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Abstract 
Predictive modeling of radiofrequency wave propagation in high-power fusion 

experiments requires accounting for nonlinear losses of wave energy in the plasma edge 

and at the wall. An important mechanism of “anomalous” power losses is the acceleration 

of ions into the walls by rf sheath potentials. Previous work computed the “sheath power 

dissipation” non-self-consistently by post-processing fields obtained as the solution of 

models which did not retain sheaths. Here, a method is proposed for a self-consistent 

quantitative calculation of sheath losses by incorporating a sheath boundary condition 

(SBC) in antenna coupling and wave propagation codes. It obtains the self-consistent 

sheath potentials and spatial distribution of the time-averaged power loss in the solution 

for the linear rf fields. It can be applied for ion cyclotron and (in some cases) lower 

hybrid waves. The use of the SBC is illustrated by applying it to the problem of an 

electron plasma wave propagating in a waveguide. This model problem is relevant to 

understanding the low heating efficiency in direct ion-Bernstein wave launch.  

Implications for calculating sheath voltages driven by fast-wave antennas are also 

discussed. 

PACS numbers: 52.35.Mw, 52.40.Fd, 52.40.Kh, 52.50.Qt, 52.55.Fa 
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I. Introduction 

A great deal of research and computational effort in the fusion program has been 

devoted to the linear theory of rf wave propagation in the ion-cyclotron range of 

frequencies (ICRF), and this effort has been very successful in understanding many 

aspects of ICRF heating and current drive experiments. However, a growing body of 

experimental and theoretical work has shown that nonlinear effects also play an important 

role in coupling high power rf waves to plasmas. (The reader is referred to Ref. 1 for a 

detailed review of nonlinear rf physics relevant to fusion experiments and an extensive 

list of references.) One of the key concepts is that an rf electric field component E|| 

parallel to the equilibrium magnetic field B will, in order to confine electrons, generate an 

rf sheath potential of order V = ∫ds E||  (integrated along B).2-6 In order to satisfy 

Maxwell’s equations in the vicinity of a metal boundary, most of the rf voltage drop V 

must occur within the sheaths, as discussed in Sec. II of this paper, so that the rf field 

distribution along the field line in the presence of the sheaths is different than that 

computed using vacuum rf fields. This oscillating sheath potential is “rectified” by the 

requirement of plasma ambipolarity to produce a time-independent (dc) plasma bias 

potential. For megawatt power coupling, the rectified potential is generally large (~ kV) 

and has important consequences. In fusion experiments, rf sheaths cause a variety of 

deleterious interactions, such as impurity generation,7 convective transport,8-10 hot 

spots11,12 and damage to the antenna and surrounding structures, and power 

dissipation,13  caused by both the near-field7 and far-field14 waves. In many experiments, 

the heating efficiency with low-k|| waves is poor, and sheath power dissipation is a likely 

candidate to explain this phenomenon.  

Even in present short-pulse experiments, these nonlinear effects can impose 

limitations, e.g. by restricting operation to high-k|| phasing7 or lower power levels. In 

longer-pulse experiments15 and future burning plasma experiments, the requirements will 
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be even more severe: even a small level of antenna-plasma interaction may result 

damaging localized heat deposition during the shot. 

While the work cited here and in Ref. 1 has elucidated the physics of many of the 

important nonlinear rf interactions, what is lacking is the ability to make self-consistent, 

quantitative predictions. Such calculations are necessary for interpreting experiments, 

designing improved antennas, and evaluating operating scenarios for the next generation 

of fusion experiments. The present paper takes a step in this direction by demonstrating a 

procedure for self-consistent rf sheath calculations. 

The goal of this paper is two-fold. First, we describe a sheath boundary condition 

(SBC) which can be used in linear rf wave propagation and antenna coupling codes to 

calculate the sheath voltage and sheath power dissipation self-consistently. This boundary 

condition (BC) is an extension of one presented earlier,14 and was briefly described in a 

recent conference paper.16 Second, we demonstrate the use of the SBC in an analytic 

calculation of electron plasma wave (EPW) propagation down a plasma-filled metallic 

waveguide. The EPW calculation demonstrates the modification of the rf wave spatial 

structure by the sheaths and wave decay due to sheath power dissipation. Energy 

conservation is verified for this model. The calculation is relevant to direct-launch ion 

Bernstein wave (IBW) experiments using the mode-transformation (EPW to IBW) 

technique, and supports earlier calculations17,18 which suggested that sheath power 

dissipation made it difficult to couple IBW power to the core plasma by direct launch. 

Note that slow wave (SW) launchers such as IBW antennas produce propagating 

E|| fields and thus create large sheath potentials (~ 1 keV) on nearby material surfaces, 

but even fast wave (FW) antennas can create substantial near-field3-7 and far-field14 

sheaths by coupling to unwanted SWs. There is some experimental evidence that FW 

sheaths dissipate significant power in low-k|| phasing, contributing to reduced heating 

efficiency,19,20 but until now we have not a way of calculating the lost power. The sheath 
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BC described here is relevant for both SW and FW codes, and it provides a unified way 

of describing both near- and far-field sheaths. 

It should be noted that the problem addressed here occurs in a variety of other 

contexts as well, including lower-hybrid heating in fusion plasmas, rf plasma sources for 

particle accelerators, plasma-filled waveguides, and plasma processing devices. In 

particular, there is a vast literature on sheath modeling in low temperature plasmas and 

plasma processing. The present work thus has potentially broad applicability in plasma 

devices. Our proposed sheath BC is compatible with sheath models21-24 used in plasma 

processing and can also be applied to lower hybrid (LH) frequency waves in some cases. 

The sheath theory used here assumes inertia-free electrons and thus breaks down at 

sufficiently high frequency, as discussed in Sec. II D and Appendix B. 

The plan of this paper is as follows. The general rf sheath BC is described in Sec. 

II. The EPW model problem is described and solved in Sec. III. This calculation 

illustrates the basic physics of sheath power dissipation by ion acceleration and the 

redistribution of the self-consistent rf electric fields between the main plasma and sheath 

regions. Although the sheath BC is applicable to electromagnetic wave propagation, the 

EPW illustration is purely electrostatic, and thus exhibits some differences from the 

electromagnetic antenna coupling problem. This issue is discussed in Sec. IV after 

summarizing the main results. The proof of energy conservation is given in Appendix A 

to verify that the formalism is self-consistent. Appendix B discusses the high-frequency 

limit of the SBC and the EPW model problem to elucidate the conditions under which the 

theory applies to LH waves. 

 

II. Rf Sheath BC 

 Sheaths of the type considered here (i.e. with a not-too-small component of 

magnetic field directed into the surface) are depleted of electrons to ensure ambipolarity.  
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The theory is valid in the frequency regime ωpi sin α < ω < ωpe sin α  (i.e. immobile ions 

and inertia-free electrons) and for equilibrium magnetic fields satisfying sin α = Bn/B > 

(me/mi)1/2, where Bn is the component of B normal to the sheath and ωpj is the plasma 

frequency for species j.  

 The main effect of the sheaths on the rf wave (our interest here) is to eliminate the 

normally large parallel electron plasma response in the sheath region. Thus to lowest 

order, an rf wave sees a sheath as a vacuum layer. For reasons that will become evident, 

here we treat the sheath as an insulating dielectric medium with scalar dielectric constant  

 εsh = 1 + i ν  (1) 

and assume that the sheath impedance is dominated by its capacitance (ν << 1).  In Sec. 

