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Abstract 
Experiments on the Alcator C-Mod tokamak [Phys. Plasmas 1, 1511 (1994)] have 

demonstrated the existence of a density limit which appears to be caused not by radiation, 

but by perpendicular heat convection in the scrape-off-layer (SOL). The present paper 

shows that the collisionality dependence of the blob model provides a plausible 

explanation for this convective density limit under certain conditions. The thermal 

equilibrium and stability of the SOL are studied in a two-point (midplane, divertor) 

model including perpendicular heat convection. A general scaling of the perpendicular 

heat flux q⊥ with temperature is used to derive conditions for the SOL thermal 

equilibrium to have two roots and a fold catastrophe associated with root merger. For the 

particular scaling of q⊥ given by a “disconnected” blob model, this equilibrium limit can 

be interpreted as a SOL density limit associated with X-point cooling in which the blob 

heat transport plays a role analogous to radiation in other theories. 

PACS numbers: 52.25.Fi, 52.35.Ra, 52.55.Dy, 52.55.Rk , 52.55.Fa 
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I. Introduction 

 It is well-known that magnetic confinement experiments have an operational limit 

on the line-averaged core-plasma electron density ne.1  This limit is of great practical 

importance for a fusion reactor because the fusion reaction rate scales like ne2. The 

physical explanation of the density limit is not yet completely understood, nor is it known 

whether the same process occurs in all experiments. It is generally accepted that some 

density-dependent cooling process in the edge or scrape-off-layer (SOL) causes shrinkage 

of the edge current channel, leading to magnetohydrodynamic (MHD) instabilities and 

disruption as the safety factor profile q(r) evolves. An empirical relation which works for 

many experiments is the Greenwald density limit, ne < nG, where 

 ,
a

I
n 2

p
G π

=  (1) 

Ip is the total plasma current, and a is the minor radius of the toroidal plasma. Here, the 

units of Ip, a, and nG are MA, m, and 1020 m−3. The success of this limit is somewhat 

mysterious because it is framed in terms of the average core density, but almost all the 

density limit theories are based on physics that depends on the edge or SOL density (and 

impurity densities when radiation is considered), none of which enter directly into this 

expression. A theoretical understanding of Eq. (1) is outside the scope of this paper. 

Instead, we assume that the edge cooling responsible for the Greenwald density limit is 

driven by thermal collapse of the SOL plasma and focus on the latter problem. Here, we 

derive a condition for an edge / SOL density limit, leaving its relation to the Greenwald 

limit for future work. 

 There is an extensive literature on experimental and theoretical studies of the 

density limit (DL), which has been reviewed recently in two excellent articles.1,2  Here, 

we mention just a few papers that are relevant to the present work. All DL theories are 

built around a density-dependent edge cooling mechanism. Much of the density limit 
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literature is concerned with radiation-driven density limits; these papers investigate either 

global power balance or local edge power balance using various confinement scalings 

and including edge radiation from light impurity ions. Another class of theories invokes 

turbulent transport-driven density limits. One recent paper solved for thermal equilibrium 

of the core plasma including edge impurity radiation and a model of drift-resistive 

ballooning turbulent transport.3 Other groups have used 3D turbulence codes to 

investigate density limits due to increased turbulent transport at high collisionality.4-6 

These papers are closely related to the present work, as we discuss below. Finally, other 

recent papers have studied two-point models of SOL and divertor power balance 

including impurity radiation, ionization and recycling at the divertor plates for high 

recycling plasmas7 and a gas target model with the DL assumed to coincide with full 

detachment for ultra-high recycling plasmas.8 Our approach is closely related to that of 

Borrass;7,8 we interpret the DL as resulting from thermal collapse of the SOL and use a 

two-point SOL power balance model to explore the physics. However, in our case the 

primary cooling mechanism is assumed to be turbulent transport. The present paper 

complements earlier studies4-6 of density limits associated with 3D turbulence by making 

the connection with turbulence-induced blob transport.  

 Our work is motivated by experiments on Alcator C-Mod9 that imply the 

existence of a density limit due to turbulent radial heat convection.10,11At low densities 

(ne << nG) on C-Mod, the SOL profiles have two distinct regions: near the separatrix, the 

profiles are determined by parallel transport and decay sharply, but farther out the cross-

field transport dominates for both particles and energy, with the result that the density and 

pressure profiles are flat. The boundary between the two regions moves inward as n/nG 

increases, and the ratio of the cross-field to parallel power flows just outside the 

separatrix, q⊥A⊥/q||A||, is found to increase with collisionality.1,10,11  (Here, q||  and q⊥ 

are the parallel and perpendicular heat fluxes and Aq ⋅  is the power.) This power ratio 

q⊥A⊥/q||A|| is small at low density but exceeds unity as n/nG → 1 [see Fig. 5 in Ref. 10 or 
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Fig. 25 in Ref. 1].  It was suggested1,10-12 that the observed density limit could be related 

to the turbulent perpendicular heat convection and was caused by the unstable nature of 

the collisionality scaling of the perpendicular transport: lower SOL temperatures give 

higher collisionality and thus increased q⊥, and the temperature drops further leading to a 

rapid cooling and thermal collapse of the SOL. The assumption of turbulence-driven 

transport is supported by data showing that the fluctuations levels of saturation current 

increase with average density on C-Mod10,11 and other machines.13,14 The present paper 

describes a convective transport mechanism which is consistent with this picture and 

derives the conditions under which a DL is obtained.  

 Some theoretical support of this idea was already provided by a series of 3D edge 

turbulence simulations using the BOUT code.6 In these simulations, the turbulent 

fluctuation levels and transport increased strongly with collisionality, and at high edge 

density the perpendicular turbulent transport dominated the parallel classical transport, 

leading to divertor detachment. As the density limit was approached in these simulations, 

a transition was observed from resistive X-point mode turbulence to resistive ballooning 

turbulence. This transition was obtained more easily when the SOL was allowed to cool 

as the density was raised (p = nT = const.). This work was qualitatively consistent with 

earlier simulations4,5 and extended them in an important way by including the effect of 

the X-point geometry, and by investigating the effect of the enhanced cross-field 

transport on the equilibrium and thermal stability using the UEDGE code. The latter 

calculation showed that by diverting the heat flow away from the X-point, an X-point 

MARFE was triggered. (The acronym MARFE stands for “Multifaceted Asymmetric 

Radiation From the Edge”.) 

 In this paper, we describe a simple analytic model that is related to these 

experimental and simulation results. We consider SOL cooling by turbulence-induced 

(blob) radial convection for a diverted tokamak. We will show that the C-Mod 

experimental density-limit results and physical picture are consistent with the “blob” 
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model15,16 of turbulent transport, extended to include the effects of parallel resistivity 

η|| = (meνe/2ne2)  at the X-point.17-19  Earlier work showed that the blob model gives 

good qualitative agreement with many aspects of the SOL transport observed in 

experiments.20 The work described here extends this picture by showing that blobs which 

are electrically- and thermally-disconnected from the sheaths (and thus move more 

rapidly) can play a role analogous to that of radiation in cooling the X-point and 

triggering thermal collapse of the SOL.  

 In a sense, the thermal instability considered here is the convective analog to an 

X-point MARFE with the role of radiation replaced by cross-field blob heat transport. 

This idea is illustrated in Fig. 1. The SOL has two self-consistent thermal equilibrium 

states corresponding to different blob transport regimes. The first case has blobs which 

are connected to the sheaths and move outwards relatively slowly; parallel heat 

conduction is competitive with the radial heat transport, and the X-point remains hot, 

justifying the assumptions of thermal and electrical connection to the sheath. In the 

second state, the blobs are disconnected from the sheaths and therefore move faster;17-19  

the cross-field heat transport exceeds the parallel transport and the X-point cools, 

justifying the assumption of collisional disconnection from the sheath. One of the main 

results of this paper is to show that the latter state is thermally unstable, and the DL in 

this paper is associated with the transition from the connected to the disconnected state. 

