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Abstract 

The problem of “far-field” sheath formation is studied with a new quantitative 

one-dimensional model. These radiofrequency (rf) sheaths occur when unabsorbed fast 

waves in the ion cyclotron range of frequencies are incident on a conducting surface not 

aligned with a flux surface. Use of a nonlinear sheath boundary condition gives self-

consistent solutions for the wave fields and sheath characteristics, and it introduces a 

sheath-plasma-wave resonance which can enhance the sheath potential. The model is 

used to compute the parametric dependence of the far-field sheath potential. Its 

application to post-process the rf fields computed by a full-wave code for a typical D(H) 

minority heating scenario is also discussed. This work shows that 2D effects (included 

heuristically) are essential in determining whether far-field sheath potentials are strong 

enough to cause significant edge interactions, such as impurity generation and reduced 

heating efficiency.  
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I. Introduction 

The ability of radiofrequency (rf) waves in the ion cyclotron range of frequency 

(ICRF) to heat fusion plasmas under a wide range of plasma conditions has been 

successfully demonstrated on many experiments. There is also a great deal of interest in 

using ICRF antennas to drive steady-state currents in tokamaks, which requires a low-k|| 

spectrum to achieve the required resonance with energetic electrons. In practice, this is 

achieved by using a fast wave (FW) antenna with multiple (more than two) straps and a 

small relative phase difference φ∆  between adjacent current straps. It has been observed 

on many ICRF experiments that “low-k|| phasing” of the antenna (small φ∆ ) leads to 

reduced coupling efficiency1-7 of the waves to the core plasma and increased edge 

interactions (impurity generation and power dissipation in the edge plasma). In FW 

heating experiments, this effect is clearly seen in comparing monopole ( 0=φ∆ ) and 

dipole ( π=φ∆ ) phasing of two-strap antennas. The origin of the phasing dependence of 

the heating efficiency is one of the unsolved problems in ICRF research and partly 

motivates the work in this paper.  

A large body of theoretical and experimental work over the past thirty years has 

shown that many of deleterious ICRF-edge plasma interactions are due to the coupling of 

the launched FW to the unwanted slow wave (SW) by various linear and nonlinear 

mechanisms (for reviews of this literature, see Refs. 8 and 9). One of the most important 

nonlinear effects is rf sheath formation, in which the SW accelerates electrons parallel to 

the magnetic field, thereby increasing the sheath potential needed to maintain 

ambipolarity. The sheath potential provides a spatially extended source of both impurities 

and power dissipation, because ions accelerated down the sheath potential can sputter 

wall material and deposit their energy in the material boundaries around the plasma. 

The sheath formation process depends on the relative angle of the magnetic field 

with respect to surrounding material structures. To put the present work in context, it is 

useful to distinguish several types of sheaths. Sheaths on the antenna surface and on 
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nearby limiters are often referred to as “near-field sheaths”. These occur when the 

equilibrium magnetic field B is not perpendicular to the active elements in the antenna 

(e.g. current straps and feeders) so that the rf electric field Erf has a component E|| 

parallel to B.  It has been shown that near-field sheath formation is minimized by 

symmetry, e.g. with π=φ∆  for the relative phasing of two adjacent straps (“dipole 

phasing”) and is maximized when 0→φ∆ .10-13 Thus, near-field sheath effects are 

largest in low-k|| phasing. “Far-field sheaths” occur when two conditions are satisfied: (i) 

a launched FW propagates into a wall, e.g. through or around the core plasma, but is not 

fully absorbed; and (ii) the magnetic field has a mismatch with material surfaces around 

the boundary of the machine (“the wall”). This mismatch occurs when B has a component 

normal to the wall, which couples the FW to the SW through a boundary condition (BC) 

obtained from Maxwell’s equations. Again, the SW has a non-zero E||, which accelerates 

electrons into the boundary and increases the local sheath potential. Far-field sheath 

effects are also largest in low-k|| phasing, because the single pass damping (and isolation 

of the far wall from the FW fields) typically increases with k||.  Sheaths can also be driven 

by surface waves and coaxial modes,7,8 which also favor low k||, or they can arise on 

field lines that connect to spatial regions in which such waves are present.14 

There has been a great deal of work on near-field (and, in particular, antenna) 

sheaths (see Ref. 9 and references therein). Far-field sheaths have received much less 

attention, and we do not yet know the answer to the following questions: Do far-field 

sheaths contribute significantly to the “missing power” (reduced core heating efficiency) 

in ICRF experiments? Are they partly responsible for the observed phasing dependence 

of the heating efficiency? Do they contribute to the impurity content of the SOL and core 

plasmas? Quantitative numerical models are needed to answer these questions. 

The basic mechanism of far-field sheath formation was described by Perkins15 

and studied numerically in Ref. 16. The BC on the rf field used in these papers is that the 

component Et of the rf electric field tangential to the wall must vanish on the boundary. 
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This BC is valid when the wall is assumed to be perfectly conducting and the sheath 

capacitance effect is negligible. As noted above, it was shown that the Maxwell BCs 

cannot be satisfied by the FW alone unless the wall shape conforms to a magnetic flux 

surface, which is typically not a good assumption.  

The present paper develops a quantitative one-dimensional (1D) model of far-

field sheath formation which extends the previous work15,16 in several respects. First, the 

sheath capacitance is taken into account by treating the sheath as a thin vacuum region 

separating the plasma and the wall. The sheath capacitance adds another term to the BC 

which the rf fields must satisfy.16,17  This “sheath BC” (in the form derived in Ref. 17) is 

then incorporated into an analytic wave-scattering calculation at the wall. We assume that 

the incident FW generates a reflected FW and a (typically evanescent) SW at the wall, 

and the three-wave coupling problem is solved at the sheath-plasma interface. As the 

sheath BC is nonlinear, a numerical root finding procedure is used to determine self-

consistently the rf sheath width, sheath potential, and the normal component of the rf 

electric field on the plasma-side of the sheath-plasma boundary. The model developed 

here can be used for parameter studies and to post-process the results of linear rf codes to 

estimate the nonlinear effects at the far wall. 

The sheath BC modifies the rf wave physics in two ways: (i) it modifies the 

distribution of E|| between the plasma and the sheaths,17 and (ii) the sheath capacitance 

allows a new class of modes in the sheath-plasma system, “sheath-plasma-waves” 

(SPW).18-20 We will show that the SPW can provide a resonant enhancement of the far-

field sheaths (see Sec. IV). 

The plan of this paper is as follows. The wave scattering model is described in 

Sec. II and the physics of the SPW resonance is discussed in Sec. III.  It is shown that the 

resonance occurs for short wavelength poloidal or toroidal modes. Two mechanisms for 

generating these modes are discussed in Sec. III and Appendix A. The model is applied to 

a typical D(H) minority heating case for a DIII-D-size tokamak in Sec. IV with input 
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fields to the sheath model determined by matching the output of the AORSA-1D full-

wave code.21 Finally, a summary and our conclusions are given in Sec. V.  In Appendix 

A, a discussion is given of the effect of linear mode coupling at the boundary in 

generating higher mode numbers of the reflected FW (making sheath-plasma-wave 

resonance more likely).  