IIA, we derive the modified BC for the rf electric field E, which is a simple consequence 

of Maxwell’s equations, and in Sec. IIB show how to incorporate the sheath power 

dissipation (or other dissipative mechanisms) into the calculation. A demonstration of 

energy conservation for the model problem is given in Appendix A. 

A.  Sheath Capacitance and rf Field Modification 

It is useful to write the rf electric field E relative to both the sheath surface and the 

local magnetic field B 

 , (2) ( ) ( ) θ
⊥

θ +=+= i
||

i
tn eEeE EbEnE

where ( t)ω−⋅=θ xk , n is the unit vector normal to the sheath (pointing into the plasma), 

and b = B/B is the unit vector along the B-field direction. For definiteness, in this paper 

we take z as the direction normal to the sheath ( ). Here, the subscript t denotes the 

component tangential to the sheath surface, and the subscript ⊥ denotes the component 

perpendicular to the magnetic field line.  This geometry is shown in Fig. 1. 

zên =

 The condition for sheaths to develop is that electrons have a sufficiently large 

component of their motion into the bounding surface, which requires 
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   . (3) 2/1
ie )m/m(sin >α≡⋅bn

We also assume that the sheath is “thin” so that the electrostatic (ES) approximation is 

valid in the sheath region. Denoting the time-averaged sheath width by ∆, this requires   

 1t <<∆k    , (4) 

which is typically valid. In this limit, the rf sheath potential Φ ∝ z, and En(z) = −∇zΦ is 

constant to lowest order in , implying . We are interested here in the effect 

of the sheaths on the wave component at frequency ω (and on the dc power dissipation); 

thus, we can neglect the oscillatory motion of the sheath at frequency ω (which generates 

higher harmonics21,22) and apply the BC at the location of the time-averaged sheath 

width. 

∆tk 02 =Φ∇

 The derivation of the SBC begins by imposing continuity of  EεnDn ⋅⋅=⋅=nD

 , (5) )pl(
n

)sh(
nsh

)sh(
n DED =ε≡

where the superscripts (pl) and (sh) denote quantities on the plasma and sheath sides of 

the sheath-plasma boundary, respectively, and εsh is the scalar defined in Eq. (1). (For 

tensor ε, the component  would be used here.) In the ES limit, we have  nεn ⋅⋅

 , (6) )pl(
nnsh D=Φ∇ε−

and integrating from the metal wall through the sheath in the direction of n yields 

 )pl(
n

sh

)sh( D
ε
∆=Φ− , (7) 

where  in the metal and at the sheath-plasma interface. Taking the 

tangential gradient of Eq. (7) with Et = −iktΦ yields 

0)sh( =Φ ( )shΦ=Φ

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε
∆∇= )pl(

n
sh

t
)sh(

t DE   . (8) 

 6 



   
 

Using the continuity of Et across the sheath-plasma interface, we obtain the final sheath 

BC on the rf fields on the plasma side 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε
∆∇= )pl(

n
sh

t
)pl(

t DE    , (9) 

which is a constraint involving only the rf fields on the plasma side of the sheath-plasma 

boundary. Equation (9) is the main result of this section.  

 The form of the SBC presented here is valid for both frequency-domain16 and 

time-domain25  codes.  The SBC in Eq. (9) is the electrostatic, thin-sheath limit of a fully 

electromagnetic BC described in the Appendix of Ref. 14. It is also closely related to BCs 

being tested in simulations of plasma processing.23,24  

 In the limit where the sheath width vanishes (∆ → 0), Eq. (9) reduces to the usual 

BC at a conducting surface:  .  The extra term in Eq. (9) represents the effect of 

the sheath capacitance (∝ εsh/∆ for the case of εsh nearly real and positive) and results 

from the physical approximation that the plasma current is carried across the sheath by 

the displacement current. This requires that the rf current carried by ions across the sheath 

is negligible and is satisfied in the “immobile ion” limit, 

0)pl(
t =E

αω>ω sinpi . 

 The sheath BC can be extended to include multiple layers. For example, consider 

the case where the metal is coated by a thin layer of insulating material, which in turn is 

in contact with a plasma sheath. Then Eq. (7) is easily generalized (in a slightly different 

notation) to 

 
sh,zz

sh
zsh

sh,zz

sh

ins,zz

ins
zshins

zD,zzD
ε
∆−=∆Φ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ε
∆+

ε
∆−=∆Φ+∆Φ=∆Φ , (10) 

where the subscripts “ins” and “sh” refer to the insulating and sheath regions, ∆zj is the 

width of the jth layer, εzz is the normal component of the dielectric tensor, and Dz is the 

normal component of D (which is constant across all regions). This result shows how the 

total voltage across the system, ∆Φ = ∫dz Ez , is divided between the sheath (∆Φsh) and 
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the insulator (∆Φins), depending on the insulator thickness and dielectric constant. It has 

been shown experimentally that insulating (boron nitride) coatings on antenna limiters 

can reduce the rf sheath voltages (∆Φsh/∆Φ << 1) in ICRF experiments.26-28 Taking the 

tangential gradient ∇t of Eq. (10), one obtains a BC that can be implemented in rf codes 

to obtain quantitative estimates of the sheath-reduction effect of insulating limiters. 

B.  Sheath Resistance and Power Dissipation 

 The discussion up to this point has not taken into account energy losses in the 

sheaths.  The sheath power dissipation can be included by substituting Eq. (1) with ν ≠ 0 

into the expression for the plasma current  

 zz
)sh(

zzzzzz E
4

E
4

)1(iEJ
π

ων=
π

ω−ε−=σ=   (11) 

and using Eq. (11) in the expression for the total power dissipated in a dielectric medium 

 
( )

( ) .AE
8

AERe
2
1

,cc*
4
1dVP

t
2

zt
2

zzz

tot

∆
π

ων=∆σ=

+⋅≡ ∫ EJ
 (12) 

Here, At is the area of the sheaths tangential to the surface, and the sheath width ∆ is 

assumed to satisfy the well-known Child-Langmuir Law 

 
4/3

e

0
D T

eV
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ=∆ , (13) 

where λD = (Te/4πne2)1/2 ≈ vthe/ωpe is the electron Debye length, and V0 is the rectified 

(dc) sheath potential which ensures that the time-averaged current to the sheaths vanishes 

(see also Sec. II D). Various (similar) models13,21,22 have been derived for V0 giving the 

transition between dc Bohm sheaths and rf sheaths with eVsh/Te >>1, but for conceptual 

simplicity a useful approximate expression is 

  . (14) Bshsh0 VVCV +≈
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Here Csh is an order-unity constant giving the “rectification factor”6,21,22 for rf sheaths, 

Vsh is the instantaneous sheath voltage (defined below), and VB is the Bohm sheath 

potential given by   

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
α⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= sin

m
mln

e
TV

2/1

e

ie
B       . (15) 

The preceding expression for V0 is correct in the limits ξ = Ze|Vsh|/Te << 1 and  ξ >>1 

and provides a smooth interpolation for intermediate cases. The Bohm sheath potential 

must be included in V0 to ensure that ∆ ∼ λD when the rf fields are small. 

 In the present work, Eq. (12) is interpreted phenomenologically and can be used 

to include any power loss mechanisms associated with the sheaths (or the sum of all such 

mechanisms). However, in the present paper we equate Ptot with the power lost by ions 

accelerated in the dc sheath potential, viz.  

