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Abstract.  The problem of far-field sheath formation is studied with a new quantitative 1D 
model.  These sheaths occur when unabsorbed fast waves (FW) are incident on a conducting 
surface not aligned with a flux surface. Use of a nonlinear sheath BC gives self-consistent 
solutions for the wave fields and sheath, and incorporates a sheath plasma wave (SPW) 
resonance  which enhances the sheath potential. The model is applied to edge fields computed by 
the AORSA-1D full-wave code for a typical D(H) minority heating scenario. This work 
indicates the conditions under which far-field sheaths can explain some of the “missing power” 
(low heating efficiency) and rf-specific impurity generation in ICRF experiments.  

Keywords:  ICRF, sheath BC, sheath plasma waves, far field sheaths, heating efficiency 
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INTRODUCTION 

It is generally acknowledged that rf sheath effects are important limiting factors in 
ICRF heating and current drive, especially in low-k|| phasing. A great deal of 
experimental and theoretical work has been devoted to studying sheath effects [1,2] 
but a quantitative method for calculating the rf sheath potential and its nonlinear 
consequences is still lacking. This paper is the first step in developing a quantitative 
description of “far-field” sheaths [3], which form on surfaces far from the antenna 
when the single pass absorption is low and the unabsorbed fast waves (FW) encounter 
material surfaces not coincident with flux surfaces. Important questions are: Do far-
field sheaths contribute significantly to the “missing power” (reduced core heating 
efficiency) in ICRF experiments? Do they contribute to the observed phasing 
dependence of the heating efficiency? The single pass damping (and isolation of the 
far wall from the FW fields) increases with k||, so one would expect the “missing 
power” due to far-field sheaths to decrease with k||  (as observed in many 
experiments). This line of thinking motivates the development of the model described 
here.  

WAVE SCATTERING MODEL 

Consider the problem of a propagating fast wave in 1D geometry encountering 
either (i) a conducting wall or (ii) a sheath, modeled as a thin, lossy vacuum region 
[4]. We assume that an incident FW travels in the negative x-direction and couples to 
additional rf waves upon encountering the boundary at x = 0. The boundary is not 
assumed to coincide with a magnetic flux surface, i.e.  

 0≠⋅bs   , (1) 
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where xê=s is the unit vector normal to the sheath (pointing into the plasma), and b = 
B/B is the unit vector along the B-field direction. Thus, the B field mismatch with the 
wall is proportional to B/Bx=⋅bs . We assume that the density n(x) is constant near 
the boundary, permitting an analytic treatment of the wave coupling.  

In general, the incident FW with amplitude E0 cannot satisfy the BC at the wall or 
sheath without coupling to a reflected FW E1 and a slow wave (SW) E2 at the 
boundary. Thus, the total rf electric field is given by 

 xxik
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where the je  (without carat superscripts) are the unit wave polarization vectors. The 
tangential component kt = (ky, kz) of the wavevector is specified and the kx 
components are obtained from the appropriate dispersion relations. The rf E field is 
subject to a sheath BC [4], treating the sheath as a thin vacuum layer,  

 )D( ntt ∆∇=E   , (3) 
which contains the metal wall BC as a special case ( 0→∆ ). Here, ∆ is the time-
averaged sheath width, and the term on the RHS is related to the sheath capacitance. 
Combining Eqs. (2) and (3) yields the solution 
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   ( ) jjjjj i keεseg ⋅⋅∆−=    . (5) 
where the fields, the Stix plasma dielector tensor jε , and the wave polarizations je  are 
all defined on the plasma side of the sheath-plasma interface. Note that even in the 
absence of the sheath term, satisfying the metal wall BC requires E1 and E2; the 
presence of the sheath term leads to an additional effect, called the “sheath plasma 
wave resonance” [5, 6], discussed below. 

For an assumed sheath width ∆, the sheath potential is obtained by integrating Ex 
across the sheath layer to obtain 

 ∑ ⋅⋅∆−≡Φ jjjrf E eεs   . (6) 
The self-consistent values of ∆Φ andrf are obtained by imposing the Child-Langmuir 
Law  

 ( ) ,T/e 4/3
eshD Φλ=∆  (7) 

as an additional constraint, where Brfsh Φ+Φ=Φ (Bohm sheath potential). Nonlinear 
rootfinding is used to find the value of rfΦ that satisfies Eqs. (6) and (7) for the given 
∆. All of the numerical results shown here are self-consistent in this sense. 