II. Wave scattering model 

A. Formulation of the problem 

We consider the problem of a propagating fast wave in 1D geometry encountering 

a sheath, modeled here as an equivalent lossy vacuum region. We assume that an incident 

FW travels in the negative x-direction and couples to additional rf waves upon 

encountering the sheath-plasma boundary at x = 0. The boundary is not assumed to 

coincide with a magnetic flux surface, i.e.  

 0≠⋅bs   , (1) 

where xê=s is the unit vector normal to the sheath (pointing into the plasma), and b = 

B/B is the unit vector along the B-field direction. (See Fig. 1.)   

If we neglect the presence of the sheath, Maxwell’s equations impose the well-

known conducting wall BC on  the rf electric field at the wall 

 ( ) 00)(t =×⇒=⋅−=××≡ EsEssIsEsE   . (2) 

This BC can be generalized to include the effect of the sheath by modeling the sheath as a 

thin lossy vacuum region of width ∆ separating the wall and the plasma. The rf sheath 

BC16,17 is given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε
∆∇×≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

ε
∆∇×=× n

shsh
DsDssEs   , (3) 
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where the subscripts “n” and “t” refer to the components normal and tangential to the 

surface, ∆ is the time-averaged (dc) sheath width, and εsh = 1 + i ν is the scalar dielectric 

for the “lossy vacuum” sheath model. The right-hand side (rhs) of the rf sheath BC 

includes the effect of the sheath capacitance (∝ ∆) and the sheath resistance (∝ ν), and it 

reduces to the conducting wall BC in the limit ∆ → 0. This BC is derived from the 

requirements that Dn and Et be continuous across the sheath-plasma interface treating the 

sheath as a thin vacuum layer. 16,17  

If 0≠⋅bs , the incident FW (denoted by subscript 0) will not satisfy either the 

conducting wall or sheath BC without coupling to additional waves. Here, we consider a 

minimal three-wave coupling model in which there is also a reflected FW (subscript 1) 

and a (possibly evanescent) slow wave (SW, subscript 2) at the boundary. For simplicity, 

we assume that the density n(x) is constant near the wall, and the homogeneous plasma 

dispersion relations are used. The total rf electric field is given by 

 xik
j

2

0j
j

)tzkyk(i xjzy eEe eE ∑
=

ω−+=   . (4) 

where the vectors without carats, )2,1,0j(j =e , are the wave polarization unit vectors, 

not to be confused with the Cartesian unit vectors, )z,y,xj(ˆ j =e . We assume that kt = 

(ky, kz) is specified and the kx components are obtained from the appropriate dispersion 

relations, as discussed in the next section.  

Substituting the E field in Eq. (4) into the sheath BC in Eq. (3) with εsh = 1 

(neglecting sheath resistivity) and x = 0, we obtain the following relations among the 

field amplitudes 

 0E j

2

0j
j =×∑

=
gs   , (5) 

 ( ) jjjj i keεseg ⋅⋅∆−=   . (6) 
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where ε is the plasma dielectric tensor.  The two constraints in Eqs. (5) and (6) determine 

the unknowns E1 and E2 in terms of the incident FW amplitude E0. Dotting Eq. (5) with 

1g and 2g  yields the solutions for the secondary waves at the boundary 

 .EE:SW,EE:FW
21

10
02

21

02
01 ggs

ggs
ggs
ggs

×⋅
×⋅=

×⋅
×⋅=  (7) 

Equations (6) and (7) show that the coupling to the SW occurs even in the absence of the 

sheath capacitance term (∆ → 0). The role of the sheath term will be discussed in Sec. III. 

For the sake of simplicity, in Eq. (4) we assume that all three waves have the 

same values of kt = (ky, kz). This assumption is not true in the case where the boundary is 

“bumpy” with variation on scales much shorter than the wavelength of the incident wave. 

In this case, linear mode coupling produces reflected waves at various spatial harmonics 

(see  Appendix A). This physics is incorporated heuristically in the present model by 

allowing kt to be large. 

B. Wave propagation 

The wave coupling solution depends on the linear wave theory through the 

eigenvectors jê  in Eqs. (5) -(7).  Our code solves the cold plasma wave equations22 

 0=⋅+×× EεE)(nn      (8) 

where ω= /ckn  is the index of refraction and ε is the cold plasma dielectric tensor. In 

the reference frame (ξ, η, b) defined as  

 
B
Bb

k
kbη

k
kξ =×==

⊥

⊥

⊥

⊥ ,,   , (9) 

the dielectric tensor has the form derived by Stix 22 

 ,
00

0i
0i

||

x

x

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ε
εε

ε−ε
= ⊥

⊥

ε   (10) 
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 ( ) ( ) .,1,1 2
i

2
i

2
pi

x2

2
pe

||2
i

2

2
pi

Ω−ωΩ

ωω
=ε

ω

ω
−=ε

Ω−ω

ω
−=ε⊥   (11) 

In a homogeneous (constant-density) plasma, the wave equation yields a 4th order 

dispersion relation for the four coupled fast and slow waves  

   0nDet 2 =−+ Innε . (12) 

The kx roots for each wave are chosen according to the following rules. For the 

incident fast wave (kx = kx0), we pick the propagating or evanescent root that has 

 
.0]kRe[then,0]kIm[If

,0]kIm[

xx

x

<=
<

 (13) 

For the reflected FW (kx = kx1) and the SW (kx = kx2), we pick the roots that have  

 
.0]kRe[then,0]kIm[If

,0]kIm[

xx

x

>=
>

 (14) 

The corresponding wave polarization unit vectors are given by 

 )n(,)n(,)n( 2xSW21xFW10xFW0 eeeeee ===    . (15) 

where )n(and)n( xSWxFW ee  (not shown) denote the eigenvectors of the 4th order 

problem, which, in general, must be obtained numerically. 

C. Limiting Cases 

For physical insight, it is often useful to consider the approximate 2nd order 

dispersion relations for the uncoupled fast and slow waves 

 
,0)n(n:SW

,0)n()n(n:FW

||
2

||
2
||

2
x

22
||

2
||

2

=ε−ε+ε

=ε−ε−+ε−

⊥⊥

⊥⊥⊥    (16) 

where the indices of refraction n⊥ and n|| both contain the unknown nx = kxc/ω. The fast 

wave obeys the ordering ||x
2 ,~n ε<<εε⊥⊥  and the SW ordering is x||

2 ,~n εε>>ε ⊥⊥ .  

