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Abstract 
Saturation mechanisms for two-dimensional (2D) edge turbulence are studied in a 

Braginskii-type fluid model using the Scrape-Off-Layer Turbulence (SOLT) code. The 

simulations study the interaction of edge and scrape-off-layer (SOL) turbulence, blob 

generation, momentum transport and shear flow generation in 2D turbulence. It is shown 

that a key parameter is the zonal flow shear damping rate, which controls both the level 

of saturated turbulence and the rate of blob generation. The flow shear profile is produced 

by a combination of the turbulent Reynold’s stress inside the last closed surface and the 

sheath-induced flow in the SOL. The turbulent properties are studied as a function of 

zonal flow damping.  The role of other edge and SOL dissipation mechanisms are also 

discussed. 
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I. Introduction 

There has been a great deal of research on the mutual interaction between core 

turbulence and nonlinear structures (sheared zonal flow and radial streamers) in tokamaks 

and in other plasma confinement devices. For background and references, the reader is 

referred to the excellent review articles in Refs. [1-3]. Theory, simulations and 

experiment all point to an emerging paradigm which explains many aspects of global 

confinement in tokamaks. In the limit of small dissipation (low collisionality), turbulence 

generates strong zonal flows (ZF) which act back on the turbulence and saturate the 

turbulent radial transport at low levels.4 If the dissipation is strong enough, the flows are 

suppressed and radial streamers form, which produce rapid radial transport. In the context 

of core turbulence, the radial streamers produce bursty transport5,6 and may be associated 

with self-organized criticality (SOC) or avalanche phenomena.4 The connection of this 

transport to the edge and scrape-off-layer (SOL) plasmas has not been established yet. 

There has also been a rapidly growing body of related work on edge turbulence, 

including both experimental measurements7-19 and computer simulations.13,20-27 (A 

recent review of edge turbulence measurements has been given in Ref. 28.) The 

experiments and computer simulations show that some of the concepts developed to 

explain core turbulence also apply to the edge and SOL. Some of the key edge simulation 

results include turbulent transport by radial streamers,21,24,25 turbulent generation of 

sheared flow without external momentum input,20-27 regulation of turbulent transport by 

sheared flow,20-27 regimes of bursty transport,22,24 dependence of the turbulent 

saturation mechanism on various sources of dissipation,21-26 regulation of streamer 

break-up (and thus blob generation) by sheared flows,24 correlation of particle and 

momentum transport,26 and regimes of low and high transport.27 These features appear to 

be relatively robust, appearing in simulations with different dimensionality (2D or 3D), 

geometry (cylindrical or toroidal), instability drives, damping mechanisms, etc. 
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There are also differences between core and edge transport. The dominant linear 

instabilities are different in the core and edge. Also, edge turbulence is “stronger” in the 

sense that the fluctuations are order unity compared to the background. This gives rise to 

the phenomena of “blob” generation29,30 and convective transport in the SOL. (For more 

details, see the recent comprehensive reviews of blob theory31 and related experimental 

measurements.28) The blobs or streamers are generated at the location of the maximum 

linear growth rate as part of the turbulence saturation process. If the sheared zonal flows 

are not too strong, the blobs transport particles, heat and momentum, and thus interact in 

a complicated way with the flow profile. Another feature of edge turbulence is that there 

is no scale separation between the background equilibrium and the turbulent fluctuations. 

Finally, the turbulence spans two radial regions with different topologies (closed field 

lines inside the last closed surface (LCS), and open field lines outside the LCS in the 

SOL). The field lines in the SOL terminate in sheaths at material surfaces (such as 

divertor plates) and sheath effects are important. One of the themes of the present paper is 

that sheath-driven sheared flows can interact in a non-local way with the sheared flow 

produced by the turbulence.  

In this paper, we will discuss the interaction of edge turbulence, blob generation, 

momentum transport and sheared zonal flows in two-dimensional (2D) fluid simulations 

using a Braginskii-type model for the edge and SOL. The goal is to unify a number of the 

results discussed previously and generalize them to include the effects of edge and SOL 

dissipation. The simulations are done with the 2D “Scrape-Off-Layer Turbulence” 

(SOLT) code. The code includes the physics of drift wave and curvature-driven 

interchange modes, sheared zonal flows in a momentum-conserving treatment, flow 

damping (e.g. applicable to ion-neutral collisions), and sheath dissipation in the SOL.  

Since the code is global (not a flux-tube model) there is no scale separation between the 

equilibrium gradients and the turbulent scales. The profiles are free to evolve nonlinearly 

with 1~n/n!  (and similarly for the other fields) so that the physics of blob generation 
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and transport can be studied. The inclusion of passive (blob) transport of perpendicular 

momentum26 and sheath dissipation of momentum are two of the unique features of this 

code. 