 ( ) ( )
( ) ⊥⊥ →
ξ
ξξξ≡ AZeVcnCA

I
IhTcZnP shsish
0

1
esesh , (16) 

where tAA bn ⋅=⊥  is the area of the sheaths normal to B. The first expression for Psh 

was derived in Ref. 13 for modeling the transition from the weak to the strong rf regime; 

the second expression in Eq. (16) gives the ξ >> 1 limit. Here, h(ξ) = (0.5 + Csh ξ)/(1 + ξ) 

is a form factor connecting known results in the ξ << 1 and ξ >>1 limits and Csh ≈ 0.6 

(for 0-to-peak voltages). The assumptions under which the expression for Psh is 

compatible with a local sheath BC are discussed further in Sec. II D. 

 Sheath power loss mechanisms that have been considered by other authors (e.g. in 

the context of plasma processing) but are omitted here include: joule heating losses in 

collisional rf sheaths, and Fermi acceleration of electrons transiting between two 

oscillating rf sheaths at opposite ends of a field line. For any such mechanism, the phase 

shift (∝ ν) between the rf current and the rf field may not be exact in the present model, 

but it should give a reasonable estimate of the total sheath power dissipation in the limit ν 
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<< 1, as demonstrated explicitly by the example in Sec. III and the analysis in the 

Appendix.  

 The following definition of the absolute value of the instantaneous rf sheath 

voltage completes the specification of the BC   

 nnsh EEdzV ∆≈≡ ∫   , (17) 

where the integral is taken across the sheath in the direction normal to the sheath 

boundary.  These equations can be solved to obtain an expression for ν 

 2
sh

tsh
2

||t

sh

V
)A/P(8

EA

P8
ω

∆π=
∆ω

π=ν  (18) 

C.  Implementation 

 The nonlinear relationships imposed by sheath physics on Et, Dn, ∆, Vsh and Psh 

are expressed by Eqs. (1), (9), (13) – (18). This set of equations constitutes the complete 

sheath BC, including both the sheath capacitance and resistance. Note that Eqs. (13) and 

(17) imply the scalings Vsh ∝ Ez4 and ∆ ∝ Ez3.  In general, the linear rf wave solver will 

have to iterate, e.g. varying the sheath width, until these nonlinear relationships are 

satisfied. Since the BC is applied locally at each boundary grid point in the rf wave or 

antenna code, one would obtain the spatial distribution of the sheath quantities (∆, Vsh, 

and Psh) on the boundary as part of the rf field solution. 

 There are several circumstances in which this iteration procedure is expected to 

lead to significant sheath power dissipation and modification in the self-consistent rf 

fields near the boundary: (i) near-field (antenna) sheaths driven by the mismatch between 

the magnetic field and the antenna orientation; (ii) far-field sheaths due to the mismatch 

between the wall and neighboring flux surfaces14 in cases of poor single pass absorption; 

and (iii) formation of coaxial modes around the low density region of the tokamak, 

causing large rf electric fields in the vicinity of the wall.     
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D.  Validity Conditions and Relation to Other Models 

 To conclude this section, we summarize and discuss the conditions for 

applicability of the sheath BC and power dissipation analysis in rf codes.  

 The theory of electron-poor rf sheaths underlying the present work is valid in the 

frequency regime ωpi sin α < ω < ωpe sin α, which implies immobile ions and inertia-free 

electrons, and for equilibrium magnetic fields satisfying sin α =  > (me/mi)1/2. The 

inertia-free electron assumption is closely related to the condition for Maxwell-

Boltzmann electrons in the sheath, ω < ve sin α /∆, which is also required by the theory. 

The conditions for validity of the sheath theory in various regimes are discussed in more 

detail in earlier references.6,21,22 The assumption of inertia-free, Maxwell-Boltzmann 

electrons can be restrictive in the LH frequency range (see Appendix B); our main 

interest here is in the ion cyclotron range of frequency (ICRF) regime. 

bn ⋅

 The electrostatic approximation in the sheath region is justified in the “thin 

sheath” limit,  kt∆ << 1. We also apply the “static sheath” approximation (∆ constant in 

time) here, which neglects sideband (multiple harmonic) and Fermi acceleration effects, 

because we are only interested in the BC on the fundamental rf field component. (It 

should be noted, however, that rf sheaths have a significant second harmonic component 

as well.)  The form of the sheath term ∝ ∆ in the sheath BC, Eq. (9), assumes that the rf 

electrical current is carried across the sheath by the displacement current (as opposed to 

particle currents), which requires immobile ions,  αω>ω sinpi . 

 Next, we consider the condition for modeling the rf properties of the sheath 

response as a resistive vacuum layer with the dielectric given in Eq. (1). The assumption 

Re[εsh] = 1 is valid if the sheath potential is positive with respect to the wall and set by 

the requirement of suppressing the otherwise large parallel electron current to the wall 

(resulting in an electron-poor sheath). This imposes the condition on the field angle 

discussed previously, viz. that sin α > (me/mi)1/2 [See Eq. (15)].  In this limit the sheath 

response to rf waves is primarily capacitive. Thus, the rf field solutions obtained from the 
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resistive dielectric model are expected to be self-consistent when ν << 1. From Eqs. (13) 

- (18), we obtain the scaling ν ~ 1/ Ez, which suggests that this approximation works 

better for larger rf fields. For the model problem discussed in Sec. III, we demonstrate 

that the sheath BC formulated here gives self-consistent power dissipation 

 The expressions for the sheath width and sheath power dissipation given in Eqs. 

(13) and (16) are local, but require the dc sheath potential V0 which can in principle be 

non-local. This comes about because V0 (and hence Csh) are always determined by the 

global requirement of no net time-averaged current flowing out of the system. Both the 

computer simulation in Ref. 6 and the analytic derivations13,21,22 used parallel plate 

capacitor models with two symmetric plates (e.g. anti-symmetric voltages and equal 

areas) to derive Csh.  While in principle these calculations coupled the sheaths at each end 

of the field line, the plasma screening of the electric field in the plasma between the 

sheaths (e.g. see Sec. III and Fig. 5) and the symmetry assumption allow the results at 

each sheath to be interpreted as if the sheaths were uncoupled from each other. More 

generally, with asymmetric voltages and/or areas at each end of the field line, the 

resulting dc sheath potentials at both ends can be either coupled or uncoupled, depending 

on the degree to which the parallel plasma resistivity can support a dc parallel potential 

gradient along the field line. The dc-coupled (low resistivity) case was considered in 

Ref.29.  In this case V0 is strictly constant along B and depends on a combination of the 

rf voltages and areas at each sheath.  In the present paper, for simplicity, we restrict the 

discussion to the uncoupled (large resistivity) case, where each end of the field line can 

have a different, locally-determined V0. 

Finally, we note that the scalings used here for sheath rectification V0/Vsh, sheath 

width ∆, sheath capacitance C ∝ εsh/∆, and power dissipation Psh agree with other 

theories21,22 in the high voltage limit (eVsh/Te >> 1), but the numerical factors are 

slightly different. Other models, which give a more accurate description of the moderate 

voltage cases, can be easily incorporated into this BC for different applications. For 
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example, work is in progress24 to implement a similar sheath BC using the Godyak-

Lieberman sheath models21,22 for plasma processing. A paper by Jaeger et al.23 on 

modeling power dissipation in high-density inductively coupled plasma sources also 

incorporated the Lieberman sheath model21 but took a different approach to the present 

one. Instead of applying the vacuum sheath model to derive an “external” BC in the 

direction normal to the sheaths, it was used in Ref. 23 to derive an effective conductivity 

for the interior grid cell that contains the wall-sheath boundary. (This is useful for 

numerical solution techniques which require that the radial computational domain be 

periodic.) One can derive the effective conductivity by reinterpreting Eq. (10) as applying 

to wall and sheath regions of widths ∆1 = (1 – δ) ∆z and ∆2 = δ ∆z, respectively. Adding 

voltages and using the fact that the normal component of D is constant across regions 

(here, Dz = εzz Ez = const.), one obtains 

 
2,zz

2

1,zz

1

eff,zz

21
ε
∆+

ε
∆=

ε
∆+∆   . (19) 

This reformulation of the BC should be physically equivalent to the approach taken here. 