 To produce a SOL density limit, the important physical properties of the blob 

model (see Sec. II B) are that both the blob generation rate (e.g. as seen in the 

simulations17) and the blob perpendicular velocity17-19 increase with collisionality in the 

“disconnected blob” regime. The increase in blob velocity comes about because the blob 

current path becomes electrically disconnected from the sheaths as the collisionality 

Λ = (νeiL||/ρsΩe) increases [see Sec. II B].  This disconnection effect is enhanced by X-

point geometry and influences the blob motion in the near SOL. The increase in blob 

transport with collisionality is also enhanced by thermal disconnection from the sheaths. 
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Sheath-connected blobs which are hotter than their surroundings develop a large Bohm 

sheath potential and tend to spin around their axis; rapid blob spin can reduce the charge 

polarization driving the radial motion.21 As the collisionality increases, the blobs become 

thermally disconnected from the sheath, with the result that the spin disappears and the 

full charge polarization effect is obtained. The solution in Eq. (22) assumes no charge 

mixing by blob spin. Electrical disconnection implies thermal disconnection; both types 

of disconnection require Λ > Λcrit, as discussed in Sec. II B. 

   Under certain conditions (derived in Sec. III A) the increase in blob transport 

with collisionality leads to a bifurcation of solutions for the SOL thermal equilibrium 

corresponding to the picture in Fig. 1: there is a thermally stable root in which the X-

point remains hot and the blobs move relatively slowly, and a thermally unstable root in 

which the X-point cools and the rapid perpendicular heat transport due to the blobs 

causes the thermal equilibrium to collapse. Mathematically, the equilibrium limit occurs 

in our model by root merging at a critical density and temperature, yielding a classic fold 

catastrophe. Physically, the equilibrium passes from the stable to the unstable root at the 

critical (root merger) point. A similar situation also occurs in some models of radiation-

driven collapse.22,2 Thus, we will show that the blob transport drives a transport 

catastrophe associated with X-point cooling as the SOL density is raised. 

 There is experimental evidence to support the hypothesis that blob cross-field 

transport is associated with the density limit on C-Mod.  Gas-puff imaging (GPI) 

measurements23 on C-Mod yield two-dimensional movies of blob radial and poloidal 

motion in the SOL, and the associated radial convective transport by the blobs is the 

likely mechanism to explain the flat SOL profiles. Recent measurements show that the 

region in which blobs are born extends inside the separatrix for n/nG > 0.6–0.7.24,25  A 

more complete discussion of the experimental results is given in Sec. IV.  

 The observation of blob creation inside the separatrix at high collisionality can be 

understood as follows. In a highly collisional (resistive) plasma, the turbulence and blobs 
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have a strong ballooning structure at the midplane and are not affected very much by 

whether the end of the field line is closed, passes near an X-point or terminates in a 

sheath. In this limit, the SOL transport spills over into the edge as it cools, and the 

physics is the same just inside and outside the separatrix. This is likely the reason why the 

simulations of Refs. 5, 6 and the present model all give similar qualitative results as n/nG 

→ 1. 

 The plan for this paper is as follows. Section II discusses the two-point SOL 

models for the time-evolution of the temperature (assuming fixed SOL densities) and for 

the blob transport. The SOL energy balance equations are solved by dimensional analysis 

in Sec. III  for general scalings of the perpendicular convection on the midplane and X-

point temperatures. A condition is derived for the existence of multiple roots (and the 

associated transport catastrophe) which has a simple physical interpretation in terms of 

X-point cooling. An analytic result is also obtained for the critical value of perpendicular 

convection. Finally, the connection of the equilibrium limits to thermal stability and to 

dynamical evolution is discussed. The relation of these results to the C-Mod experimental 

data is discussed in Sec. IV, and a summary and conclusions are given in Sec. V. 

II. The Model  

A.  Two-point SOL energy-balance model  

 In this work, we have explored a number of models based on a “two-point” 

approximation along the field lines, representing the behavior of the plasma in the 

midplane and divertor regions. The complete model involves conservation equations for 

vorticity (charge), particle density n and electron temperature T = Te in the SOL. For 

simplicity, we assume Ti << Te. The starting point is the dimensional set of energy 

conservation equations in the two regions 

 



   
 

 8 

   ( ) ( )
1

121core11
L
q

L
qq

t
Tn

2
3 −

−
=

∂
∂

⊥

⊥⊥ , (2) 

 ( )
2

231222
L

qq
t
Tn

2
3 −=

∂
∂ , (3) 

where the subscripts 1 and 2 refer to the midplane and divertor regions, region 3 is the 

sheath, and double subscripts indicate the direction of parallel flow between the regions, 

e.g. 12 implies “from region 1 to region 2”, and Lj is the parallel scale length of region j. 

We retain parallel heat conduction and convection in q12, and appropriate sheath BCs (in 

Γ23 and q23) to obtain the following parallel particle and heat fluxes 

 223sh232s2231s112 Tq,cn,cn Γγ==Γ=Γ , (4) 
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( ) ,TTTT
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,TTT
L

q

112||21
2/5

2
12

0

112||12
12

12
12

Γα+−κ≈

Γα+−κ−=
 (5) 

where csj = (Tj/mi)1/2 is the sound speed in region j, α|| is the thermal convection 

coefficient, and γsh is the sheath energy transmission coefficient (typically, α|| = 5/2 and 

γsh = 5). Assuming that the thermal conductivity is dominated by the colder X-point / 

divertor region, its coefficient is defined by 2/5
0e

2
the12 T/)nv(2.3 κ≡ν=κ  with T → T2.  

.For T given in eV, the constant κ0 is given by κ0 = 1.93 1021/λC   cm−1 s−1 eV−5/2, 

where λC  is the Coulomb logarithm. Here L12 is the parallel length of the transition 

region near the X-point.  

 The perpendicular heat flux from the core, q⊥core, provides the heat source to the 

SOL and is assumed to be constant. The perpendicular heat loss from the SOL is assumed 

to be localized in the midplane (q⊥ = q⊥1) and caused by blob convection. Thus, we 

express the perpendicular particle and heat fluxes as 

 111blob,1b1 Tq,vnf ⊥⊥⊥⊥ Γ==Γ , (6) 
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where fb is the the “packing fraction” of the blobs defined in Sec. II B, which is a 

measure of the blob creation rate. The blob velocity v⊥,blob   is proportional to δn1/n1, 

where δn is the height of the blob above the background density profile, because of the 

effect of the background density on the blob velocity, as seen in simulations.26,27 In Sec. 

II B we will discuss the blob physics and parametric dependencies in more detail, and we 

will solve for the blob velocity in the disconnected blob limit assuming that fb and δn1/n1 

are order unity.  However, in carrying out the thermal equilibrium and stability analysis, 

it is useful to consider a general scaling of the blob velocity with temperatures, viz.  
 

 2/
2

1
012/

2

1
1

01
T
Tq,

T
T

ν

µ

⊥ν

−µ

⊥ Γ=Γ=Γ   , (7) 

where Γ0 is a coefficient to be determined later. The motivation for this scaling will 

become apparent later in the paper, and it includes the disconnected blob solution in the 

2-point model as a special case. 