Some important results of the present work are: 

(1) The damping rate of the sheared flow is the control parameter determining the 

mechanism of edge turbulence saturation. The magnitude of the turbulent flux, the 

degree of intermittency, and the spatial scales all depend on the control parameter. 

(2) There are three physical regimes of nonlinear saturation depending on the strength of 

the zonal flow damping, including a bursty regime in the case of weak damping. 

(3) Sheared flow also plays an important role in blob creation. A transition from radial 

streamers to blobs occurs as the flow damping parameter is decreased, allowing flow 

shear to tear apart the streamers. The simulation results confirm a previously 

postulated streamer breakup condition24 and relate this condition to the saturation 

regime. 

(4) The sheared flow at the LCS is driven by two sources at different radial locations: the 

turbulent Reynold’s stress (inside the LCS) and the sheath-induced flow (outside the 

LCS).  Their competition gives reduced velocity shear in the main interaction region 

and can lead to bursty transport when yv!  is small in this layer.   

II. Simulation Model 

The 2D SOLT code simulates turbulence driven by magnetic curvature and drift 

wave effects in a 2D plane normal to the magnetic field B. The simulation domain is the 

outer midplane of the tokamak, encompassing both the edge and SOL regions. The 

present version of the code is similar to the one used in Ref. 26, generalized to a three-

field ( ee T,n,! ) model. A previous version of the code32,33 included the coupling along 

the magnetic field B to another 2D plane representing the X-point region, but this effect 

is not retained here.  The present model includes the effects of wave phase directionality 
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(drift-waves), curvature drive, radial transport (turbulent Reynolds stress and blobs), 

sheared flows, and dissipation (sheath loss and friction).  Note that the drift-wave physics 

plays a role in producing a sheared flow layer in this model because it gives the 

turbulence a directionality. A zonally-averaged momentum conservation law is used to 

advance the zonal flows. The physics of the model is described in more detail in an 

earlier paper26 and a derivation of the equations is given in Appendix A of that paper. 

The code uses local coordinates (x, y, z) for the radial, binormal (approximately poloidal) 

and parallel directions, where srrrx !="#  is the radial distance from the nominal last 

closed surface, defined at the outer mid-plane with 0r >!  in the SOL. In this paper, we 

will use x and r!  interchangeably. 

The SOLT code evolves dimensionless equations for the electron density n, 

electron temperature T, vorticity !"
~2  (yielding the fluctuating potential !~ ), and the 

zonally-averaged poloidal momentum yy nvp ! , which have been obtained by 

integrating the fundamental conservation relations along the magnetic field and using 

model closures for the parallel physics.26  The total density and temperature satisfy 

 { } n
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and the zonally-averaged poloidal momentum yy nvp !  satisfies 
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where !"+##= vt/dt/d  and !"#= bv  describes convection in the constant 

background magnetic field,  B = Bb. We have set Ti = 0 in this model. Each field quantity 

Q is expressed as Q~QQ += , where !!"" dy/QdyQQ  is the zonally-averaged piece 

and QQQ~ !=  is the fluctuating piece. For convenience in notating the nonlinear terms, 

we have also defined a bracket notation for the zonal average, !!= dy/ABdyAB , and 

for the fluctuating part, { } ABABAB != . Finally, for later use we define the time 

average !!= dt/QdtQ t .  An ensemble average is obtained by averaging over both y 

and t, 
t

Q .  

In Eqs. (1)-(4) and throughout the remainder of the paper we employ 

dimensionless (Bohm) units  

 TT/T,nn/n,T/e,/,S/S,tt refrefrefs !!"!"!#!$!$ xx  (5) 

where Ω = ZeB/mic, ρs = cs/Ω with cs2 = Tref/mi, and nref and Tref are reference values of 

the density and electron temperature defined subsequently. The dimensionless electron 

adiabaticity parameter dw! , sheath conductivity sh! and curvature β are defined by  
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="   ,   

R
2 s!="  . (6) 

where 0ei!  is a typical value of the electron-ion collision frequency, and in Eq. (6) all 

quantities are evaluated at Tref. 

 We now discuss the physical interpretation of the various terms. The terms 

involving dw!  in Eqs. (1) and (3) model the electron response (i.e. the parallel current) 

on closed surfaces; taking αdw large enforces adiabatic electrons. Note that the zonal 

average of these terms vanishes. The quantity L||e is a typical parallel scale length for the 

turbulence in the edge plasma, usually taken as the connection length L|| ~ qR, where q is 
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the safety factor and R the major radius of the torus. We take αdw = αdw(x) to decay 

rapidly in the SOL, reflecting the strong increase in collisionality.  

 In the SOL, the electron response is modeled by the αsh terms, where αsh(x) 

vanishes in the core and L||s is the parallel connection length in the SOL to the sheaths. 