III. EPW Model Problem   

 In this section, we illustrate the physics of the sheath BC by solving a model 

problem analytically in simple geometry.  We consider an electron plasma wave (EPW) 

propagating across the magnetic field (B0 = B0 ez) in a waveguide filled by a constant 

low-density plasma, assuming n < nLH and thus ε⊥ > 0, where nLH is the lower-hybrid 

(LH) density for specified wave frequency ω.  We assume propagation mainly in the x 

direction (k = kx ex + kz ez , kx >> kz), which is the axis of the waveguide. For the 

geometry assumed here (see Fig. 2) B0 is perpendicular to the waveguide walls so that −n 

= ±b at z = ± L. In this simple geometry, the wavevectors are given by , xt kkk == ⊥

z||n kkk == , and the area factors in Sec. IIB by At = A⊥ = A. The generalization to a 

tilted magnetic field is straightforward but unnecessary to illustrate the physics. As the 
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mode propagates down the waveguide, it must satisfy the dissipative sheath BC at the 

walls of the waveguide and lose energy to the sheaths. This EPW problem is conceptually 

related to the wave physics in front of an IBW antenna in the low-density region where n 

< nLH. Thus, this problem is relevant to understanding the power coupling issues in 

experiments using the EPW-IBW mode transformation approach. This treatment may 

also be relevant to LH waveguide launchers in tokamaks, although the sheath power 

dissipation computed here would be smaller at the higher LH frequency (see Appendix 

B). 

A. Linear EPW solution without sheath power dissipation 

 Plasma region.  We use the ES approximation ( ) to describe the 

electron plasma wave (EPW) solution in the plasma region, valid when . 

The wave satisfies , and the desired analytic solution Φ(z) is even about the 

midplane of the waveguide (z = 0), so that only the solution for z  ≥ 0 need be given. In 

the plasma (-L < z < L), we use the ansatz 

Φ−=Φ−∇= kE i

1~n 2
|| ⊥ε>>

0=⋅∇ D

   , (20) θΦ=Φ i
z0

)pl( ezkcos)x()z(

with Φ0(x) real, ky = 0 and θ = kxx −ωt.  

 The wavenumbers satisfy the ES dispersion relation 

 ,  (21) 0kk ||
2

||
2 =ε+ε⊥⊥

 .1,1 2

2
pe

2

2
pe

||2
i

2

2
pi

ω

ω
−≈

ω

ω
−=ε

Ω−ω

ω
−=ε⊥    (22) 

Rewriting Eq. (21) letting k⊥ → kx and k|| → kz and assuming low density ( ), we 

obtain 

0>ε⊥

 0
k

k 2

2
pe

2
z2

x >
ωε

ω
=

⊥
  , (23) 
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This dispersion relation implies that the EPW is a negative-energy wave that propagates 

backwards (phase and group velocities in opposite directions), i.e. 

 
xx kdk

d ω−=ω   . (24) 

Thus, we choose kx < 0 to give energy flow in the positive x direction. This root of Eq. 

(21) is given by 

 
2/1

||
xLk ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ε

ε−
η−=

⊥
  , (25) 

where and ε|| = εzz.   Lkz≡η

 Application of the sheath boundary condition.  The rf field components at the 

entrance to the sheath (z = L) is obtained from the solution (20) for Φ(pl) 

    (26) 
,)L()Lksin(k)L(E

,)L(ik)L(E
)pl(

zz
)pl(

z

)pl(
x

)pl(
x

Φ=

Φ−=

where we define  and note that and . At this point 

we employ the sheath BC, avoiding the need for an explicit solution for Φ in the sheath 

region. Substituting the fields into Eq. (9) gives an eigenmode localization condition 

which determines η as a function of Λ 

L
)pl( )L( Φ≡Φ )pl(

n
)pl(

z EE = )pl(
t

)pl(
x EE =

   1tan =ηηΛ−     , (27) 

where 

 
LL 2

2
pe

)sh(
nn

)pl(
nn ∆

ω

ω
≈∆

ε
ε−≡Λ  , (28) 

1)sh(
nn =ε  in the vacuum sheath model (neglecting dissipation, ν = 0), and 

22
pe

)pl(
||

)pl(
nn ωω−≈ε=ε .  The constraint (27) expresses the continuity of Φ and Dz 

across the sheath-plasma boundary for the EPW solution. We define Λ to be real and 
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positive for the regime in which the EPW propagates ( ), which requires 

sufficiently low density, viz. ω > ωLH.   

0,0 )pl(
||

)pl( <ε>ε⊥

 A useful identity that follows from Eq. (27) is 

 
η

η−=
η

ηΛ
2sin

2
cos2

2
  . (29) 

It can be seen from Eq. (29) that  the solution of  Eq. (27) for the lowest waveguide 

eigenmode gives η in the range  

 π<η<π
2

   , (30) 

resulting in ΦL < 0 [see Eq. (20)], as shown in Fig. 3. Physically, this occurs because εzz 

changes sign across the (vacuum) sheath-plasma boundary, implying that Ez = −i 

kzΦ must also change sign to maintain constant Dz across the boundary. Analytical 

expressions for η have been obtained in the following limiting cases 
  

 
)1(.1

)1(,)1(
2

>>Λ
Λπ

−π=η

<<ΛΛ+π=η
   (31) 

The BC at a conducting surface, Et  = −i kt Φ = 0, corresponds to , 

consistent with taking the limit Λ→ 0 in Eq. (31). 

2/Lkz π=≡η

 It is useful to illustrate this solution with a sketch of the eigenmode [see Fig. 3], 

adding the sheath region to show the whole picture. The linear dependence of Φ(z) in the 

sheath region is built into the SBC and does not need to be explicitly solved for. In 

numerical solutions, this is a great benefit because resolving the sheath requires a large 

number of grid points and is generally not practical.  

 We also mention in passing that another class of modes (“sheath-plasma waves”) 

arises from the sheath BC.  These modes are localized to the sheath-plasma interface30 
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and are obtained in the limit of pure imaginary η satisfying |η| >> 1. The sheath plasma 

waves are not coupled to the EPW, and play no role in the present calculation. 

 The sheath voltage Vsh was defined in Eq. (17) and its magnitude is related to η 

by 

 Lk,cosV z0Lsh ≡ηηΦ=Φ=   . (32) 

 It can be seen from Eqs. (26), (31) and (32) that Λ ~ 1 is a typical condition for 

sheath effects to matter. When  Λ→ 0 (implying η→ π/2), the rf fields satisfy the metal 

wall BC and the sheath potential vanishes (Vsh →  0). When  Λ→ ∞ (η→ π), Φ(z) is 

constant in the plasma; in this limit, the Ez = E|| component is completely screened from 

the plasma and appears across the sheath. Also in this limit the sheath potential obtains its 

maximum value (Vsh = Φ0). 