SHEATH PLASMA WAVES 

When the sheath width ∆ is large enough that the two terms on the RHS in Eq. (5) 
are comparable in gj, the denominator 21 ggs ×⋅  can become small in Eq. (4). This 
implies the existence of a resonance, which produces a large sheath potential for some 
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locus of points in the )n,n( zy=⊥n  parameter space. (The SPW resonance requires 
1~)( jjj keεs ⋅⋅∆ , which for typical parameters means |n⊥| >> 1, where the index of 

refraction is defined as n = kc/ω.) Physically, the “sheath-plasma-wave” (SPW) 
resonance occurs because the inductive plasma current into the sheath and the 
capacitive current across the sheath form an LC circuit, with the possibility of an LC 
resonance for some parameters [5]. These surface waves were studied and simulated in 
[6] in studying near-field sheaths on IBW antennas, and the present work suggests that 
they also occur in far-field sheaths arising from low-single-pass FW heating. 

The resonant enhancement of the self-consistent solutions for the SW field E2 and 
the sheath potential rfΦ  has been confirmed by a survey of parameter space. In the 
limit ny >> nz, 21 ggs ×⋅  can be small because 21 gg ×  can be orthogonal to s, 
although neither g1 or g2 is individually small, so in this limit the SPW involves a 
coupling of the FW and the SW and is therefore fundamentally electromagnetic. This 
limit can occur when a bumpy wall generates high ky components (larger than those 
launched by the antenna) by the process of linear mode coupling. In the limit 

yzx nnn >>>> , the SPW is an electrostatic slow wave satisfying ||x nn~n >>⊥ , and 
the plasma approaches resonance because the tangential component of g2 is small.   

 
 
FIGURE 1.  Sheath potential rfΦ  as a 
function of the plasma density ne just outside 
the sheath for ny = 30,  nz = 6 and Bx/B = 0.2. 
The existence of multiple roots is due to the 
physics of the sheath-plasma-wave (SPW) 
resonance, as discussed in the text. The 
hysterisis curve suggests an extreme sensitivity 
to the density at the wall. 

 

 
FIGURE 2. Sheath potential rfΦ  as a 
function of the magnetic field mismatch Bx/B. 
The upper two roots are associated with the 
SPW resonance. The parameters are ny = 20,  
nz = 10, ne = 2 × 1012 cm-3. 

 
 
 

The roots for rfΦ  are obtained by solving the nonlinear relation obtained from Eqs. 
(6) and (7). In Fig. 1, we plot rfΦ as a function of the density ne at the wall. The other 
parameters are Te = 10 eV, B = 30 kG, f = 60 Mhz, ny = 30, nz = 6, Bx/B = 0.2, and 
Ey0 = 100 V/cm. Note that: (1) there are 3 roots for a restricted range of density at the 
wall; (2) there is an abrupt change in the value of the highest root at a critical density 
nc (typical hysterisis pattern); (3) for n > nc the highest root has a large sheath 
potential ( 1/~T/e Brferf >>ΦΦΦ ) and would cause substantial power dissipation by 
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ions accelerated down the sheath potential and into the wall [7]. The sensitivity of rfΦ  
to the density suggests that the “missing power” lost through this mechanism would be 
sensitive to the conditioning of the machine and the recycling physics.   

APPLICATION AND DISCUSSION 

The wave scattering (WS) model was applied to a low-single-pass DIII-D scenario: 
D(H) minority ion heating with 2% H, f = 60 MHz, B = 32.5 kG (at HFS wall), ne = 2 
× 1012 cm-3, toroidal mode number = 13, ky = 3 m-1 (⇒ ny = 2.4 and nz = 6.3), and Prf 
= 1 MW. The AORSA-1D code [8] was used to calculate the unabsorbed FW Ey0 and 
wavevector kx0 at the far wall. For 1 MW of launched power, the FW amplitude was 
approximately 50 V/cm at the wall. The sheath BC was taken into account by using 
the wave scattering model to calculate the self-consistent values ∆ and rfΦ  for the 
specified incident FW amplitude. In the WS model, larger indices were used than in 
the wave propagation code, viz. ny = 20 and nz = 10, to account for linear mode 
coupling due to a bumpy wall (giving large values in the local k spectrum). The 
corresponding scale lengths are Ly = 25 cm and Lz = 50 cm, typical of a mismatch 
between the shape of the flux surface and that of a localized bump in the wall. 

In Fig. 2, we plot rfΦ as a function of the mismatch, Bx/B, to study the sensitivity 
to the magnetic geometry. Again there are multiple roots, and the higher roots are due 
to the SPW resonance. The sheath power losses to plasma-facing components in 
contact with rf fields increase by the factor Brf / ΦΦ . The SPW roots in Fig. 2 have 
large values of rfΦ and could give rise to localized regions of power dissipation and 
hot spots. Even the lowest root yields a significant sheath potential, rfΦ  ~ 10 eV ~ 

BΦ , and could contribute to edge power dissipation. 
A 2D treatment is needed to accurately assess the global sheath power dissipation.  

The present work shows that the SPW resonance can produce locally large far-field 
sheath potentials. Studying this physics quantitatively in 2D and 3D rf codes is one of 
the goals of the rf SciDAC project. 
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