The corresponding polarization unit vectors are given by16 
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)n(

iQ,
Q
Q

2
||

x
FW

⊥⊥⊥

⊥⊥

ε−
ε−=

×+
×+=

nbn
nbne   , (17) 

 
)n(

n
G,

G
G

2
||

||
SW

⊥⊥

⊥

ε−
=

+
+=

bn
bne    . (18) 

 It is useful to examine the scaling of the reflected slow wave in the limits ∆ → 0 

(metal wall BC) and n||2 >> ε⊥ (vacuum FW, electrostatic SW).  In this limit, we find 

 .,,
2

2
2

1

1
1

0

0
0 n

ne
nb
nbe

nb
nbe →

×
×→

×
×→  (19) 

The denominator in the expression (7) for E2 reduces to  

 ( ) 21

2121
2121

))(())((
nnb

nnbsnbnseesggs
×

⋅⋅−⋅⋅≈×⋅→×⋅ . (20) 

which does not vanish for the assumed polarizations. The numerator of E2 becomes 

 ))(( 101010 nnbbseesggs ×⋅⋅∝×⋅→×⋅    . (21) 

Writing xx0x101 ˆ)nn( enn −+= , we can show that zy0x1x010 bn)nn( −≈×⋅ nnb   and 

 zxy0x1x02 bbn)nn(E −∝   . (22) 

  The form given in Eq. (22) shows that there are several requirements for coupling 

to the SW in the present model for the sub-limits under discussion (low density, 

negligible sheaths). First, there must be a mismatch between the flux surface and the wall 

shape ( 0bx ≠=⋅bs ).  Second, there must be incident and reflected FWs propagating in 

opposite directions, so that 0)nn( x0x1 ≠− . Finally, the incident FW should have a 

component in the bs× direction: in the geometry assumed here, this implies 0n y0 ≠ . The 

fact that the slow wave amplitude is proportional to yk  is important, and partly motivates 

the discussion of linear mode coupling due to wall geometry in Appendix A. 
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D. Sheath Potential and Power Dissipation 

 Given a solution for the scattered rf wave fields, it is straightforward to obtain the 

sheath width, the self-consistent potential drop across the sheath, and the power 

dissipated by the sheaths. Here, we consider only the “sheath power dissipation” due to 

ions which are accelerated in the sheath and deposit their energy in the wall (see e.g. Ref. 

23). 

 Given a specified value of the sheath width ∆, an expression for the rf sheath 

potential rfΦ  can be obtained by matching the normal component of D across the sheath-

plasma interface. Treating the sheath as a thin vacuum region (εsh = 1 ⇒ 
( ) ∆Φ−= /D rf
sh

n ) and using an expression for Dn in the plasma obtained from Eq. (4) , 

we find 

 ∑
=

⋅⋅∆≡Φ
2

0j
jjjrf E eεs   . (23) 

Note that the value of ∆ isn’t known a priori and must be solved for self-consistently as 

part of the algorithm.  

 It is well-known that the total dc sheath potential Brfshsh C Φ+Φ≡Φ  (including 

both rf and Bohm sheath contributions) must satisfy the Child-Langmuir (CL) Law 

 
3/4

D

e)CL(
sh e

T
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
∆≡Φ   . (24) 

Here, rfshC Φ is the rectified (time-averaged) rf sheath potential, Csh is an order-unity 

rectification factor (Csh ≈ 0.6 for 0-to-peak voltages24 in the limit Brf Φ>>Φ ), BΦ  is the 

Bohm (thermal) sheath potential defined subsequently, and 2/12
D )ne4/T( π=λ  is the 

Debye length. 

 Equation (24) exhibits the scaling 3/4
sh ∆∝Φ , and thus a nonlinear rootfinder 

must be used to obtain self-consistent values of the sheath width and potential that solve 
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Eqs. (23) and (24) simultaneously. The self-consistent solution requires that rfΦ  in Eq. 

(23) satisfy B
)CL(

shrfshC Φ−Φ→Φ ,  where the Bohm potential is given by25 

 ]sin)m/mln[(
e

T 2/1
ei

e
B α=Φ  . (25) 

This expression is valid when (me/mi)1/2 < sin α  < 1, where B/Bsin x≡⋅=α bs . 

 The sheath power dissipation carried out of the plasma by ions accelerated in the 

dc sheath potential is given by 

 ( ) ( )
( ) ⊥⊥ Φ→
ξ
ξξξ≡ AZecnCA

I
Ih)T3(cZnP rfsish
0

1
esish , (26) 

where erf T/ZeΦ≡ξ , AA bs ⋅=⊥  is the area of the sheaths normal to B, and A is the 

surface area of the sheaths. The first expression for Psh was derived in Ref. 23 for 

modeling the transition from the Bohm (ξ ~ 1) to the strong rf-sheath (ξ >>1) regime; the 

second expression in Eq. (26) gives the ξ >> 1 limit.24 Here, h(ξ) = (0.5 + Csh ξ)/(1 + ξ) 

is a form factor connecting known results in the ξ << 1 and ξ >>1 limits. In the 

calculations presented here, our goal is to identify parameter regimes in which the far-

field sheath potential is dominated by the rf contribution, so for simplicity we take the 

 ξ >>1 limit in Eq. (26). 

 Finally, we can calculate the resistive part of the sheath dielectric as follows: 

 2
sh

sh
sh

)A/P(8,i1
Φω

∆π=νν+=ε ⊥    . (27) 

In this paper we assume ν << 1 and set 1sh =ε  [starting in Eq. (6)]. Combining Eqs. (26) 

and (27), one can show that sh/1 Φ∝ν and thus the small-ν  approximation tends to be 

valid in the strong sheath limit.  
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III. Sheath plasma wave resonance 

 When the sheath width ∆ is large enough that the two terms in gj are comparable 

[see Eq. (6)], the denominator 21 ggs ×⋅  can become small in Eq. (7). This produces a 

resonant enhancement of the sheath potential for some locus of points in the 

)n,n( zy=⊥n  parameter space.  In Sec. IV.A we show that the resonance is related to a 

class of modes called “sheath plasma waves,”18-20 which appear when the sheath 

capacitance is retained. These surface waves were studied and simulated in Ref. 20 in 

connection with near-field sheaths on ion-Bernstein wave antennas. Here, they appear in 

the context of far-field sheaths generated by propagating fast waves. 

 The SPW resonance requires 

  1~)( jj ∆⋅⋅ keεs ,  (28) 

which for typical FW parameters means |n⊥| >> 1. The resonance condition can only be 

satisfied when the sheath width ∆ is finite, so it involves the sheath capacitance in an 

essential way. Physically, the SPW resonance occurs because the inductive plasma 

current into the sheath due to ||ε  (with inductance L) and the capacitive current across the 

sheath (with capacitance C) form a resonant LC circuit for some parameters.18 

 We first examine the resonance with the sheath width ∆ fixed, and then carry out 

the nonlinear solution for the self-consistent values of ∆.  