B. Nonlinear equation for wave decay and sheath power dissipation 

 The generalization of Eq. (27) to include weak dissipation is 

   ν+=ηηΛ− i1tan     . (33) 

This constraint can be solved perturbatively with 10 η+η=η , where η0 = Re[kz]L is the 

solution to Eq. (27) and η1 = Im[kz]L << η0. The solution can be put in the form  

 
00

0

0

1
22sin

2sini
η+η

ην=
η
η     , (34) 

which implies that η1 = Im η is negative because −1 < sin 2η0/2η0 < 0. At this point, we 

drop the subscript 0 on η0.  In the small-ν limit, it follows from Eq. (25)  that 

 
η
η==

Re
Im

kRe
kIm

kRe
kIm

z

z

x

x   . (35) 

Thus, Eq. (35) with Im η < 0, Re η > 0 and Re kx < 0 implies that Im kx > 0 so that the 

wave decays as it propagates.  
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 The rate of decay is proportional to ν and is determined by the absorption 

mechanism: in this case, power dissipation due to ion acceleration in the sheaths [Eq. 

(16)]. Since this problem is nonlinear, we will employ a generalization of the WKB 

method using a two-scale expansion to obtain an equation for the amplitude Φ0(x). All 

equilibrium quantities are assumed to be spatially constant in this calculation.  

 In the plasma region ( ), the eigenmode equation has the form [see Eq. 

(21)] 

Φ→Φ )pl(

   , (36) Φ∇ε−=Φ∇ε⊥
2
z||

2
x

and we make the two-space-scale ansatz 

   , (37) θφ=Φ ie)z,x(

where )zkcos()x()z,x( z0Φ=φ and θ = Re(kx)x −ωt. Here, )z,x(φ  is a real function, 

separable in x and z, and a slow function of x, i.e. xx k)z,x(ln <<φ∇ . We will treat 

)z,x(lnx φ∇ , and  as first order in ν, so that the dissipation drives the slow 

decay of the wave in x.   

xx k∇ η∇x

 In lowest order, the eigenmode equation reduces to the dispersion relation (21); in 

next order, we obtain 

 
( ) ,ik2k

,
L

2kiki2

22
x

12
xx

2
1||

xxxx

φ
η
η=φ∇⇒

φηη
ε
ε

=∇φ+φ∇
⊥    (38) 

where the second form was obtained by multiplying by φ and using Eq. (25) to simplify 

the last term. Next, we integrate over the interval z = (−L, L) to obtain an equation for the 

x-dependent part of Φ using the identity 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
η

η+ηΦ=φ∫
− 2

22sinLdz 2
0

L

L

2  . (39) 
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Note that η is a function of x through Eq. (27), because the sheath width ∆ (and hence Λ) 

decreases as the mode decays. Thus, combining Eqs. (38) and (39), we obtain 

   .k
2

22sini2k
2

22sin 2
0

2
x

12
0xx Φ

η
η+η

η
η=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Φ
η

η+η∇  (40) 

Finally, using Eq. (34) for η1 and the fact that kx/kz is independent of x by Eq. (23), after 

some algebra we obtain 

 ( )( ) .2sin
k
k

L
222sin

dx
d 2

0
z

x2
0 Φηην−=Φη+η    (41) 

 This is the governing equation that determines the decay of Φ0(x) due to the 

sheath power losses, which are proportional to ν.  Analytic and numerical solutions of 

Eq. (41) will be discussed in the next section, where ν will be expressed in terms of Φ0 

using the specific scaling Psh ∝ Φ0 [see Eq. (16)]. It is also important to check that Eq. 

(41) satisfies energy conservation. In Appendix A, we demonstrate that Eq. (41) satisfies 

the Poynting Theorem for steady-state energy conservation in the limit ν << 1 but for 

arbitrary . Lkz≡η

C. Solution of the wave equation 

 Rescaled equation.  We scale x to Lx = –Lkz/(kxν0) (noting that kx < 0) and drop 

the subscript 0 on Φ.  We see that Λ ∝ ∆ ∝ (Vsh)3/4 for a high voltage sheath by Eqs. (13) 

and (28). Also, the power dissipation P ∝ ν (Vsh /∆)2 ∆ is due to the energy loss by ions 

falling down the sheath (with energy ∝ Vsh), so that ν ∝ ∆/Vsh  ∼ 1/(Vsh)1/4, where 

ηΦ= cosVsh  by Eq. (32). To make these nonlinear dependences explicit, we 

introduce the following normalizations 

 ,
cos

,cos 4/1

0

4/3

ηΦ
Φ

ν≡ν
Φ

ηΦ≡Λ Λ

Λ
 (42) 
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which implicitly defines ΦΛ and ν0 in terms of constants. Combining these definitions 

with the expressions for ν and Λ in Eqs. (18) and (28),  we find that the coefficients are 

given by 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ελ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ν⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

λε
=

ΦΛ
3/1

6/5
||

3/1
D

2/1

i

e
sh0

3/4

D||e L

||
m
m

C2,
||
L

T
e    , (43) 

where Csh is the sheath rectification coefficient defined in Eq. (14). Normalizing Φ to 

ΦΛ, we have that Λ = |Φ cos η|3/4, ν = ν0/|Φ cos η|1/4.  Substituting all of these scalings 

into Eq. (41), we obtain 

 ( )( ) 4/7
4/1

2

|cos|
2sin222sin

dx
d Φ

η

ηη=Φη+η    . (44) 

which, we reiterate, is valid in the high voltage sheath limit, eVsh >> T.  

 We see that the problem has only one parameter, the initial amplitude of Φ at x = 

0 which we denote here as Φmax = Φ(x = 0). Since the solution is decaying, it is useful to 

solve for the case Φmax >> 1 and cases with smaller amplitudes can be inferred from just 

considering the starting point to be at x > 0. Thus, the problem is reduced to that of 

finding a single universal solution. 

 Asymptotic solutions. Since Φ(x) is decaying, we consider the asymptotic limit 

Φ →  0 as x → ∞.  The scaling in Eq. (42) implies Λ << 1, and Eq. (31) gives 

so that sin 2η ≈ −πΛ, cos η ≈ −πΛ/2, and Λ = (πΦ/2)3 so that Eq. (44) 

reduces to 

)1)(2/( Λ+π≈η

 
3

2dx
d

⎟
⎠
⎞

⎜
⎝
⎛ Φπ−=Φ    . (45) 

The solution of this equation is 

 
2/12/3 x

2~
π

Φ     (46) 
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which exhibits the expected decay as x → ∞. 

 The other asymptotic limit (Φ → ∞)  can be relevant near the waveguide entrance. 

In this case, using Λ >> 1 and Eq. (31), we have that Λπ−π≈η /1  and sin 2η ≈ −2/πΛ, 

cos η ≈ −1, and Λ = Φ3/4 so that Eq. (44) reduces to 

 
π

−=Φ
∂
∂ 1
x

   , (47) 

which gives linear decay in x.  It follows from the asymptotic results that the location xt 

of the transition point where the solution Φ(x) transitions from Eq. (47) to Eq. (46) is 

given approximately by . )/(2x 2/1
maxmaxt Φπ−Φπ=

 Numerical solution. To summarize the problem, the equations to be solved are 

 ( )( ) 4/7
4/1

2

cos

2sin222sin
dx
d Φ

η

ηη=Φη+η  (44) 

 1tan =ηηΛ−      (27) 

 4/3cosηΦ=Λ      (48) 

subject to the initial condition Φ(x = 0) = Φmax. Here, Φ is normalized to ΦΛ and x is 

normalized Lx = –L kz / kx ν0. 