 One can enlarge the model to include the continuity equations and attempt the 

ambitious goal of solving for densities and temperatures in both regions. We have carried 

out this solution but it is too complicated to illustrate the important points. Also, to obtain 

reasonable values of the densities one must include realistic SOL particle sources, Spj,  

accounting for neutral recycling and ionization physics, in addition to the particle flux 

from the core (especially near the density limit). A simpler procedure is to turn the 

problem around and assume that the densities n1 and n2 are fixed in carrying out the 

thermal equilibrium and stability analysis. One then determines the required particle 

sources for equilibrium from the following continuity equations (with ∂nj/∂t = 0) 

 

 ( )
1p

1

121core1 S
LLt
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∂

∂

⊥

⊥⊥    , (8) 
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∂    . (9) 

 Making use of these approximations, we can derive a set of dimensionless model 

equations for the thermal equilibrium and stability problems. To further simplify the 

equations, each term in the equation is normalized to the (assumed constant) core heat 

source q⊥core(L1/L⊥), where edgecorecore Tq ⊥⊥ Γ= , and a reference SOL temperature Tr is 

defined such that the coefficient of the parallel thermal conductivity is unity in the 

dimensionless equations: 
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For typical C-Mod parameters, Tr is about 10-20 eV. The resulting equations for 

rjj T/TT =  are 
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For the remainder of this paper, unless otherwise noted, we drop the bars and let Tj 

denote the dimensionless temperature, and we assume L1 = L2 for simplicity. Note that 

Eqs. (11) and (12) contain the effects of perpendicular convection (e.g. blob transport) 

through the C⊥ term, but omit radiation terms. Thus, our analysis is complementary to 

other density limit theories that focus on the effects of radiative cooling. 

 In these equations, the characteristic particle and energy transport time scales, 

τpj and τΕj, are defined as  
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so that τΕ /τp = (Tr/Tedge). The other transport coefficients are defined in terms of the heat 

fluxes at the reference temperature (i.e. T1 = T2 = Tr)  as 
 

 
2

1

sh

||

1core

T23
||

core

T1

n
n,

L
L

q

q
C,

q

q
C rr

γ
α

≡ξ== ⊥

⊥⊥

⊥
⊥     . (14) 

For later use, we define dimensionless quantities proportional to the divergences of the 

perpendicular and parallel heat fluxes (normalized such that equilibrium energy balance 

has the form Q⊥ +  Q||  = 1). These are given by 

 2/3
2||||2/

2

1 TCQ,
T
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⊥⊥  (15) 

and we also define the global SOL energy balance function FSOL(T1, T2) 
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 (16) 

B.   Blob transport physics 

 In this section, as motivation for the model just presented, we briefly review some 

relevant aspects of blob transport physics and derive a solution for the blob velocity in the 

two-point model. This particular solution is an important special case of the general 

scaling analyzed here. 

 The basic observation motivating the blob model is that edge turbulence in the 

highly nonlinear regime produces coherent structures with enhanced concentrations of 

density, temperature, and vorticity. These plasma “blobs” become charge-polarized 

because of the species-dependent curvature drift, and the resulting electric field causes an 

E×B drift down the toroidal magnetic field gradient on the low field side of the 

torus.15,16 By this mechanism, the ∇B and toroidal curvature forces (or more generally, 

any outward radial force) can move the plasma towards the wall with a velocity of 
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typically vx ~ 0.01 – 0.1 cs. (The lower end of this range is found on C-Mod.)  Recent 

work on three-dimensional (3D) blob models17-19 has extended blob theory from the 

two-dimensional (2D) sheath-connected ballistic theory appropriate in the far SOL to the 

“resistive-X point” (RX) and “resistive ballooning” (RB) blob regimes appropriate in the 

near SOL and edge plasma, where the blobs are created by turbulence with a ballooning 

structure which is essential to the present work. 

 The blob dynamics can be thought of as controlled by an effective “electrical 

circuit”.  The blob charge polarization is determined by balancing a fixed perpendicular 

current source (curvature-drift-induced current) with the parallel currents along the field 

lines. The blob charge and current densities have a dipole structure in the (approximately 

poloidal) direction perpendicular to its motion, giving a complete current path. The 

effective resistance along this path determines the voltage (the induced blob potential), 

which controls the strength of the blob E×B velocity.17-19 Depending on the parameter 

regime, there are several possible current paths, each giving a different scaling of blob 

velocity with the plasma parameters and each corresponding to a particular underlying 

linear instability.19 The regime of interest in the present paper is the “disconnected” blob 

regime corresponding to the electrostatic RX instability,28 in which the current loop is 

closed by perpendicular polarization drift currents across the thin elliptically-fanned part 

of the blob flux tube near the X-points.29 This is the relevant blob regime when cooling 

(e.g. by gas puffing near the X-point) increases the parallel resistivity in the divertor 

region. Blobs with this scaling have been observed in 3D BOUT simulations of SOL 

turbulence in the high-density, collisional regime.17  

 The competition among current paths is determined by the vorticity equation  

 ,p
B
c2J

dt
dmn

B
c

||||
2

i2

2
∇⋅×+∇=Φ∇⊥ κb  (17) 

where d/dt = ∂/∂t + v • ∇,  v = (c/B) b × ∇⊥Φ,  Φ is the electrostatic potential, B = Bb is 

the magnetic field, xˆ)R/1( ebbκ −=∇⋅=  is the magnetic curvature, J|| is the parallel 
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current density, n = ne = ni is the particle density, and p = nT is the pressure. Letting (x,y) 

denote the local coordinates in the radial and vertical directions at the outer midplane, we 

write xˆ)R/1( eκ −= and )aR/p2(p)R/2(p2 by −≈∇−==∇⋅× κκb , where ab is the blob 

radius. 

 In the two-point model, the vorticity equations in the two regions are given by 
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where 

 ( ) 2s2312
12

12
12 J,

L
J Φσ′=Φ−Φσ−=   , (20) 

sσ′  is proportional to the sheath conductivity, and εx << 1 is a “fanning factor” associated 

with the flux tube geometry near the X-point. Note that the curvature drive term is 

included only at the midplane, and the sheath current loss term is included only in the 

divertor region. Since we are assuming the density limit is associated with blobs that are 

disconnected from the sheaths, we make the approximation Φ2 << Φ1,  so that Φ2 drops 

out of Eq. (18), and Eq. (19) is not needed here. This is justified in the parameter regime 

where X-point effects are strong and the collisionality is large; in that case the vorticity 

term on the LHS of Eq. (19) balances the J12 term, and Φ2 → 0 as εx → 0.30 

 There are two blob parameter regimes19 associated with Eq. (18): (i) the resistive 

ballooning (RB) regime,19,31 in which the curvature term is balanced by the vorticity 

term on the left-hand-side of Eq. (18), and (ii) the resistive X-point (RX) regime,17,19 in 

which the curvature term is balanced by the parallel current term, J12/L1. The 3D BOUT 

simulations6 suggest that the Greenwald density limit may correspond to the RX to RB 
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transition. Thus, the transition up to the density limit should occur in the RX regime in 

which 

 
b

111
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where ∂p/∂y ≈ n1T1/ab. The radial blob velocity in this regime is given by vx ≈ 

(c/B)(Φ1/ab) with the sign chosen to give an outward drift.  