A. Fixed ∆   

 Equation (5) determines the field amplitudes E1 and E2 driven by a given incident 

FW E0.  Near the resonance 21 ggs ×⋅  = 0 one can find two normal modes of the coupled 

sheath-plasma system which have large amplitudes.  

 The existence of nearly-resonant contributions is shown in Fig. 2, where two 

contours of the normalized SW amplitude, 02 E/E , are plotted in the (ny, nz) plane. In 

carrying out the wave-scattering calculation, the density ne, electron temperature Te, 

magnetic field B, magnetic mismatch parameter Bx/B, and incident FW field E0 are 
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specified at the sheath-plasma interface.  The parameters used in Fig. 2 are ne = 1 × 1012 

cm−3, Te = 10 eV, B = 30 kG, Bx/B = 0.2, f = 60 MHz (rf frequency), and E0 = 10 V/cm. 

This case is similar to the one studied in Sec. IV. 

 In Fig. 2, the contours 02 E/E  = 5 (solid line) and 6 (dashed line) are plotted for 

two values of the sheath width ∆ to show the region of parameter space where the slow 

wave amplitude is enhanced by the SPW resonance. The location of the resonance 

depends on the sheath width ∆, which was specified here as an input parameter, but will 

be solved for self-consistently in the next section. Fig. 2 shows that smaller ∆ requires 

larger values of ny or nz (or higher density) to obtain resonance. The density scaling is 

given by the dependence on the cold-plasma dielectric tensor εj given in Eq. (28). For 

fixed ∆, Eq. (28) also shows that the resonance condition is independent of Te at the 

sheath-plasma interface.  

 An examination of the numerical solution shows that the SPW undergoes a 

transition in moving from the upper left hand corner to the lower right hand corner in Fig. 

2.  In the limit ny >> nz, 21 ggs ×⋅  can be small because 21 gg ×  is orthogonal to s, 

although neither g1 or g2 is individually small. In this limit the SPW involves a coupling 

of the FW and the SW and is therefore fundamentally electromagnetic. In the limit 

yzx nnn >>>> , the SPW is an electrostatic (ES) slow wave satisfying ||x nn~n >>⊥ , 

and the plasma approaches resonance because the tangential component of g2 is small.   
 

1. Electromagnetic SPW resonance 

 The electromagnetic (EM) limit of the SPW resonance can occur in at least two 

situations, which we now discuss. 

 First, we consider low-single pass absorption cases, where the wave fronts make 

many passes across the plasma, reflecting off the FW cutoff layer in the low-density edge 

plasma. In the multiple-pass case, the poloidal mode number spectrum spreads during 

specular reflections at the boundary. Rf sheaths can form if the cutoff layer is sufficiently 
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close to the wall that a substantial fraction of the decaying rf field reaches the wall. Both 

numerical results from 2D wave propagation codes and simpler models26 suggest that ⊥n  

isotropizes, giving iyx /~k~k δπ , where pii /c ω=δ  is the ion skin depth (evaluated 

near the wall).  Here, iδ  is the natural scale length for ICRF wave propagation (obtained 

by balancing 22
pi

222 /~/ck ωωω ). We refer to this spectral broadening effect as 

“isotropization”. 

 An example of isotropization relevant to a DIII-D-like tokamak is shown in Fig. 

3, where a low single-pass absorption case is compared with a high single-pass 

absorption case (both computed using the AORSA-2D full-wave code27). For the low 

single pass case, the broadening of the poloidal mode spectrum is shown in Fig. 3(b) and 

the penetration of high-k rf waves to the plasma edge is shown in Fig. 3(d). The 

parameters used in this simulation (nedge = 8.5 × 1012 cm−3 and f = 60 MHz) correspond 

to 11
iy m30cm3.0~/~k −− =δπ  and ny ~ 24. The computed spectrum is a factor of 2 

broader than this estimate.  

 The second situation in which an electromagnetic SPW resonance can occur is 

when a bumpy wall generates high ky components (larger than those launched by the 

antenna) by the process of linear mode coupling, as illustrated in Appendix A (and also in 

Refs. 15 and 16). For this mechanism, the high ky components of the FW are generated at 

the (bumpy) wall, and the evanescent layer for the rf fields to tunnel through can be 

smaller than in the isotropization case. The rf field at the wall is expected to be larger in 

this case. 

 Thus, either low single pass absorption or a mismatch of the wall shape with the 

flux surface can trigger the EM SPW resonance and enhance the formation of far-field 

sheaths.  

 



   
 

 15 

2. Electrostatic SPW resonance 

 The identification of the resonance in Fig. 2 with the SPW considered in earlier 

papers is most easily done in the ES limit. To this end, consider the important case 

1~nn 2
||

2
⊥⊥ ε>>>> , relevant to low-density edge plasmas.  The first inequality yields 

the ES slow wave limit in which the tangential components of 2k  and 2e  are 

proportional, i.e. sessks ××=×× )(k)( 2t22 . Taking this result and employing the 

definition of g2, we write  

 21221 )k,,(D egsggs ×⋅∆ω=×⋅   , (29) 

so that the ES SW resonance condition is now  

 0)k,,(D2 =∆ω  (30) 

with 

 22t22t22 )/k(ki1ki1)k,,(D kεseεs ⋅⋅∆−→⋅⋅∆−≡∆ω ⊥   . (31) 

The last form of D2 is valid when the inequality ⊥ε>>2
||n  applies, so that ||n/1G → and 

||/ 222 ⊥→ kke  by Eq. (19).  In Appendix B, we show that Eqs. (30) and (31) reduce in 

certain limits to the electrostatic SPW dispersion relation derived in Ref. 20. 

B. Self-Consistent ∆  

 Now we turn to the question of solving the nonlinear problem for the self-

consistent rf sheath potential rfΦ . We will show that the SPW resonance makes possible 

the existence of multiple roots for rfΦ . The resonance is associated with the effect of the 

sheath capacitance term [Eq. (28)], and this term is enhanced by a large perpendicular 

component of the equilibrium B field normal to the wall, high density near the wall, high-

k components in the wave spectrum, and strong rf wave fields. Here, we set Te = 10 eV, 

B = 30 kG, f = 60 MHz, and study the dependence of the solution on the other 

parameters: indices of refraction (ny, nz), density at the wall ne, normal magnetic field 

component (Bx/B) and incident FW amplitude at the wall (E0). 
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 It should be noted that the fast wave is typically radially evanescent in the edge 

region in the large ny limit. In this case the FW dispersion relation [Eq. (16)] gives 

0n2 ≈⊥  in lowest order, implying  2
y

2
x nn −≈ , with the result that nx is imaginary and 

depends only on ny. It is remarkable that despite the evanescence of the rf field to modest 

values near the wall in our calculations, the SPW resonance still results in large values of 

the sheath potential. In the experiment, this situation could be realized through spectral 

broadening by a bumpy wall, where the region of high-ky generation is likely to be 

confined to the region close to the wall (see Appendix A). 