 The numerical solution for  Φ(x) is illustrated by the solid curve in Fig. 4 for the 

case Φmax = 2, which shows that the wave decays as a result of the sheath power 

dissipation. The numerical solution recovers both of the asymptotic limits and shows that, 

in fact, the strong-sheath (linear decay) regime holds over a wide range of Φ.  Also 

shown in Fig. 4, the curve with long dashes depicts the rectified (dc) potential  

ηΦ=≡ cosCVC)x(V shshsh0  (neglecting the Bohm sheath contribution) and the curve 

with short dashes shows the rate at which the initial energy in the Poynting flux is lost to 

the sheaths. Specifically, we plot the ratio RP of the total sheath power dissipation Psh 
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(integrated over the wave trajectory in x) to the Poynting flux Sx at x = 0 (summed over 

both the plasma and the two sheaths): 

 
)0x(Sdz

)x(Pxd
R L

L x

x

0 sh
P

=

′′
=
∫
∫

−

  . (49) 

The quantities Psh and Sx are defined and calculated in Appendix A [see Eqs. (A9) and 

(A7)].   

 Figure 4 illustrates how all of the initial energy in the wave is lost to the sheaths if 

the wave propagates far enough.  Thus, RP → 1 as V0 → 0, consistent with the fact that 

the calculated sheath power loss mechanism is due to ions accelerated in the potential 

eV0. The distance required for this to happen depends on the initial amplitude (Φmax) in 

this nonlinear problem. For the case shown here (Φmax = 2) the EPW loses about 30% of 

its initial energy in the distance Lx = –Lkz/kxν0.  Dimensional estimates of the distance 

for significant power loss are given in Sec. III D. 

 The sheath BC also modifies the rf electric field solution in the plasma near the 

sheath at z = L. This is illustrated by computing the ratio of the field  obtained using 

the sheath BC to the field  obtained using the metal wall BC (Λ = 0). The ratio 

  [see Eq. (26)] is plotted vs Φ in Fig. 5 with Ez 

evaluated near the sheath (z = L).  Figure 5 shows that the rf electric field in the plasma 

weakens as Φ increases because of the influence of the sheath BC; conversely, the rf field 

in the sheath grows because 

)pl(
zE

)pl(
0zE

η=πη≡ sin)2/sin(/sinE/E )pl(
0z

)pl(
z

4/1)sh(
z cos~/E ηΦ∆Φ∝ . Thus, the sheaths “short out” or 

screen Ez in the plasma. 

 The scaling Λ ∝ ∆ ∝ |Φ cos η|3/4 shows that the sheath BC effect (measured by 

Λ) increases as the wave amplitude Φ grows. Using the analytic result cos η ≈ 

−(π/2)4 Φ3 obtained in the Φ → 0 limit [see the discussion before Eq. (46)], we can 

estimate the threshold value of Φ at which  begins to decrease significantly in )pl(
0z

)pl(
z E/E

 22 



   
 

Fig. 5.  A 10% decrease in requires sin η = 0.9, implying cos η =  0.44  ≈ 

−(π/2)4 Φ3 and hence Φ ≈ 0.4, in agreement with Fig. 5.  Thus, sheath effects become 

important when the dimensionless Φ is order unity (dimensional Φ ~ ΦΛ).   

)pl(
0z

)pl(
z E/E

 To summarize this discussion, Figs. 4 and 5 illustrate the main effects of the 

sheath BC. Both the power lost by the EPW as it propagates [Fig. 4] and the modification 

of the wave fields near the boundary [Fig. 5] are consequences of imposing the sheath BC 

in Eq. (9) in the solution for the self-consistent rf field amplitudes. 

 The curves in Figs. 4 and 5 are universal in the sense that they depend on only one 

parameter, Φ(x=0) = Φmax. The dependence on the other physical parameters (necessary 

to convert to dimensional units) is contained in the quantities Lx, ΦΛ and ν0. For a 

particular physical case, one must calculate these quantities and check whether the 

validity conditions for the theory are met. For example, the condition for the validity of 

our perturbative (two-length scale) solution is that Im kx / Re kx << 1. The general 

validity condition for the treatment of the sheath power dissipation in the sheath BC is 

that ν << 1. These conditions and the translation of the solution to dimensional 

parameters are discussed in Sec. III D. 

D. Validity Conditions and Dimensional Quantities 

 For the first validity condition, the ratio Im kx / Re kx can be evaluated using Eqs. 

(34) and (35) to obtain Im kx / Re kx  =  Im η / Re η  =  Cη ν0/Φ1/4, where Cη  = (cos 

η)−1/4 sin 2η/ (sin 2η + 2η).  In the limit Φ >> 1, one finds that η → π and Cη → 0, so 

the two-scale approximation is well satisfied in this limit.  As Φ → 1,  a numerical 

solution shows that Cη → 0.15, which is sufficient for present purposes. (Here, Φ is the 

normalized potential shown in Fig. 4; for brevity we do not unfold the scaling with ΦΛ.)  

For a D plasma with B = 30 kG, Te = 20 eV and L = 50 cm, we have the scaling ν0 = 0.25 

(ne / 1010 cm−3 )2/3.  Combining these results and using ne = 5 × 1010 cm−3, one obtains 

the estimate Im η / Re η ≈ 0.1 / Φ1/4, implying that the two-scale approximation is valid 
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at this density for Φ > 1, i.e. for normalized x < 3 in Fig. 4. Thus, at this density the 

solution is valid in most of the region in which the sheath power losses occur.   

 The second condition (on the sheath power dissipation) is more restrictive. For 

Φ ≥ 1, we can make the approximation |cos η| ≈ 1 so that ν = ν0/Φ1/4 by Eq. (42). For the 

base case parameters given above, ν0 < 1 for ne < 8 × 1010 cm−3 and ν << 1 is only 

marginally satisfied for Φ > 1 at this density. Nonetheless, the model is useful for 

estimating when an order unity fraction of the incident power can be dissipated in the 

sheaths. 

 Finally, we return to the discussion of power loss and derive a dimensional form 

for the decay length. If we define significant power loss to be a factor 2 reduction in the 

initial amplitude Φmax, then the propagation distance Lloss to incur this loss is    

 ⎟
⎠
⎞

⎜
⎝
⎛ Φ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛πλ=Φπ=
T

e
m
m

C4
L

2
L

2/1

e

i

sh

D
xmaxloss   , (50) 

where the last form of Eq. (50) uses the definition Lx = –Lkz/(kxν0), Eqs. (43) for ν0 and 

eΦΛ /Te, and assumes ε⊥ ~ 1. In a slight departure from the notation of the rest of this 

section, the quantities Lloss, Lx and Φ are dimensional in Eq. (50). For ICRF frequencies 

with Csh ~ 1, an excellent approximation to Eq. (50) is just  

 ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2/1

e

i
loss m

m~L   . (51) 

since π/(4Csh) ∼ 1, ∆ = λD(eΦ/T)3/4 and for reasonable parameters (eΦ/T)1/4 ~ 1.  For 

example, taking Te = 20 eV and ne = 1011 cm−3 gives a Debye length λD = 0.01 cm, a 

sheath width ∆ = 0.03 cm for eΦ/T ~ 4 (e.g. consider an 80 V sheath potential in a 20 eV 

plasma), and a 50% power loss distance Lloss ≈ 2 cm.  Decreasing the plasma density to 

ne = 5 × 1010 cm−3 with the other parameters held fixed, increases the sheath width and 

50% power loss distance to ∆ = 0.04 cm and Lloss = 5 cm. (The dependence of Lloss on rf 
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frequency is discussed in Appendix B.) Taking for the moment a more general point of 

view than the model problem, we note that these input parameters were chosen to 

approximate those in the SOL of tokamaks for IBW heating, and the value of Lloss 

obtained from Eq. (51) is comparable to the SOL width. Thus, these estimates suggest 

that slow waves propagating across the SOL can lose a substantial fraction of the input 

power to the sheaths, and this can account for the significant loss of heating efficiency in 

scenarios where a significant SW component is present in the rf fields. 