 Solving for the potential from Eq. (21) and using the result to obtain vx, we obtain  
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where ρs1 = cs1/Ωi, cs1 = (T1/mi)1/2, Ωi = eB/mic, ωpi2 = 4πn1e2/mi, σ12 = 2n1e2/(meν12) 

ν12 = 2.9 10−6 λC n1/T23/2, λC is the Coulomb logarithm, and q = L1/R (not to be 

confused with the heat fluxes q⊥ and q||). In writing Eq. (22), we have assumed that 

δn1/n1 ~ 1 in the spatial region of large transport, so that the effect of background density 

on the blob velocity can be neglected. In the second form, we introduce the collisionality 

parameter  

 ⎟⎟
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⎞
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⎝

⎛
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⎠
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e
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i

e L
m
m   , (23) 

expressed in terms of the electron mean free path λe = vthe/νe → vthe1/ν12 and L|| → L12  

in the two-point model notation. One can show from Eq. (19) that the disconnected blob 

limit Φ2 << Φ1 used to derive Eq. (22) requires Λ > Λcrit = min[1,  εx (ab/a*)5/2], where 

a* = ρs4/5 L||2/5 / R1/5;  thus, Λcrit = εx (ab/a*)5/2  for small blobs, and Λcrit = 1  for 

sufficiently large blobs. These regimes have been studied in recent 2D simulations of the 

two-region model,30 which have shown good agreement between the numerical results 
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and the analytic scalings [such as Eq. (22)]. A detailed discussion of the collisionality 

regimes will be presented elsewhere. One can obtain the sheath-connected blob result 

(valid at low SOL density) heuristically by setting Λ = 1 in Eq. (22).  Thus, Eq. (22) 

shows that the blob speed increases with collisionality as the blob current path 

disconnects electrically from the sheaths.  

 Note that in this model all quantities are expressed in terms of the midplane 

values n1 and T1 except for the temperature dependence of the collisionality, νe = ν12 ∝ 

n1T2−3/2. This choice is not essential, but it models the fact that the collisionality 

(conductivity) of the colder divertor region determines the parallel current flow to the 

sheaths.   

 The perpendicular heat flux is obtained by combining Eqs. (6) and (22) and 

specifying the packing fraction fb ~ (ab/Ly) (τb/∆τ) < 1, where Ly is the average poloidal 

spacing between blobs at a given time and τb = ab/vx is the time for a blob to transit past a 

fixed radial point and ∆τ is the average “waiting time” between emission of consecutive 

blobs. The upper limit on the packing fraction is fb = 1, corresponding to poloidally-dense 

and continuous emission of blobs, and in the high-density, high-transport regime, we 

expect that fb is of order unity. This assumption can be tested experimentally, as 

discussed subsequently. We note that the packing fraction is inversely related to the 

skewness S of the blob statistics: at low collisionality the blobs are created infrequently, 

so fb << 1 and S >> 1; as the edge density and collisionality increase, the blob generation 

rate increases (fb → 1) and S decreases (S ~ 1).  

 This is a subtle point requiring further explanation. As a matter of semantics 

(depending on the definition of a ”blob”), the S ~ 1 region can be viewed either as a 

strongly turbulent, blob-free state,13 or as a state with very close-packed blobs where the 

particle and heat flux is carried entirely by the blobs (the point of view taken here, 

because it allows us to specify a functional form for the transport).  Both viewpoints are 

valid if one can show that the “mixing length” estimate and the blob estimate of the radial 
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transport give the same order of magnitude result. In fact, the two estimates are consistent 

if one assumes a wave-breaking condition for saturation of the turbulence ( vk~ ⋅ω ), 

implying the following correspondence rule19 

 bn
bb

x aL,
a
1k,

a
v →→→γ ⊥   , (24) 

which relates the properties of the underlying equilibrium and linear instability to the 

radial blob velocity and scale size. Here, γ = Im[ω] is the growth rate of the instability 

and k is the wavenumber. Then, using mixing length theory we estimate (in Bohm units) 

)L/(~k~n/n~ n0 ωΦ⊥  and Φ⊥
~k~v~x  and employ the saturation condition ⊥⊥ω v~k~ , 

which implies 2k/~~
⊥ωΦ  to obtain )Lk/(n~]v~n~Re[~ n

2
0x ⊥

∗ γΓ .  At the blob generation 

zone (where strong turbulence sets in, and the estimate becomes qualitative) we use the 

correspondence rules to obtain b0 an~ γΓ . On the other hand, from the blob perspective, 

we estimate xbvn~Γ with blob density 0b n~n  and convective blob velocity bx a~v γ  

[see Eq. (24)] to obtain the same result as in mixing length theory. Thus, the flux estimate 

from turbulence (which gives rise to the blobs) is consistent with the blob flux.  It is the 

agreement between the “mixing length” and blob estimates that allows us to apply the 

latter in the blob creation zone. 

 A recent paper13 has studied the turbulent blob (or “avaloid”) scaling near the 

density limit on the Mega Ampere Spherical Tokamak32 (MAST) and has two points of 

agreement with the present model: (i) the turbulent fluctuations (measured by <Jsat>) 

increase with n/nG (also seen in Refs. 10,11, and 25), and (ii) the skewness decreases 

from about 3 to 1 as n/nG → 1, suggesting that the blobs are more tightly packed near the 

density limit. As just discussed, in the limit of fb ~ 1 ~ S it is difficult to distinguish blobs 

from the general turbulent background. In Ref. 13, avaloids are defined to be blobs with 

amplitudes (<Jsat>) greater than 2.5 times the standard deviation σ, and the point of view 

is taken that blobs (avaloids) cease to play a significant transport role as S → 1. Here, we 

do not impose an amplitude threshold on what constitutes a “blob” and use the blob 
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model as a semi-quantitative means to estimate the scaling of the turbulent transport even 

as S → 1. 

 Making use of the approximations just discussed, we obtain 

 1s11

2

b

1s
1 cTnq

a
q Λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ρ=⊥   . (25) 

Note that this heat flux is proportional to the product of parameters characterizing the 

pressure-weighted MHD curvature (n1T1 q) and the collisionality (Λ).  The scaling of the 

perpendicular heat flux on the SOL density and temperature also depends on the scaling 

of blob size ab with gyroradius ρs. If one assumes that ab is independent of density and 

temperature, Eq. (25) gives the scaling q⊥1 ∝ n12T12/T23/2. Thus, in this case µ = 2, ν = 3 

and the perpendicular transport coefficient defined in Sec. II A scales like C⊥ ∝ n12.  If 

we assume sba ρ∝ , Eq. (25) gives the scaling µ = 1, ν = 3.  The difference between 

these scalings is important in what follows. We will see that the latter scaling implies that 

the blob heat transport q⊥1 increases as the X-point cools, which is essential for thermal 

instability. 

 The result that the thermal physics depends on the blob size scaling (which is 

presently unknown) highlights the need for more detailed analysis of blob statistics in 

both experiments and simulations. There are three arguments in favor of the blob scaling 

ab ∝ ρs assumed here: (i) theoretical scaling arguments suggest that the natural scaling of 

ab must be close to ρs; (ii) the magnetic field dependence of this scaling has been 

demonstrated on the LAPD experiment,33 and (iii) this scaling yields a B-field 

dependence of the transport which is qualitatively consistent with the simulations in Ref. 

6. We also note that the temperature dependence of the scaling ab ∝ ρs has the property 

that the blob size decreases as the SOL cools, which facilitates the transition from the RX 

to RB blob transport scaling at high collisionality, as observed in the BOUT simulations.6 



   
 

 18 

 With regard to point (i), we note that the only perpendicular scale length in the 

problem is ρs and the parallel scales are L|| (or R = L||/q) and λei. On dimensional 

grounds, one expects ab ~ ρs1-p-s L||p λeis, but p <<1 and s << 1 are necessary to get a 

“reasonable” perpendicular scale size for the blob.  

  The magnetic field scaling of the transport in our model [point (iii)] is estimated 

as follows. From the discussion of quasilinear diffusion, we recall that the effective 

diffusivity scales as bx
2

bbx
2

eff av~a)a/v(~k/~D ⊥γ , where the blob correspondence 

rule, Eq. (24), was employed. Using Eq. (22) for the RX-regime blob velocity and 

assuming that the magnetic field scaling is given by sba ρ∝ , we find that 

B/q~av~D bxeff at fixed L||. This result agrees qualitatively with the trend in the 

simulations reported in Ref. 6, where it was found that Deff increased as B decreased (at 

fixed q).  