 The simultaneous solution of Eqs. (23) and (24) for the rf sheath potential rfΦ and 

sheath width ∆  yields multiple roots in some parameter regimes. The self-consistent roots 

are defined by 0)(D )CL(
shrf =Φ−Φ≡∆ , ensuring that the potential obeys the Child-

Langmuir Law. To illustrate the root structure, in Fig. 4 we plot the difference function 

)(D ∆  for the parameters ny = 30, nz = 6, ne = 2 × 1012 cm−3, Te = 10 eV, B = 30 kG, 

Bx/B = 0.2, f = 60 MHz and E0 = 15 V/cm. There are three roots in this case.  

 The dependence of the three roots for the self-consistent rfΦ on the index of 

refraction ny is shown in Fig. 5 for the parameters nz = 6, ne = 2 × 1012 cm−3, Te = 10 eV, 

B = 30 kG, Bx/B = 0.2, and E0 = 20 V/cm. This figure shows the presence of three roots 

for ny < 30. The resonance is very narrow for the highest two roots for small ny. Because 

these roots are so closely spaced, dissipation or other physical effects not included in the 

present model would probably eliminate these roots, so they are not regarded as 

physically interesting. However, all three roots are well separated (and therefore probably 

physical) over the range 29n17 y << . For ny > 29, the lowest  two roots merge and the 

sheath potential jumps to the value of the highest root. Thus, Fig. 5 shows that the high-k 

parts of the wave spectrum make the largest contribution to the sheath potential. Finally, 

note that the self-consistent sheath potential of the upper root is much larger than typical 

Bohm sheath potentials. 
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 In Fig. 6 we show the dependence of the self-consistent rfΦ on Bx/B, where Bx is 

the component of the equilibrium magnetic field normal to the wall. This parameter 

characterizes the misalignment between the wall and the magnetic flux surfaces in our 1D 

model. The parameters used in Fig. 6 were ny = 30, nz = 6, ne = 2 × 1012 cm−3, Te = 10 

eV, B = 30 kG, and E0 = 20 V/cm.  Again  we see the presence of three roots (due to the 

SPW resonance) and an S-shaped curve leading to a much higher sheath potential for 

large values of the control parameter (here, Bx/B). 

 In Fig. 7, we plot the self-consistent rfΦ vs the density in the boundary region 

near the wall for the parameters ny = 30, nz = 6, Te = 10 eV, B = 30 kG, and Bx/B = 0.2.  

For the upper curve in Fig. 7, the denominator 21 ggs ×⋅  in Eq. (7) is reduced by more 

than a factor of 20 for the cases with the highest sheath potential. Figure 7 illustrates the 

dependence on both density and rf field strength. 

 Note also that a hysteresis effect occurs in Fig. 7. Because of the multiple root 

structure, starting at low density and raising ne to 2 × 1012 cm-3 results in a lower sheath 

potential than starting at high density and lowering ne to the same value. This may 

contribute in part to the common observation that machine conditioning is essential to 

good ICRF system performance. 

 We have also investigated the electrostatic SPW limit ( 2
y

2
z nn >> ) discussed in 

Sec. III A.2 for the base case parameters given above, but with nz = 30 and ny = 6. The 

plot (not shown here) is very similar to Fig. 7 except that the multiple root structure 

occurs at lower density (with rfΦ peaking for ne = 0.5 × 1012 cm-3). Because z is nearly 

in the toroidal direction in tokamaks, this limit is relevant to tokamak experiments only 

when the walls or other hardware break the toroidal symmetry. 

IV. Application to post-processing  

 In Sec. III, we showed that the wave-scattering (WS) model can be used to study 

the physics of far-field sheaths, including the self-consistency constraint on the sheath 
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potential imposed by the Child-Langmuir Law. The biggest uncertainty in this modeling 

is estimating the magnitude of the rf electric field at the boundary. One way around this 

problem is to use the WS scattering model to post-process the output of an rf full-wave 

code.  In this section, we illustrate a way of obtaining quantitative estimates by using the 

AORSA-1D full-wave code21 to calculate the rf field profile. AORSA computes the wave 

propagation and absorption physics, determining how much of the FW field impinges on 

the far wall after passing through the core plasma. 

 The procedure is briefly summarized as follows. The AORSA-1D full-wave 

code21 (with metal wall BCs) is used to compute the rf field propagation across the 

plasma as a function of the distance from the wall,  x = R – Rw. The amplitude of the 

binormal (approximately poloidal) FW electric field from AORSA-1D is fitted to a 

superposition of incident and reflected plane waves to obtain the part due to the incident 

wave near the wall, which is then used as input in our WS code to compute the sheath 

properties.  

The AORSA wave propagation analysis is illustrated here for a low-single-pass 

case similar to the one shown in Fig. 3:  D(H) minority ion heating with 2% H, f = 60 

MHz, B = 32.5 kG (at HFS wall), toroidal mode number = 13, ky = 3 m−1 (⇒ ny = 2.4 

and nz = 6.3), and Prf = 1 MW.  A model centrally-peaked density profile is assumed with 

a peak density of ne0 = 6.3×1013 cm−3. The radial profile of the Ey (poloidal) component 

of the FW field is shown in Fig. 8.  The AORSA-1D calculation employs the conducting-

wall BC (obtained from the full sheath BC in the limit 0→∆ ) at both ends, R = 0.95 m 

and R = 2.2 m. The antenna is located at R = 2.18 m, so that the wave propagates from 

right to left in this plot. The left-hand wall position is mapped to x = 0 in the local 

coordinate system of the WS model. Figure 8 shows that the wave reaches the far wall 

and sets up a standing wave because of the poor central absorption.  

The procedure of fitting the FW amplitude near the wall yields  |E0| = 44.5 V/cm 

for the case shown in Fig. 8, corresponding to an input power of 1 MW.  Note that this rf 
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E-field strength is about a factor of 2 larger than the value assumed in Figs. 4 – 7 in Sec. 

III. Thus, the AORSA calculation suggests that strong rf fields can reach the wall and far-

field sheaths may be an issue.  

We note that post-processing the full-wave code results with the wave scattering 

model would be unnecessary if we could implement the sheath BC directly into the wave 

propagation code itself.17 The motivation for the post-processing algorithm discussed in 

this section is that our attempt to implement the sheath BC (with 0≠∆ ) in AORSA-1D 

has shown it to be a difficult numerical problem. There are three complications: (1) 

modifying the rf wave propagation code to allow a physical boundary (wall) that is not a 

flux surface; (2) numerically resolving the SW E|| near the boundary (which varies 

rapidly in the radial direction, peex /c~L ω=δ ), and (3) iterating the rf field solution 

with the Child-Langmuir Law (or equivalently, using nonlinear rootfinding) to obtain the 

self-consistent sheath potential and associated rf fields near the boundary. These 

problems arise with all of the present full-wave codes, which were not built with edge 

physics issues in mind.  New algorithms allowing the incorporation of the sheath BC 

directly into full wave codes is a subject for future work. 