IV. Summary and Discussion 

 This paper has presented two main results. In Sec. II, we described an rf sheath 

boundary condition (SBC) that can be incorporated into rf wave propagation and antenna 

codes to obtain a self-consistent treatment of the rf sheath physics. The BC is suitable for 

describing the effect of the sheaths on the linear rf waves [Eq. (9)] and (after iteration or 

other nonlinear solution methods) the nonlinear sheath power dissipation [Eq.(16)]. The 

SBC is intended mainly for use in the ICRF frequency regime, but may also be applicable 

in the LH frequency regime if certain conditions are met (see Appendix B). Although not 

discussed here, it can be shown that the rf sheath BC is analogous to the low-frequency 

sheath BC used in calculations of MHD instabilities (e.g. see the brief review in Ref. 31); 

the rf frequency form discussed here is valid when the particle currents are negligible in 

the sheaths, as discussed in Sec. IIA. Numerical implementation of the sheath BC was 

briefly discussed in Sec. IIC. 

 In Sec. III we presented a calculation of electron plasma wave propagation 

through a low-density plasma-filled waveguide to check the formalism and illustrate its 

application. The EPW calculation demonstrates the importance of the sheath BC when 

the magnetic field has a component normal to the metallic boundary: (i) the SBC 

modifies the spatial distribution of the propagating wave field, particularly near the 

sheaths; and (ii) power dissipation due to ions accelerated in the sheaths causes the wave 
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amplitude and Poynting flux to decay as it propagates. In rf-heated tokamaks and other 

fusion devices, the latter effect will decrease the overall heating efficiency and cause 

heating of material boundaries when sheath voltages are large. In Appendix A, it is 

shown by explicit calculation for the model EPW problem that energy is conserved in the 

coupled sheath-plasma system.  

 The electrostatic EPW model problem illustrates some features of the SBC which 

are expected to have implications for FW or SW launch using electromagnetic antennas.  

In past analyses of sheath effects driven by antennas in fusion experiments,3-15 the sheath 

potential was estimated as , where the integral is taken along a field line 

between the two contact points with the metallic boundary using the “vacuum” rf field 

component parallel to B.  (In the vacuum limit, the rf field distribution along B is not 

computed self-consistently with the sheaths.)  Completing the circuit with a path in the 

metal frame of the antenna and using Faraday’s Law, one can show that this integral 

equals the magnetic flux through the circuit.7  Thus, this integral represents an external 

electromagnetic (EM) drive for the sheath voltage. The general feature of the SBC and 

the model problem that should survive in the EM case is that (for Λ >> 1) the plasma 

screens  which then appears in the sheaths such that  = where the 

summation is over the two sheaths at each end of the field line.  

vac
||Eds∫

vac
||E vac

||Eds∫ ∑∆ sh
||E

 For monopole (0-0) phasing in two-strap antennas  ≠ 0 and parity 

requires  to be the same in each sheath, resulting in finite (typically large) sheath 

voltages.  Note that the redistribution of E|| in the self-consistent rf field-sheath solution 

to satisfy the sheath BC (as illustrated in Fig. 5) does not change the magnetic flux 

through the circuit. Thus, we expect the new approach to yield similar results to the older, 

approximate method of estimating electromagnetically-driven sheath voltages when Λ 

>> 1.  Conversely, when Λ << 1, as happens with sufficiently long systems (L → ∞), the 

screening is incomplete, and we speculate that  significantly overestimates the 

sheath voltage. [See the discussion following Eq. (32).] 

vac
||Eds∫

sh
||E

vac
||Eds∫
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 For dipole (0-π) phasing  ≈ 0 due to cancellation of the magnetic flux 

from adjacent current straps. This requirement can be satisfied in two ways.  Either  

= 0 for both sheaths or  has opposite signs in the two sheaths. The later case is the 

parity of the EPW mode considered in this paper. (Our EPW is, of course, driven directly 

by launching it down a waveguide.)  We speculate that dipole ICRF antennas have very 

small coupling to this EPW mode, and consequently give rise to very small sheaths, 

consistent with experimental observations.   

vac
||Eds∫

sh
||E

sh
||E

 Motivated by the success of our model electrostatic calculation, the next step will 

be implementation of the sheath BC in antenna and wave propagation codes including 

electromagnetic physics.  The sheath BC [Eq. (9)] is relevant to both fast- and slow-wave 

propagation and should be included in calculations of both near- and far-field effects. 

Applications of the sheath BC to fast wave propagation will be important in optimizing 

ICRF heating in ITER and other future machines. Work is in progress to incorporate this 

boundary condition in codes that include the fast wave polarization and will be reported 

elsewhere. 
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Appendix A:  Energy Conservation 

 In this Appendix, we demonstrate that the self-consistent EPW solution obtained 

from the sheath BC satisfies energy conservation in the limit ν << 1 but for arbitrary η. In 

this derivation, we use the geometry of our model problem, so that Q⊥ = Qx and Q|| = Qz 

for any vector Q and ε|| ≡ εzz and ε⊥ ≡ εxx for the tensor ε. 

 The starting point is the steady-state version of Poynting’s Theorem  

 PSdz
x

0 x −=
∂
∂

⇒=⋅+⋅∇ ∫EJS    (A1) 

where , the time average is defined by , 

and P = Psh/A denotes the power per unit area. 

>×<π= BES )4/c( 4/.)c.c( +=>< BAAB *

 For the slow wave (SW) polarization and with ky = 0, the Poynting flux Sx and 

the power dissipation P are defined by 

 ccBE
16

cS y
*
zx +

π
−≡   ,     ccEJ

4
1dzP *

zz +≡ ∫   , (A2) 

The rf field By is obtained from the z component of Ampere’s Law using Eq. (11) for Jz: 

 zzz
x

yzzzzzyx E
ck

BE
c

iE
c

iJ
c

4Bik εω−≡⇒εω−=ω−π≡   , (A3) 

Combining Eqs. (A2) and (A3) yields the Poynting flux 

 2
z||

x
x E

k8
S ε

π
ω=   . (A4) 

 Expressing Ez = −i kzΦ, with Φ defined in Eq. (20), we obtain the local Poynting 

flux in the plasma region and its integrated value 

 zksink
k8

S z
22

0
2

z||
x

)pl(
x Φε

π
ω=   ,   ( )η−ηΦ

π
εω
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−

2sin2
k16
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||z)pl(
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L
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  . (A5) 

In the sheath region, using the continuity of Dz across the 

sheath-plasma interface and the fact that εzz = 1 in the sheath region. Using this result 

)pl(
z

)pl(
zzsh

)sh(
z E/VE ε=∆=
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with Vsh given by Eq. (32), we obtain the local Poynting flux in the sheath region and its 

value integrated over both sheaths 

 ηΦ
∆π

ω= 22
02

x

)sh(
x cos

k8
S   ,     ηΦ

∆π
ω=∫

∆

22
0

x

)sh(
x

)2(

cos
k4

Sdz      . (A6) 

Combining the results in Eqs. (A5) and (A6) gives the total Poynting flux, integrated over 

all z. We use the definition of Λ in Eq. (28) and the identity (29) to eliminate ∆; after 

some algebra one can obtain the simple form for the total Poynting flux 

 ( )η+ηΦ
π
εω

=∫
−

2sin2
k
k

16
Sdz 2

0
x

z||
x

L

L

  . (A7) 

 For the EPW, power dissipation occurs only in the sheaths. The current is given 

by Eq. (11), , and P is defined by the second relation in Eq. (A2). 