 The complete scaling of the transport coefficients C⊥ and C|| have the following 

forms for the blob model described here 
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where cs, ρs and Λ are evaluated at the reference temperature and Tr is defined in Eq. 

(10). The important point is that both transport coefficients increase with SOL density.   

 Finally, we estimate the characteristic quantities in the blob model for typical C-

Mod parameters (B = 5 T, a = 0.22 m, R = 0.85 m, L1 = L2 = L12 = 8.5 m) near the 

density limit (Γ⊥core =  2 ×1017 cm−2 s−1, Tedge = 15 eV  ⇒ q⊥core = 3 ×1018 eV cm−2 

s−1) with n1 = 6 ×1013 cm−3, n2 = 1.2 × 1014 cm−3 and a blob size (half-width at half-

maximum) of ab = 0.5 cm. For these parameters, we obtain the following estimates: the 

reference temperature Tr  = 20 eV and transport coefficients C⊥ = 0.1 , C|| = 7.1, and ξ = 
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0.32.  Scaled parameters of interest are: the collisionality parameter Λ = 2.3 (Tr/T1)1/2 

(Tr/T2)3/2, the blob size in gyroradii, ab/ρs ~ 40 (Tr/T1)1/2, and the blob speed vx(cm/s) = 

0.5 × 105 (Tr/T2)3/2, where the scaling ab/ρs ~ const. was assumed in computing vx. 

These results are consistent with the assumption that C-Mod is in the collisional 

(disconnected) blob regime near the density limit, and the estimated blob velocity is in 

reasonable agreement with the measured values.  Here, T1 and T2 are obtained by solving 

Eqs. (28) and (29) as described in the next section. 

III. Solutions for general scaling 

 In this section, we apply the two-point SOL energy balance model given by Eqs. 

(11) and (12) to solve for the thermal equilibrium and the dynamic response of the SOL 

temperature to cooling by blob heat convection.  In deriving the model in Sec. II A, we 

assumed an arbitrary scaling of the blob transport term, and the scaling was motivated  in 

Sec II B by an analysis of the “sheath-disconnected” blob model, valid for high 

collisionality.  Here, we return to the analysis of the general scaling to illustrate the 

physical interpretation of the SOL density limit. 

A.  Thermal equilibrium and stability 

 The thermal equilibrium is determined by the equations for steady-state heat 

balance in the divertor region and the global SOL  

 ( ) ( ) 0TTCTTTF 2/3
2

2/3
1||21

2/5
22 =−ξ+−≡ , (28) 

 0TC
T
TC1F 2/3

2||2/
2

1
SOL =−−≡ ν

µ

⊥    , (29) 

where FSOL(T1, T2) = F1 + F2, the temperatures are dimensionless [normalized to the 

reference temperature in Eq. (10)], and  the densities have been absorbed into the 

coefficients, C⊥ ∝ n12 and C|| ∝ n2.  
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 A numerical solution of Eqs. (28) and (29) for fixed C|| gives the curves of T1 and 

T2 vs C⊥ shown in Fig. 2 and the normalized heat fluxes Q⊥ and Q||  [defined in Eq. (15)] 

vs C⊥ shown in Fig. 3.  For fixed C|| and ξ, and with values of the perpendicular heat flux 

exponents satisfying 

 µ>ν 2    (30) 

(derived subsequently), the thermal equilibrium problem has two non-zero solutions for 

(T1,T2) provided that C⊥ is smaller than a critical value (C⊥ = C⊥*) defined by the 

merger of the two roots and indicated by the vertical dotted line in Figs. 2 and 3. Above 

this critical value, there are no real equilibrium solutions. Thus, this model exhibits a 

classic “fold catastrophe” corresponding to a limit on the allowed perpendicular 

convection; the mathematical form of this model is similar to some density limit theories 

based on radiative cooling which also exhibit catastrophes (see Ref. 2 for a review and 

Ref. 22 for a relevant example). Here, the convective limit corresponds to a limit on the 

midplane SOL density, n1< n1*, when the blob physics in Sec. II B is taken into account.  

 The transport properties of the two roots are illustrated in Fig. 3. Except near the 

root merger point, the “warm X-point” (high-temperature) root is characterized by larger 

parallel heat flow (Q||  > Q⊥) whereas the “cold X-point” (lower temperature) root has 

larger  perpendicular heat flow (Q⊥ > Q||). We will show in what follows that the high-T 

root is thermally stable and is therefore physically observable, whereas the low-T root is 

thermally unstable. The model solution shows that parallel heat transport is stabilizing 

and perpendicular heat transport is destabilizing. Also in agreement with the 

experiment,1,10,11 the model predicts that the density limit occurs after Q⊥ exceeds Q|| for 

the physically observable root (see Fig. 3).  This agreement is vividly illustrated by a plot 

of the power flows for more recent C-Mod data (see Fig. 18 in Ref. 11), which should be 

compared with the physically observable “warm X-point” root in Fig. 3. This comparison 

is discussed in more detail in Sec. IV.  
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 When Eq. (30) is violated, the SOL thermal equilibrium problem has only one 

root for all values of C⊥ (at fixed C|| and ξ), and this root is stable to thermal 

perturbations. The SOL plasma simply cools as the convection becomes stronger. 

 We can solve the problem analytically in special limits to shed some light on the 

numerical results. We note that the divertor energy conservation equation, Eq. (28), has a 

simple solution of the form T1/T2 = ϖ when C|| << 1 (with ϖ = 1) or when C|| >> 1 (with 

ϖ = ξ−2/3). Substituting the solution for T1 into Eq. (29) gives an equation for T2 of the 

form 

 0TCTC1)T(F 2/3
2||

2/
22SOL =−ϖ−≡ ν−µµ

⊥   . (31) 

The three terms in this equation represent the core heat source, cooling by perpendicular 

blob convection, and parallel heat flow to the sheaths, respectively. Here, C⊥ and C|| are 

both positive and we use the maximal ordering C⊥ ~ C||.  As shown in Fig. 2, for a fixed 

value of C|| and under certain conditions which we now derive, Eq. (31) will have two 

solutions and an equilibrium limit on C⊥. To obtain the critical values of T2 and C⊥, we 

first solve for C⊥ = C⊥(T2,C||) 

 2/)32(
2||

2/)2(
2 TCTC +µ−νµ−ν

⊥
µ −=ϖ . (32) 

Setting ∂C⊥/∂T2 = 0 and solving for the temperature T2* at the root merger point, we 

obtain 

  
3/2
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2 C
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⎜
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⎝
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⎠
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⎝

⎛
+µ−ν
µ−ν=   . (33) 

Demanding that T2* be real and non-zero for a physical equilibrium solution, we obtain 

the simple condition on the temperature scalings given in Eq. (30), viz. ν > 2 µ,  to obtain 

an equilibrium limit. The limiting value C⊥* is then obtained by substituting the solution 

for T2* into Eq. (32) and collecting terms. We can write the equilibrium limit as 
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k
k

||
*

1k
kCC +⊥

µ

+
=ϖ    , (34) 

where k = (ν − 2µ)/3, C⊥ ∝ n12 and C|| ∝ n2.  

 The SOL density limit condition in Eq. (30) requires that the temperature 

dependence in the denominator of q⊥ be stronger than in the numerator. This condition 

ensures that the radial convective heat flux increases as the X-point cools. This is the 

physical mechanism behind the density limit in this paper. It is obviously related to 

thermal instability, because the increased radial heat flux will further cool the X-point, 

leading to rapid cooling of the SOL. When Eq. (30) is satisfied, the thermal equilibrium 

solution has the form shown in Fig. 2 with the root merger point given by Eqs. (33) and 

(34) for C|| large or small.  