V. Summary and Discussion 

Assessing and controlling the deleterious effects of rf sheath formation is 

important for optimizing ICRF heating and current drive in tokamaks. In some cases, 

sheath effects can reduce the heating efficiency, cause local heating of surfaces (“hot 

spots”), and generate high-Z impurities which cool the plasma core. All of these issues 

are especially important for the next generation of experiments and for ITER28 because 

of the required high performance, the high power density and the need for long pulse 

operation. Thus, quantitative means of calculating sheath potentials in realistic magnetic 

geometries are needed.  
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The present paper provides a comprehensive treatment of the neglected problem 

of “far field sheaths,”16 which form on material boundaries not coincident with flux 

surfaces and located far from the antenna. The sheaths arise when rf fields are incident on 

the boundaries, either due to low single pass absorption in the core plasma or due to 

propagation nearly parallel to the magnetic field lines (e.g. around the SOL and into the 

divertor). Regarding the latter effect, it has been shown that the FW propagates nearly 

parallel to B for high harmonic FW heating on NSTX.29,30 Simulations show that the 

propagating waves move a significant distance around the torus in the SOL before 

entering the core plasma, and the experiments show that wave coupling to the core 

plasma is improved by moving the density at which the FW begins to propagate 

( ω∝ /kBn 2
||e ) to a point further from the wall.29,30 These results suggest the presence of 

a parasitic power loss mechanism near the wall in NSTX, consistent with the picture of 

far field sheaths described here. 

The two main contributions of this paper are:  

(1) the development of a new quantitative model for the far-field sheath potential; and  

(2) the discovery that sheath-plasma-wave resonances (well known in other contexts) 

play a role in enhancing the far-field sheath potential.  

The wave-scattering model for far field sheaths (Sec. II) makes use of a sheath BC 

proposed earlier17 and gives a complete solution for the self-consistent slow wave that is 

generated at the wall and for the resulting sheath potential. The latter is constrained to  

satisfy the Child-Langmuir Law, given a specified incident FW field and assuming a 

homogeneous plasma near the wall. In Sec. III it was shown that the sheath capacitance 

introduces nonlinearity and additional roots into the sheath problem, which lead to 

sheath-plasma-wave resonances18-20 for high-k wave components (Sec. III, Figs. 4-7).  

Possible mechanisms for generating high-k components include isotropization (Sec. III, 

Fig. 3) and linear mode coupling by a bumpy wall (Appendix A and Ref. 15), both of 

which are 2D or 3D effects. The new roots introduced by this resonance can have large 
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sheath potentials, above the level predicted by simple estimates. The effect of dissipation 

on resolving the SPW resonance, and thus limiting the sheath potential of the additional 

roots, is an interesting issue left for future work. In Sec. IV, we used the AORSA-1D 

code to demonstrate the procedure for calculating the inputs to the WS model, allowing 

post-processing of realistic rf cases. It was shown that the rf field at the far wall can be 

substantial for a typical DIII-D low-single-pass absorption case (Fig. 8). 

Finally, we discuss the effect of far-field sheaths on important edge interactions 

such as power dissipation, local heating and sputtering of impurities. In Eq. (26), it was 

shown that the sheath power dissipation Psh is linearly proportional to three factors: the 

local density at the wall, the surface area impacted by the rf waves, and the rectified 

sheath potential, erfsh T3e6.0~e +ΦΦ . Using our wave-scattering model, the 

complicated parametric dependence of the sheath potential, 

)B/B,n,n,n( xewzyshsh Φ=Φ , was illustrated in Figs. 5–7. These 1D calculations 

indicate that far-field sheath potentials in the range of a few hundred volts are possible if 

the rf fields near the wall contain high-k components and the SPW resonance comes into 

play.  However, this model cannot give us the spatial distribution of the waves around the 

tokamak, which requires at least a 2D calculation (see Fig. 3) and ultimately a 3D 

calculation for accurate results.  

The present work suggests that far-field-sheath power losses may be important in 

present tokamaks in low single pass damping situations, but the answer depends on 

quantities that are not well known, e.g. the density near the wall. For power dissipation 

estimates in the limit 1T/e erf >>Φ , Eq. (26) becomes23 

 )eV(eZ]/)eV(ZT)[cm(n100.1
)cm(A
)kW(P

rf
2/1

e
3

i
16

2
sh Φµ×= −−

⊥
   , (32) 

where all quantities are evaluated at the wall. Changing to MKS units and normalizing to 

a DIII-D-like case, we have 
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For example, consider DIII-D-like plasma parameters similar to those used in Sec. III, an 

rf sheath potential of 100 V (consistent with some SPW resonance enhancement), and 

roughly 50% wall coverage by the rf waves with an average angle factor of 1.0=⋅bs  

(giving A⊥ = 7 m2  for a DIII-D size machine). Assuming an ion density near the wall in 

the range 31817
i m1010n −−=  yields a sheath power loss in the range 0.1 – 1.0 MW, a 

10-100% effect on low power (1 MW) low-single pass current drive experiments. For 

ITER, the surface area is 10 times larger, but the density at the wall is unknown, so it is 

difficult to make a prediction. These examples illustrate the need for better (predictive) 

models of the SOL density profile including the effects of turbulence (blob transport), 

wall interactions, gas puffing for improved antenna coupling, etc. 

   Note that the power density (Psh/A⊥) is very small (~ 0.02 – 0.2 MW/m2) over the 

same range in density; unlike antenna sheaths, this mechanism is not likely to cause hot 

spots unless the local density rises to 319 m10~ − , which might be possible with rf-

induced outgassing. 

 Also interesting is the effect of far-field sheaths in enhancing first wall sputtering 

and increasing the plasma impurity content. Previous modeling10 of rf impurity 

production due to near-field sheaths showed the importance of the carbon background 

SOL impurity content for tokamaks with graphite limiters, and the importance of high-Z 

self-sputtering on surfaces with large sheath potentials. So we first consider low-Z 

impurity production, represented here by graphite (C) self-sputtering. We assume an 

ionization state of Z = 3 and Te = 10 eV at the wall, so that the Bohm (thermal) sheath 

potential is eV30T3e eB ==Φ . For a far-field sheath potential of eV100e rf =Φ , the rf 

sheath effect is significant. In this region of sputtering energy E, the sputtering yield31 

Y(C-C) ~ 0.4 is a factor 8.6 higher with the rf sheath contribution [ )(ZeE rfB Φ+Φ= ] 
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than without it ( BZeE Φ= ). For high-Z sputtering, represented here by Mo self-

sputtering, the effect is even stronger. For Z = 3, the Mo+3 self-sputtering yield Y(Mo-