Integrating over both sheaths (∫dz → 2∆)  we obtain   

∆= /VE sh
)sh(

z

 ηΦ
∆π

ων=
π

ων≡ ∫ 22
0

2
z cos

4
E

8
dzP   . (A8) 

Using  Eq. (28) to eliminate ∆ gives 

 2
0

2|| cos
L4

P Φη
Λ
ε

π
ων−=   . (A9) 

 Combining the results for P and ∫dz Sx, using the fact that the dielectric tensor and 

kz/kx are constant in space, and using the identity in Eq. (29),  we recover the nonlinear 

mode equation, Eq. (41), viz. 

 ( )( ) .2sin
k
k

L
222sin 2

0
z

x2
0x Φηην−=Φη+η∇  (A10) 

This proves that our calculation using the sheath BC satisfies energy conservation, 

validating the two-scale method and the ν expansion.  We expect that this property will 
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also hold in the numerical implementation of the BC in more general settings, where one 

iterates the nonlinear sheath relations and the wave fields to convergence. 

 

Appendix B:  High Frequency Limit 

 As discussed in the main body of the paper, the present work is based on sheath 

theory6,21,22 that assumes (i) immobile ions and (ii) electrons without inertia which move 

primarily along field lines. This restricts the theory to the frequency range  

 α∆ω<<ω<<αω sin)/v,min(sin epepi   , (B1) 

where α = Βn/Β is the equilibrium magnetic field line angle with respect to the sheath.  

 The question naturally arises about what happens in the high frequency limit, e.g. 

whether the theory applies in the lower hybrid frequency regime and how it scales with 

frequency. We restrict the present discussion to the low density region around the antenna 

or waveguide coupler, where ε⊥ = 1 and ωpe can be small.  In the LH frequency range, 

the right hand inequality in Eq. (B1) is not always satisfied, i.e. the effects of electron 

mass must be retained in the sheath theory.  

 To understand what happens at high frequencies, we consider the limit ω → ∞, 

for which the electrons are not be able to respond to the rf fields and act as if they are 

immobile. In this limit, there is no increased electron current to the wall (in response to 

the rf fields) to drive the rf sheath, and the rectification effect disappears. Thus, we expect 

Csh to be a decreasing function of frequency when electron mass effects are retained in 

the theory.  The frequency scaling of the sheath width can be inferred from Eq. (13),  ∆ ∝ 

Csh3/4, and from Eq. (16) we find that Psh ∝ Csh. The sheath parameter Λ defined in Eq. 

(28),  Λ = (∆/L)(ωpe/ω)2  ∝ Csh3/4/ω2.  Thus, ∆, Psh and Λ → 0 in the high frequency 

limit.  It can be shown from Eq. (A7) that the wave amplitude Φ is constant (independent 
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of ω) at fixed rf power (taking ε⊥ ~ 1). Combining these results in the definition of the 

scale length for power loss in Eq. (50), we find that Lloss ~ const./Csh → ∞ as ω → ∞.  

 Applying this discussion to the LH range of frequencies, we conclude that the 

present formalism is valid for LH waves if Eq. (B1) is satisfied, but the magnitude of the 

sheath effects (rectification, power loss, redistribution of fields) will be greatly reduced 

by the effect of electron inertia at higher frequencies [violating Eq. (B1)].  
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Figure Captions 
 

Fig. 1  Schematic of the general sheath problem and the two coordinate systems defined 

in the text. Shown are the unit vectors (n, et) normal and tangential to the sheath-

plasma interface and (b, e⊥) along and perpendicular to the magnetic field B.  The 

normal n is defined to point from the sheath into the plasma region.  

 

Fig. 2  Schematic of the model SW sheath problem. The unit normal n at the sheath-

plasma interface is defined to point from the sheath into the plasma region, and 

the magnetic field B points to the right. With these definitions,   is +1 at the 

left-hand sheath and -1 at the right-hand sheath. 

bn ⋅

 

Fig. 3  Sketch of lowest order eigenmode. Note that ε changes sign in going from the 

plasma to the sheath region, so in order for Dz = ε Ez to match, Ez must also 

change sign across the z = L interface.  Thus we expect the lowest order even 

modes to have kz L in the range π/2 < kz L < π. 

 

Fig. 4  Plot of the numerical solution of Eq. (44) for the normalized potential Φ(x) (solid 

curve), the normalized rectified potential ηΦ== cosCVC)x(V shshsh0  (long-

dashed curve) and the ratio RP of the integrated sheath power dissipation to initial 

Poynting flux (short-dashed curve), as defined in Eq. (49), for the case Φmax = 2. 

Here, Φ and V0  are normalized to ΦΛ and x is normalized to the nonlinear scale 

length Lx = –L kz / kx ν0. 
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Fig. 5  Plot of vs Φ with Ez evaluated at the sheath (z = L) and Φ normalized 

to ΦΛ. As explained in the text, this compares the Ez fields obtained with the 

sheath BC (Λ ≠ 0) and the metal wall BC (Λ = 0).  
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Fig. 1  Schematic of the general sheath problem and the two coordinate systems 
defined in the text. Shown are the unit vectors (n, et) normal and tangential to the 
sheath-plasma interface and (b, e⊥) along and perpendicular to the magnetic 
field B.  The normal n is defined to point from the sheath into the plasma region.  
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Fig. 2  Schematic of the model SW sheath problem. The unit normal n at the 
sheath-plasma interface is defined to point from the sheath into the plasma 
region, and the magnetic field B points to the right. With these definitions, is 
+1 at the left-hand sheath and -1 at the right-hand sheath. 
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Fig. 3 Lowest order eigenmode. Note that ε  changes sign in going from the 
plasma to the sheath region, so in order for Dz = ε Ez to match, Ez must also 
change sign across the z = L interface.  Thus we expect the lowest order even 
modes to have kzL in the range π/2 < kzL < π. 
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Fig. 4  Plot of the numerical solution of Eq. (44) for the normalized potential Φ(x) 
(solid curve), the normalized rectified potential V0 (long-dashed curve) and the 
ratio RP of the integrated sheath power dissipation to initial Poynting flux (short-
dashed curve), as defined in Eq. (49), for the case Φmax = 2.  Here, Φ and V0  
are normalized to ΦΛ and x is normalized to the nonlinear scale length Lx = –
Lkz/kxν0. 
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Fig. 5  Plot of vs Φ with Ez evaluated at the sheath (z = L) and Φ 
normalized to ΦΛ. As explained in the text, this compares the Ez fields obtained 
with the sheath BC (Λ ≠ 0) and the metal wall BC (Λ = 0). 
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