 Figure 4 illustrates the equilibrium boundary in (C⊥, C||) space for our base case, 

µ = 1, ν = 3, and ξ = 0.5. The solid line denotes the root merger point obtained by 

numerical solution of Eqs. (28) and (29), and the dotted lines indicate the analytic 

solutions in the small- and large-C|| limits given by Eq. (34). The analytic and numerical 

solutions agree in the two asymptotic limits. Thermal equilibrium exists below the 

indicated curve. Given the density scalings of the transport coefficients, this boundary 

also implies a limit on the SOL densities n1 and n2 to maintain thermal equilibrium. 

 One can easily demonstrate the connection between this equilibrium limit and 

thermal instability. Using our analytic equilibrium solution with T1/T2 = ϖ and assuming 

the time-dependence δT ~ eγ t, it is straightforward to obtain a quadratic dispersion 

relation for the thermal instability growth rate γ from the perturbed versions of Eqs. (11) 

and (12). Here, we display the result near marginal stability (γ → 0) where the γ2 term 

can be neglected. In this limit, the perturbed result δT1 = ϖ δT2 holds and one obtains  
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Equation (35) shows that perpendicular heat convection is destabilizing when ν > 2 µ, 

and that parallel convection is stabilizing. The last form of Eq. (35) uses Eqs. (33) and 

(34) to show that γ > 0 for the low-T root,  γ < 0 for the high-T root, and γ = 0 at the 

critical point. 

 Thus, this model confirms the picture that: (1) at low collisionality, SOL heat 

transport is mainly along the field lines and a higher-temperature (warm X-point) root is 

obtained which is thermally stable; (2) at high collisionality, the heat transport is mainly 

across the field, e.g. due to blob convection, and a lower temperature (cold X-point) root 

is obtained which is thermally unstable. The merger point between the two roots gives the 

equilibrium limit on SOL density and collisionality, and this limit is also the marginal 

stability point. It can be shown that these properties hold for the complete model without 

approximations. 

B.  Thermal collapse  

 The above analysis can be extended to describe the thermal evolution of the SOL 

in cases where the thermal equilibrium is unstable or does not exist. To illustrate the 

dynamics of the system, it is instructive to first examine the function FSOL(T2) for fixed 

parameters C⊥, C|| and ξ. In Fig. 5 we plot the generalization of Eq. (31) which 

incorporates the exact (arbitrary C||) solution of Eq. (28) for T1.  When k ≡ (ν − 2µ)/3  > 

0, the function FSOL(T2) is a parabola, and the condition C⊥ < C⊥* [see Eq. (34)] ensures 

that the maximum of FSOL [= max(FSOL)] is positive. Under these conditions, the 

equation FSOL(T2)  = 0 has low- and high-temperature roots, as discussed previously. 
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Based on the near-marginal stability analysis of the previous section, we can sketch the 

direction of motion expected for the SOL: the system moves away from the thermally 

unstable low-T root, and it moves towards the stable high-T root, as indicated by the 

arrows in the figure. When C⊥ > C⊥* ,  max(FSOL) < 0 and there are no roots. The 

arrangement shown in Fig. 5 of one stable and one unstable root that merge for a critical 

value of the control parameter (here, C⊥) is referred to by mathematicians as the “fold 

catastrophe”. When k < 0, the function FSOL(T2) is a straight line and there is one stable 

root for each value of the control parameter; thus, there is no equilibrium limit and no 

thermal instability in this case. 

 This picture of the thermal evolution of the SOL is confirmed by integration of 

the time-dependent equations (11) and (12).  In Fig. 6 we show a plot of trajectories in the 

(T1, T2) phase plane for a case with k > 0 and *CC ⊥⊥ ≤ . In this case all initial conditions 

are first attracted to a line, then flow along the line to either the stable high-T root or to 

(0,0). Thus, these two points are attractors for the high- and low-temperature initial 

conditions, respectively. The trajectories in Fig. 6 show that approximate steady-state is 

first established in the divertor region [satisfying Eq. (28)] and then on a slower time 

scale the system evolves towards global heat balance [satisfying Eq. (29)] along the line 

shown in the figure.  For k > 0 and *CC ⊥⊥ >  (not shown) all initial conditions flow along 

the line to (0,0).  Thermal equilibrium is not possible in this case due to the destabilizing 

radial heat convection, and thermal collapse of the SOL is the only possible outcome. 

 A time-asymptotic (t → ∞) solution of Eqs. (11) and (12) sheds further light on 

the thermal collapse. To study the behavior as (T1, T2) → (0, 0), we neglect the terms 

with the highest powers of T and consider the case T1 << T2, so that  Eqs. (11) and (12) 

reduce to: 

 ,TC
t

T,
T
T

C1 2/3
2||

2
22/

2

1 −=
∂

∂τ= ν

µ

⊥   (36) 



   
 

 25 

where τ2 = τE2 (L2/L1). In this limit, perpendicular heat convection is the main cooling 

mechanism in the midplane, and parallel heat losses to the sheath cool the divertor region. 

Using the ansatz, jtAT jj
α= for j = 1, 2 with Aj and αj constants to be determined, we 

obtain the asymptotic solution 
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The neglected terms in Eqs. (11) and (12) are small if ν, µ > 0 and satisfy the condition 

(30) for two roots, viz. k > 0. This condition insures that T1 << T2 as t → ∞ [see Eq. 

(37)], consistent with our assumptions.  This solution verifies that (0, 0) is an attractor of 

the non-equilibrium system as t → ∞ when perpendicular heat convection is important. 

 Finally, in the single root case (k < 0), the numerical solution of the trajectory 

equations (not shown) demonstrates that there is a single stable attractor in the (T1, T2) 

phase plane, and all initial conditions evolve to this attractor. Thus, dynamical thermal 

collapse cannot occur in this case. 

IV. Comparison with the C-Mod experiment   

 In this section, we discuss the points of agreement between the present model and 

the experimental data on C-Mod.  It will be shown that our calculation provides a simple 

framework for interpreting many of the recent observations. 

  The blob model in its original form provided a mechanism for ballistic radial 

particle and heat transport across the far SOL and interaction with the wall.15,16  This 

idea is widely accepted as the most plausible explanation for the observed intermittent 

transport and two-scale density profile on C-Mod34,35 and other tokamaks.35-38 Under 

conditions when the neutral density in the far SOL is sufficiently high, the plasma blobs 

can be sustained by local ionization,16 resulting in a large particle flux to the main 

chamber wall. This “main chamber recycling” regime was first identified on C-Mod.34  
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Later theoretical work addressed the problem of blob creation and propagation in the near 

SOL.  Both theory17-19 and simulations6,17 suggest that the blob transport in the near 

SOL increases with the collisionality Λ (Sec. II B).  For example, the sheath-disconnected 

(or “RX-mode”19) blob model gives Eq. (22) for the blob velocity, which implies an 

average radial velocity veff = fb vx,blob ∝ Λ.  