Mo) ~ 0.7  including rf [ )(ZeE rfB Φ+Φ= ] is a factor 56 higher than the Bohm sheath 

case, and it approaches the self-sputtering avalanche condition (Y > 1).  For Z = 5, the 

Mo+5 self-sputtering yield crosses the avalanche threshold because of the rf far-field 

sheath contribution to the sputtering energy.  Thus, we conclude that far field sheaths can 

increase the impurity content of the plasma, as inferred in an earlier analysis of titanium 

impurity data on TFTR.32 

 For quantitative modeling, the present 1D treatment needs to be generalized to 2D 

to get the spatial distribution and spectral content of the rf fields at the wall and the 

spatial distribution of the sheath potential. One possible approach is to implement the rf 

sheath BC17 directly in a 2D full-wave code. 
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Appendix A  Linear mode coupling 

 In the main text, we allowed the tangential component of the wavenumber, kt,  

near the wall to be much larger than kt of the FW launched from the antenna, arguing that 

the local effective wavenumber in our 1D model is determined partly by the shape of the 
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boundary through the process of linear mode coupling. In this Appendix, we illustrate the 

physics of linear mode coupling induced by a bumpy wall for a simple scalar wave 

problem. 

 Consider a model problem where an rf wave incident from the right reflects off of 

a bumpy wall. We wish to study the coupling to sideband modes, induced by the wall 

periodicity.  Let the total wave solution be represented by the scalar Φtot  

 yikxik
n

n

yiKxiK
tot

nynxyx ee ++ φ+Φ=Φ ∑  (A1) 

where upper-case letters (Φ, Kx, Ky) represent the incoming wave, lower-case letters (φ, 

kx, ky) represent the (outgoing / evanescent) wave, and kn is defined below. The equation 

of the bumpy wall is taken to be 

 yksinxx ww=   , (A2) 

and we set Φtot= 0 on the wall to satisfy the perfectly conducting wall BC imposed by 

Maxwell’s equations. This constraint implies 

 yiKyksinxiKyikyksinxik
n

n

ywwxnywwnx ee ++ Φ−=φ∑    , (A3) 

from which it can be seen [see also Eq. (A6) below] that the needed kn’s are  

 wyny nkKk +=    . (A4) 

A dispersion relation, to be specified subsequently, gives knx = knx(kny) and also Kx = 

Kx(Ky).  We define   

 wnxn xku =    ,   0wx uxKU −==    , (A5) 

and adopt the convention that the un are chosen as the outgoing / evanescent branch (Re 

kx > 0 or Im kx > 0 ) for the reflected waves. Hence, the incoming wave must have Re Kx 

< 0 and U = −u0.  Next we employ the identity 
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 yimk
nm

m

yksiniu wwn e)u(Je ∑
∞

−∞=
=  (A6) 

to rewrite Eq. (A3) as the matrix equation 

 )U(J)u(J pnnnp
n

Φ−=φ−

∞

−∞=
∑   . (A7) 

 Before considering the complete solution, it is useful to note the analytical result 

obtained when all the un are small. In that case, there is coupling to nearest neighbor 

sidebands because of the bump periodicity, but the coupling is weak: 

 010 u/,1/ ±=Φφ−=Φφ ±     . (A8) 

If yw Kk >> ,  the n = 1 sidebands might be sufficient to obtain an SPW resonant 

enhancement in the problem considered in the main text, but one would want 1u0 ≈  to 

get a strong effect. This limit requires a full numerical solution of the matrix problem, 

which we now discuss. 

 Once a dispersion relation is specified to yield the un, Eq. (A7) provides the 

formal solution of the mode-coupling problem. However, in practice there is a 

complication. If the dispersion relation yields large complex knx for large n, then this 

solution is ill-posed because the Bessel functions become exponentially large. This issue 

is already apparent from Eq. (A3) for large complex knx and has its physical origin in the 

fact that waves exponentiate many times in x over a distance xw. The matrix problem is 

ill-posed when the matrix contains elements of a disparate size, such that their 

manipulation leads to finite-precision truncation errors (e.g. in subtractive cancellation). 

Solving by spatial collocation, or using singular value decomposition, will not remedy 

this issue.  

 Instead, we choose a model dispersion relation which limits the shortest scale 

length that can be present for large n evanescent modes. 
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α+

+−
=  (A9) 

where α is a dimensionless, nominally order unity, parameter that limits the size of knxxw 

to ±i α at large n.  In practice, we find that α = 0.2 is a good compromise.  Equation (A9) 

is also to be applied for the incoming wave, with n = 0 (choosing the appropriate sign of 

the square root).  A sample numerical solution in the strong coupling limit is shown in 

Fig. A1.  This solution shows that one can achieve strong coupling to sidebands 

( Φ≈φ±1 ) even when 1xK wx < .  In such cases, the values of the local indices of 

refraction )n,n( zy can be much larger than those of the launched fast wave. 

 Finally, we remark that a self-consistent 2D calculation of the far field sheath 

problem would contain all of the wave coupling physics studied in the present paper, 

unifying the three-wave treatment in the main body of the text with the mode coupling 

physics of this Appendix. 

Appendix B  Sheath Plasma Waves 

 In the main text, taking the limit yzx nnn >>>>  we showed that the denominator 

in  Eq. (7) for the rf electric field has the form 

 21221 )k,,(D egsggs ×⋅∆ω=×⋅   , (B1) 

where D2 is given by Eq. (31). Here, we show that )k,,(D2 ∆ω reduces in certain limits 

to the electrostatic sheath plasma wave (SPW) dispersion relation derived in Ref. 20. 

 For this comparison, we specialize to the case where the magnetic field is normal 

to the sheath, so that sb =  and ⊥= 2t2 kk . (This would apply to far-field sheaths on 

poloidal limiters, and is also relevant to near-field antenna sheaths.) The square of Eq. 

(31) yields the condition 2
||

22
||

2
2

2 εk)(1 ∆−≈⋅⋅∆−= kεs . Recall that the ES SW wave 

vector components obey the infinite homogeneous dispersion relation 

 0kk 2
||

2
|| =ε+ε ⊥⊥   . (B2) 
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 Combining the resonance condition and the constraint on the wavevector components, 

we obtain the dispersion relation for the resonant sheath-plasma modes, valid in the limit 

⊥⊥ ε>>>> 2
||

2 nn : 

 1εεk ||
22 =∆ ⊥⊥   . (B3) 

 After some manipulations, we can show that this resonance condition is identical 

to the electrostatic SPW dispersion relation derived in Ref. 20. In that paper, the magnetic 

field was assumed to connect two sheaths separated by a distance L, and B was assumed 

to be normal to the sheaths. It is convenient to define the two parameters 

 L/p,Lik |||| ϖε≡−≡ϖ   , (B4) 

where we now have x|| kk = . The two sheaths uncouple as ∞→ϖ , and the mode is 

evanescent in the x direction when ϖ  is real. In the limit 1>>ϖ , the SPW dispersion 

relation20 reduces to 1)L/(p || −=ε∆ϖ≡∆ . If we square this relation and use Eq. (B2), 

rewritten in the present notation as  2/1
|| )/(Lik εε−−=ϖ ⊥⊥ , we find that the scale length 

