(r)| (short dashed line), with all profiles 
normalized to have a maximum value of order unity. The parameters are m = 2, a 
= 10, ε = 0.01, ν = 2, and α = 0. 
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Fig. 3 Plot of the m = 2 normalized growth rate γa2 vs the sheath parameter αa2/Ωp  for 

the base case temperature profile (ν = 2.0) with ε = 0.01. The decrease in growth 
rate with αa2/Ωp illustrates the stabilizing effect of the sheath conductivity α.  
Blob rotational effects are important when αa2/Ωp  << 1, where Ωp is the value of 
the rotation frequency at the radius where the eigenfunction peaks. 
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Fig. 4 Snapshot of a spinning blob taken from a 2D simulation solving Eqs. (22) and 

(23) for the parameters a = 10, α = 3 × 10−5, β = 6.9 × 10−4 and ΦB0 = 10. This 
frame shows the development of an m = 2 instability with γ ~ Ω. The instability 
peaks near the edge of the blob and throws out a thin mantle of plasma. At later 
times in the simulation, this mantle is left behind as the blob spins and translates 
to the right.  
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