 The choice of blob regime, and thus collisionality dependence, is an important 

input to our thermal equilibrium and stability model. Another input was the assumed 

scaling sba ρ∝ , which has not yet been verified by experimental data but is supported by 

the arguments given in Sec. II B. With these two assumptions, we obtained the 

temperature scaling µ = 1, ν = 3 which determined the equilibrium and stability 

boundaries computed in this paper. Regarding collisionality, it should be emphasized that 

the edge density limit discussed here and observed experimentally is caused by the effects 

of collisionality in the plasma edge and near SOL.  We assume that in the far SOL the 

blob transport is entirely ballistic: the energy carried by blobs is guaranteed to be lost 

from the core and the details (e.g. blob regime) do not play a role in establishing the 

density limit. Recent measurements on C-Mod and DIII-D confirm that collisionality is 

not an important parameter in determining the net radial transport in the far SOL.35 

 The predictions of our thermal equilibrium and stability model, incorporating 

these recent developments in blob theory, is consistent with recent experimental 

investigations1,10,11 of the density limit on C-Mod. It was found that cross-field heat 

transport increases strongly with collisionality and eventually dominates parallel heat 

transport, leading to a convective density limit. For a given collisionality, the SOL heat 

transport has two spatial regions: (1) a hot inner region where the collisionality is low and 

the power PSOL flowing to the SOL is lost mainly by parallel heat transport, q|| A||; and 

(2) a cooler outer region where the collisionality is high, PSOL is lost mainly by cross-

field heat transport, q⊥A⊥, and the density and pressure profiles are flat. In the original 

experiments,10 it was shown that the boundary between these regions moved inwards as 
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the collisionality increased, reaching the separatrix for ne/nG ≈ 1 so that the entire SOL is 

in the collisional regime at the density limit.  It was found that the condition q⊥A⊥ > q||A|| 

(implying Q⊥ > Q|| in the present model) is satisfied in the near SOL for ne/nG > 0.43 (see 

Fig. 5 of Ref. 10). Thus, the dominance of the perpendicular heat transport just outside 

the separatrix is a characteristic feature of the density limit on C-Mod. This is also 

obtained in our model calculations, as shown by the crossing of the solid curves (Q⊥ > 

Q||) for the physically-observable “warm X-point” root in Fig. 3. This is one of the most 

important points of agreement between our model and the experiment.  

 In more recent experiments,11 this conclusion was extended to a greater range of 

discharge conditions, and the power flow data was plotted as a function of ne/nG and the 

collisionality parameter αd [see Figs. 18 (a) and (b) of Ref. 11]. For future reference, the 

two collisionality parameters used in Ref. 11 (based on the work of Rodgers, Drake and 

Zeiler5 and Scott4) are related to our parameter Λ by 
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where the approximation L⊥ ≈ ab was used. Note that C0 ∝ qΛ is analogous to the 

parameter C⊥ used in the present model, and αd ∝ 1/( qΛ)1/2.  Thus, a comparison of Fig. 

18 of Ref. 11 with the physically-observable “warm X-point” root in Fig. 3 shows 

remarkable qualitative agreement between the heat flow predictions of our model and the 

experimental measurements. The numerical simulation codes4-6 and the analytic blob 

model calculations suggest that turbulent cross-field transport increases with 

collisionality and leads to the C-Mod density limit.  

 The idea that the turbulent transport is mediated by blobs is also supported by 

recent observations24,25 using the C-Mod gas puff imaging diagnostic.23 It is observed 

that the edge turbulence level near the separatrix increases,11,24,25 and the blob birth zone 

moves inward, as the density is raised and the collisionality increases. The blob birth 
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zone moves inside the separatrix for ne/nG > 0.7 [e.g. see Fig. 5 in Ref. 25]. 

Measurements also show that the temperature inside the separatrix cools and the 

temperature gradient decreases as ne/nG → 1. As pointed out in Ref. 24, the C-Mod data 

is consistent with the idea that blobs are born in the steep gradient region (which moves 

inwards past the separatrix with increasing edge collisionality), not at the transition from 

open to closed field lines.  

 As a final check, we carry out estimates of important physical quantities using 

typical C-Mod parameters for the physically-observable high-T root to show that the 

model is consistent and relevant to the experiment. As pointed out in Sec. II B, the blob 

speed vx ~ 105 cm/s if ab/ρs ~ const. and (dimensionless) T2 ~ 1 is assumed, which is 

reasonably consistent with the measured velocities. The transport coefficients for typical 

C-Mod parameters are C⊥ = 0.1 , C|| = 7.1, which imply an equilibrium limit of C⊥* = 

0.25 using Eq. (34) with µ = 1, ν = 3.  Thus, the system is close to the theoretical density 

limit (C⊥ ~ C⊥*), implying that the model is relevant to C-Mod experiments. We also 

estimated the collisionality parameter to be Λ ∼ 2 at low values of C⊥, and Λ increases 

with C⊥ (∝ n12 ) because the normalized T1 and T2 decrease due to convective heat 

transport (see Fig. 2). This implies that blobs in the near SOL are disconnected from the 

sheaths (Λ > Λcrit) for typical C-Mod parameters, as assumed in the derivation of the blob 

model. Thus, we conclude that the thermal equilibrium model including blob convection 

is internally consistent and in reasonable qualitative agreement with both experimental 

observations1,10,11,25 and recent density limit simulations using 3D turbulence codes.4-6  

Given the many approximations and the 0D nature of the model, we cannot expect to 

make more quantitative comparisons with the experiment. 

 In summary, the experimental work and the model discussed in the present paper 

support the following picture of the convective density limit in C-Mod.  The density limit 

is caused by edge and SOL cooling resulting from turbulence-induced cross-field blob 

convection. Both the blob source rate and the velocity of radial motion increase with 
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disconnection from the sheaths and hence with collisionality. The X-points play an 

important role in enhancing the disconnection (facilitating current loop closure by 

perpendicular currents across the thin fanned flux tubes) and in blurring the boundary 

between open and closed field lines. This permits blobs to be born inside the nominal 

separatrix position and to interact with the nominal core plasma. (However, the 

phenomenon does not require X-points, as the RX-regime of blob transport assumed here 

goes over to the resistive ballooning (RB) regime at high collisionality, which is 

independent of X-points and has even faster cross-field transport.19) As the cooling 

moves inwards, the core current channel is eventually affected and a conventional MHD 

disruption occurs. In this paper, we have not modeled the penetration of the blob 

convection inside the separatrix, but have simply used SOL thermal collapse as a measure 

of the approach to the density limit.    

V. Summary and Conclusion 

 In this paper, we have described a two-point model of SOL energy balance 

including radial heat convection q⊥ (Sec. II) and demonstrated the existence of a 

convective density limit (Sec. III) to avoid thermal collapse of the SOL. The edge-density 

limit is caused by the collisionality dependence of the cross-field heat convection. Using 

a general scaling of q⊥ with the temperatures in the midplane and X-point regions [see 

Eq. (7)], we derived a general condition for thermal instability, Eq. (30), and an 

expression for the equilibrium boundary, Eq. (34). The thermal instability is associated 

with X-point cooling and is analogous to an X-point MARFE with radiation replaced by 

cross-field heat convection. The instability requires that the radial convective heat flux 

increase as the X-point cools. As described in Sec. IV, several features of the model are 

qualitatively consistent with Alcator C-Mod data. 

 A specific mechanism for the radial heat transport was discussed in Sec. II B, viz. 

turbulent blob convection. A dimensional analysis of the vorticity equation suggests that 
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blobs in the RX-mode turbulence regime, which are electrically and thermally 

disconnected from the sheaths, have the correct scaling for thermal instability under the 

reasonable (but not yet confirmed) assumption that the blob size scales with gyroradius 

( sba ρ∝ ).  With this assumption, we obtained the temperature scaling µ = 1, ν = 3, 

which satisfies the condition [Eq. (30)]  for thermal collapse at sufficiently large q⊥. 

Another consequence of this scaling is that the radial transport has a B-field scaling 

( B/q~Deff ) that is qualitatively consistent with previous simulations6 [see Sec. II B]. 

Statistical studies of blob creation and investigations of theoretical scaling of vx are under 

way in both experiments and turbulence simulations and should provide a test of the 

present model.  