The αsh terms in Eqs. (1) to (4) represent the sheath end-loss for particles, energy, charge 

and poloidal momentum. We use the full exponential form of the sheath terms, valid for 

arbitrary T/! . The Bohm potential used in this term is given by T3lnTB !"=# , 

where 2/1
ei )m2/m( !=" . In Eq. (2), sE denotes the sheath energy transmission 

coefficient. The integrated sheath term26,34 in Eq. (4) describes the J×B force from the 

radial current in the current loop implied by 0=!" J , because there is parallel current 

flow into the sheaths, i.e. ||||
x

0x JxdJ !"#= $ .  As emphasized in our earlier work,26 the 

sheath dissipation term is necessary to allow a spontaneous generation of perpendicular 

momentum in the core. 

 The field-line-integrated curvature drive is modeled by the β term. The model 

thus incorporates elements of the classical drift-wave model of Wakatani-Hasegawa35 

(αdw) in the edge plasma and the blob model equations29,30 (αsh and β) describing 

convective transport in the SOL plasma. Note that Eq. (4) preserves momentum 

conservation for the zonally averaged flows, i.e. it does not use the Boussinesq 

approximation that is used in Eq. (1).  This is an important and unique feature of the 

model. 

 The dissipation terms involve the following dimensionless coefficients: diffusion 

D, hyperviscosity µ , viscosity µ  and flow damping 
yp! .  In the present paper, the first 

three dissipation terms will be included primarily for numerical purposes but the last 

coefficient will be regarded as physical.  For example, for cool plasmas and high neutral 

background densities (such as in small scale experiments or near the tokamak divertor 

plates) 
yp! is due to ion-neutral collisions.  We will show that there is an interesting 

dependence of the turbulence on the flow damping parameter.   
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 The particle and heat source terms ( Tn S,S ) are taken as: 

 ( )n)x(n)x()x(S 0nn !"=   ,      ( )T)x(T)x()x(S 0TT !"=   , (7) 

where )x(n!  and )x(T!  are tanh functions which vanish in the SOL, thereby defining 

the last closed surface (LCS). In the limit of large n! and T! , the profiles are clamped in 

the edge, i.e. )x(nn 0!  and )x(TT 0! , where )x(n0 and )x(T0 are reference profiles 

for the electron density and temperature. The absence of a momentum source term 

nySv!  in Eq. (4) implies that nS  replaces lost particles in Eq. (1) but not momentum in 

Eq. (4), i.e. the source creates plasma at zero velocity rather than at the local ambient 

velocity.  The fact that particles lost at finite vy in the SOL are replaced by particles with 

vy = 0 in the edge implies a loss of vy  which is mediated by the passive transport of 

momentum by blobs, another important feature of the present model.  

Thus, the simulation domain contains two radial regions defined by the source and 

sink profiles, as shown in Fig. 1: (i) the edge region inside the separatrix (Δr < 0) is 

characterized by non-zero particle and energy source profiles and by drift-wave physics 

where )x(dw!  is finite; (ii) the far SOL (Δr > 5 cm) is defined by a finite sheath 

conductivity profile )x(sh! . There is an intermediate region (near SOL) where 

both dw! and sh!  are small; this simulates the region near the separatrix, where the 

parallel connection length is long ( !"#$ sh|| /1L ). The left boundary of the simulation 

represents the matching of the edge to the core plasma, and the right boundary represents 

the location of the wall bounding the SOL plasma. 

The model equations are solved subject to the following set of boundary 

conditions (BC): (1) poloidal (i.e. y) periodicity is assumed; (2) fluctuations are assumed 

to vanish ( 0~T~n~ =!== ) on the radial (left and right) boundaries; (3) ! is held constant 

and py is freely evolved on the core side (left) boundary; (4) the following conditions are 

imposed at the wall (right) boundary:  wallnn = , wallTT = , and py = 0.  
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 Our computational model is similar to the one used by Bisai et al.24 with two 

additional features. The electron temperature equation is evolved here, and a separate 

momentum conserving equation is used here to accurately describe the evolution of the y-

momentum. As discussed subsequently, this equation treats the passive (blob) momentum 

convection term,26 which is not usually included in edge turbulence simulations. 

III. Simulation Results 

In this section, we describe results from 2D turbulence simulations carried out 

using the model described in Sec. II.. The purpose of these simulations was to investigate 

the physical mechanisms responsible for nonlinear saturation of the turbulence. The study 

presented here focuses on the scaling of the turbulence with the flow damping parameter 

yp!  in Eq. (4). The results show that that the flow damping rate is a key control 

parameter for the turbulence25 and we find that there are regimes of intermittency near 

marginality, depending on the core-side potential, )0(! . A set of “rules” which explain 

the simulation results will be discussed in Sec. IV. 