L cancels out and we obtain Eq. (B3). 
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Figure Captions 

Fig. 1  Geometry of the scattering problem. An incoming fast wave (FW) generates a 

reflected FW and slow wave (SW) in order to satisfy the BC at the wall. The 

wave-coupling occurs when the B field has a projection normal to the wall 

( 00 ≠α⇒≠⋅bs ) 

Fig. 2  Contour plot of the normalized SW amplitude, 02 E/E , to illustrate the Sheath 

Plasma Wave (SPW)  enhancement of the coupled waves. Shown are the contours 

02 E/E  = 5 (solid line) and 6 (dashed line) for two values of the sheath width, ∆ 

= 0.01 and 0.03 cm, (not self consistent). The other parameters are given in the 

text. The SPW is electromagnetic (EM) when ny >> nz and is electrostatic (ES) 

when nz >> ny. 

Fig. 3 (Color online) AORSA-2D calculation of fast wave propagation for DIII-D-like 

parameters given in the text. The ky spectrum of the binormal component βE of 

the wave electric field in the Stix frame is shown for (a) a high-single-pass and (b) 

a low-single-pass case. Also, the contours of βE  are plotted for (c) a high single 

pass and (d) a low single pass case. Here, EebEe ⋅×=⋅= αββ )ˆ(ˆE  where αê  is 

the part of the unit vector xê  perpendicular to B with x = R – R0. 

Fig. 4  Plot of the difference function )(D ∆ defined in the text vs the sheath width. The 

equation D = 0 for the self-consistent sheath potential has three roots 

Fig. 5 (Color online) The self-consistent sheath potential vs index of refraction ny 

including the effect of the sheath-plasma-wave (SPW) resonance for the 

parameters given in the text.  Note the presence of multiple roots due to the SPW 

resonance. The root structure is shown in color in the online version. 
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Fig. 6  (Color online) The self-consistent sheath potential vs the magnetic field mismatch 

parameter Bx/B showing the multiple root structure. The sheath plasma wave 

resonance gives larger sheath potentials as Bx/B increases. 

Fig. 7  (Color online) Fig. 7  (Color online) The self-consistent sheath potential vs density 

including the effect of the sheath-plasma-wave resonance for the parameters ny = 

30, nz = 6, Bx/B = 0.2. The curve is shown for E0 = 10 and 20 V/cm, where E0 is 

the amplitude of the incident fast wave at the sheath-plasma interface defined in 

Eq. (7). Again there are multiple roots because of the nonlinear SPW resonance. 

The three branches are labeled by different colors in the online version. 

Fig. 8  Plot of the fast wave electric field component Ey vs major radius R for the low 

single-pass case discussed in the text. Here, both Re[Ey] (solid curve) and Im[Ey] 

(dashed curve) are shown; the coordinate y is in the poloidal direction in the lab 

frame. The antenna is located on the far right, and the wall where the BC is 

applied is at the left end of the plot at R = 0.95 m, which corresponds to x = 0 in 

the WS model. Note the standing wave character of the field because of the poor 

central absorption. 

Fig. A1  Sample solution showing |φn|/Φ vs n for the parameters α = 0.2, k0 = 0.25, Ky = 

0.1, xw = 1, kw = 10.  The incoming wave at n = 0 is reflected and spread into 

many sidebands when the Bessel arguments are order unity. 
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Fig. 1  Geometry of the scattering problem. An incoming fast 
wave (FW) generates a reflected FW and slow wave (SW) in 
order to satisfy the BC at the wall. The wave-coupling occurs 
when the B field has a projection normal to the wall 
( 00 ≠α⇒≠⋅bs ) 
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Fig. 2  Contour plot of the normalized SW amplitude, 02 E/E , 
to illustrate the Sheath Plasma Wave (SPW)  enhancement of 
the coupled waves. Shown are the contours 02 E/E = 5 (solid 
line) and 6 (dashed line) for two values of the sheath width, ∆ = 
0.01 and 0.03 cm, (not self consistent). The other parameters 
are given in the text. The SPW is electromagnetic (EM) when ny 
>> nz and is electrostatic (ES) when nz >> ny.  
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Fig. 3 (Color online) AORSA-2D calculation of fast wave 
propagation for DIII-D-like parameters given in the text. The ky 
spectrum of the binormal component βE of the wave electric 
field in the Stix frame is shown for (a) a high-single-pass and (b) 
a low-single-pass case. Also, the contours of βE  are plotted for 
(c) a high single pass and (d) a low single pass case. Here, 

EebEe ⋅×=⋅= αββ )ˆ(ˆE  where αê  is the part of the unit 
vector xê  perpendicular to B with x = R – R0. 
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Fig. 4  Plot of the difference function )(D ∆  defined in the text vs the sheath 
width. The equation D = 0 for the self-consistent sheath potential has three roots. 
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Fig. 5  (Color online) The self-consistent sheath potential vs index of refraction ny 
including the effect of the sheath-plasma-wave (SPW) resonance for the 
parameters given in the text.  Note the presence of multiple roots due to the SPW 
resonance. The root structure is shown in color in the online version. 
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Fig. 6  (Color online) The self-consistent sheath potential vs the magnetic field 
mismatch parameter Bx/B showing the multiple root structure. The sheath 
plasma wave resonance gives larger sheath potentials as Bx/B increases. 
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Fig. 7  (Color online) The self-consistent sheath potential vs density including the 
effect of the sheath-plasma-wave resonance for the parameters ny = 30, nz = 6, 
Bx/B = 0.2. The curve is shown for E0 = 10 and 20 V/cm, where E0 is the 
amplitude of the incident fast wave at the sheath-plasma interface defined in Eq. 
(7). Again there are multiple roots because of the nonlinear SPW resonance. The 
three branches are labeled by different colors in the online version. 
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Fig. 8  Plot of the fast wave electric field component Ey vs major radius R for the 
low single-pass case discussed in the text. Here, both Re[Ey] (solid curve) and 
Im[Ey] (dashed curve) are shown; the coordinate y is in the poloidal direction in 
the lab frame. The antenna is located on the far right, and the wall where the BC 
is applied is at the left end of the plot at R = 0.95 m, which corresponds to x = 0 
in the WS model. Note the standing wave character of the field because of the 
poor central absorption.   
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Fig. A1  Sample solution showing |φn|/Φ vs n for the parameters 
α = 0.2, k0 = 0.25, Ky = 0.1, xw = 1, kw = 10.  The incoming wave 
at n = 0 is reflected and spread into many sidebands when the 
Bessel arguments are order unity. 
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