 It is straightforward to show that the equilibrium limit derived in this paper is 

actually a limit on the edge density. The equilibrium limit is defined to be *CC ⊥⊥ ≤  for ν 

> 2µ, where 1~C*
⊥  by Eq. (34) for values of C|| not too different from unity. The 

inequality 1C ≤⊥   can be rewritten as corer qq ⊥⊥ ≤ , where q⊥r is the cross-field heat flux 

in the SOL evaluated at the reference temperature (T1,T2 → Tr).  We rewrite this 

condition as 

 coreblob,r1b qvTnf ⊥⊥ ≤ , (39) 

where fb is the blob packing fraction and fbv⊥,blob = veff is an effective mean radial 

velocity. The velocity v⊥,blob has an explicit dependence on n1 in the RX-blob regime 

[see Eq. (22)] and fb may have an implicit density dependence, so the LHS of Eq. (39) is 

a function of the midplane SOL density n1. Thus Eq. (39) provides a rough order-of-

magnitude analytical estimate of the SOL density limit due to the thermal transport 

catastrophe. A more precise characterization is obtained by employing the dimensionless 

parameters C⊥ and C|| in a numerical solution for the density limit boundary, such as 

shown in Fig. 4.  
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 The present work uses the ideas of turbulence-induced density limits, density- 

(collisionality-) dependent cooling, and thermal instability of X-points; it combines them 

with recent theories of three-dimensional blob transport to elucidate and confirm recent 

insights into the nature of the density limit. Our conclusions are consistent with evidence 

from recent simulations4-6 and the C-Mod experiment10-11 that the turbulent fluxes 

increase with collisionality [Eq. (25)] and lead to a transport-driven density limit [Figs. 2 

- 4]. This model supports the idea that the physical mechanism responsible for the 

enhanced turbulent transport (and resulting density limit) is the electrical and thermal 

disconnection of the fluctuations from the divertor.  

 Finally, it has been noted elsewhere that the C-Mod density limit experiments 

raise some interesting questions:1 (i) whether radiation-related phenomena or density-

dependent transport are the underlying cause of the density limit, and (ii) whether there is 

a maximum density independent of atomic processes. The present work suggests that 

radial heat convection with a sufficiently strong negative temperature scaling can limit 

the density in toroidal plasmas without invoking radiation, but the role of particle sources 

such as ionization has not yet been evaluated. Turbulent blob transport is a universal 

phenomenon and is a likely candidate mechanism for driving the density limit. The 

present paper has identified conditions for this to occur. This mechanism will occur even 

in plasmas without impurities, as it relies only on the presence of curvature-driven edge 

turbulence.  
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Figure Captions  
 

Fig. 1 (Color online) Schematic of two self-consistent SOL states: (i) the sheath-

connected, hot X-point state, and (ii) the disconnected, cold X-point state. These 

are described in more detail in the text. 

 

Fig. 2   Midplane temperature T1 and X-point temperature T2 vs ⊥C  for ||C = 1.0, ξ = 

0.5, µ = 1, and ν = 3.  Here T is normalized to the reference temperature Tr 

defined in Eq. (10). Note that there is a warm X-point root (solid lines) and a cold 

X-point root (dashed lines). The roots merge at a critical value of convection,   

[see Eq. (33)], and thermal equilibrium does not exist for *CC ⊥⊥ > . 

 

Fig. 3   Dimensionless heat flows Q⊥ and Q|| vs ⊥C  for the two roots shown in Fig. 1, 

which satisfy Q⊥ + Q|| = 1 for thermal equilibrium. The solid curves denote the 

“warm X-point” (high-T) root, and the dashed curves the “cold X-point” (low-T) 

root. At small ⊥C , the high-T root has Q|| > Q⊥and the low-T root has Q⊥ > Q||.  

For the physically-observable high-T root, Q⊥ exceeds Q|| just before the 

equilibrium limit is reached, as observed in C-Mod. 

 

Fig. 4  SOL density limit obtained by the numerical solution of Eqs. (27) and (28) (solid 

line) and by the analytic solution [Eq. (33)] in the small- and large-C|| limits 

(dotted lines) for µ = 1, ν = 3, and ξ = 0.5. Thermal equilibrium exists below the 

curve. The transport coefficients scale with density as C⊥ ∝ n12 and C|| ∝ n2. 
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Fig. 5   Plot of FSOL vs T2 for the parameters C|| = 1.0, C⊥= 0.15, ξ = 0.5, µ = 1, ν = 3.  

Note that global energy balance, FSOL = 0, has two roots, one stable and one 

unstable. The evolution of nearby states is indicated schematically by the arrows. 

The two stable attractors of the dynamical evolution are T1 = T2 = 0 and the high-

T root (see Fig. 6), so the system exhibits a fold catastrophe. 

 

Fig. 6   Plot of trajectories in the (T1, T2) phase plane with the direction of flow indicated 

by arrows. The attractors and unstable root are marked by a dot and an x, 

respectively. For this case, the parameters are C|| = 1.0, C⊥= 0.2, ξ = 0.5, 

µ = 1, ν = 3, and τΕ1 = 1 = τΕ2 so that 33.0CC * ≈≤ ⊥⊥ . When *CC ⊥⊥ ≤ , all initial 

conditions are first attracted to a line, then flow along the line to either the stable 

fixed point or to (0,0). For *CC ⊥⊥ >  (not shown) all initial conditions flow along 

the line to (0,0).   
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Fig. 1 (Color online) Schematic of two self-consistent SOL states: (i) the sheath-connected, hot X-

point state, and (ii) the disconnected, cold X-point state. These are described in more detail in the 

text. 
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Fig. 2   Midplane temperature T1 and X-point temperature T2 vs ⊥C  for 

||C = 1.0, ξ = 0.5, µ = 1, and ν = 3. Here T is normalized to the reference 

temperature Tr defined in Eq. (10). Note that there is a hot X-point root 

(solid lines) and a cold X-point root (dashed lines). The roots merge at a 

critical value of convection, *CC ⊥⊥ =  [see Eq. (34)], and thermal 

equilibrium does not exist for *CC ⊥⊥ > . 
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Fig. 3   Dimensionless heat flows Q⊥ and Q|| vs ⊥C for the two roots 
shown in Fig. 1, which satisfy Q⊥ + Q|| = 1 for thermal equilibrium. The 
solid curves denote the “warm X-point” (high-T) root, and the dashed 
curves the “cold X-point” (low-T) root. At small ⊥C , the high-T root has 
Q|| > Q⊥ and the low-T root has Q⊥ > Q||.  For the physically-observable 
high-T root, Q⊥ exceeds Q||  just before the equilibrium limit is reached, 
as observed in C-Mod. 
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Fig. 4   SOL density limit obtained by the numerical solution of Eqs. (27) 
and (28) (solid line) and by the analytic solution [Eq. (33)] in the small- 
and large-C|| limits (dotted lines) for µ = 1, ν = 3, and ξ = 0.5. Thermal 
equilibrium exists below the curve. The transport coefficients scale with 
density as C⊥ ∝ n12 and C|| ∝ n2. 
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Fig. 5   Plot of FSOL vs T2 for the parameters C|| = 1.0, C⊥= 0.15, ξ = 
0.5, µ = 1, ν = 3.  Note that global energy balance, FSOL = 0, has two 
roots, one stable and one unstable, for k = (ν−2µ)/3 > 0. The evolution of 
nearby states is indicated by the arrows. The two stable attractors of the 
dynamical evolution are T1 = T2 = 0 and the high-T root (see Fig. 6), so 
the system exhibits a fold catastrophe. 
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Fig. 6   Plot of trajectories in the (T1, T2) phase plane with the direction 
of flow indicated by arrows. The attractors and unstable root are marked 
by a dot and an x, respectively. For this case, the parameters are C|| = 
1.0, C⊥= 0.2, ξ = 0.5, µ = 1, ν = 3,  and τΕ1 = 1 = τΕ2, so that 

33.0CC * ≈≤ ⊥⊥ . When *CC ⊥⊥ ≤ , all initial conditions are first 
attracted to a line, then flow along the line to either the stable fixed point 
or to (0,0). For *CC ⊥⊥ >  (not shown) all initial conditions flow along the 
line to (0,0).  

 