A. Moderate instability drive, full range of damping 

We will use the following parameters as a base case: deuterium plasma, B = 

2500 G, R = 150 cm, ρs = 0.62 cm, Lx = Ly = 100 ρs, nref = 1013 cm-3, nwall = 2x1011 cm-3, 

Tref = 117 eV, Twall = 2.8 eV, cs = 75 km/s; dimensionless: αDW = 0.26, αsh = 2.4×10-2, β 

= 8.3×10-3,  µ = 0.1,  µbar = 0.01, D = 0.01, sE = 6.  The dimensionless source rates νn 

and νT, Eq. (7), are similar in shape to their respective reference profiles, )x(n0 and 

)x(T0 , shown in Fig. 1, and each rate has a maximum value (x → −∞) of 0.01.  For this 

base case, the value of β corresponds to moderate instability drive, and the flow damping 

parameter py!  is varied from 0 to ∞. Choosing much smaller values of β does not lead to 

sustainable turbulence, and the case of larger β is discussed subsequently. The base case 

parameters and profiles used here are similar to those of a low power, low-confinement-

mode discharge in the National Spherical Torus Experiment (NSTX).36 
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First, we summarize the results for the limiting cases. In the limit 0py !" , the 

zonal flow is strong, the turbulence saturates at a relatively low level and produces 

convecting objects that look blob-like. The time-history of the turbulent flux shows 

intermittent bursts, and the turbulence saturates as a result of the stabilizing effect of the 

sheared flows. In the limit !"#py , the zonal flow is absent, the turbulence saturates at 

a relatively high level, and it produces convecting objects that look more like radial 

streamers than blobs. This suggests that the sheared flows are necessary for the blob 

creation process,24 as discussed subsequently. The time-history of the turbulent flux 

shows quasi-periodic oscillations, and it appears to saturate by wave-breaking, i.e. the 

condition 1~n/n trms >!"!<  is satisfied near the surface of maximum growth rate. 

Physically, this condition is satisfied because the large turbulent flux causes density 

plateau formation outside the LCS, reducing n! . The time history of the particle flux, 

Γ(t), is shown for the two limiting cases in Fig. 2.  The quasi-periodic behavior observed 

in the absence of shear flow ( !=py" ) is due to the beating of drift waves resonant with 

the enduring phalanx of radial streamers created by the interchange instability.  If the drift 

waves are eliminated from this simulation, the system relaxes to a single streamer, no 

quasi-periodic oscillations are observed, and the radial flux doubles; drift waves inhibit 

this cascade. The details of this state depend on the size of the simulation, but the rapid 

transport by radial streamers is universal. 

To illustrate the transition between the limiting cases, we have computed the 

dependence of the zonal flow shear and the turbulent radial particle flux as a function of 

the flow damping parameter py! .  We plot the dependence of  flow-shear and the radial 

particle flux vs py!  in Fig. 3, where dx/vd y!"  is the zonally-averaged flow shear in 

the binormal (approximately poloidal) direction, and xnv=!  is the zonally-averaged 

particle flux. (See the caption for details of this measurement.) The shear is computed at 

the LCS, Δr = 0; the particle flux is measured at the “sheath position”, Δr = 4.42 cm (see 

Fig. 1).  Figure 3 shows that there is a smooth but rapid transition from the sheared-flow 

to the wave-breaking regime as py!  increases. This transition encompasses two regimes 
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with different turbulence saturation physics.  The turbulent particle flux across the LCS 

(not shown) is also much lower for small flow damping than in the opposite limit. Thus, 

in terms of SOL transport, the large- py!  limit is a “low-confinement” regime whereas the 

small- py!  limit gives a “high-confinement” regime. An analogous transition has been 

seen in other simulations.27 

In the weak-damping regime (small py! ), the turbulence is saturated by the 

sheared flows. To demonstrate this, we carried out a numerical experiment, illustrated in 

Fig. 4.  The simulation was interrupted at a certain instant of time and the self-consistent 

shear profile )r(!"  was calculated; this is the solid curve shown in Fig. 4(a).  A 

prescribed, time-dependent shear profile was constructed by adding a sinusoidal 

perturbation, tvy !" sin~ , localized to the birth zone by a Gaussian radial envelope, to 

the time-independent reference profile, which generates the dashed curves in Fig. 4(a) at 

times of maximum departure from the reference profile. The Gaussian perturbation is 

centered in the region -5 cm < Δr < 0 cm, where the gradients and linear growth rates of 

the underlying instabilities are maximized, and the sheared flows are most effective in 

moderating the turbulence. This is also the blob birth zone.  The simulation was re-started 

with the synthetic flow profile.  The plus and minus symbols in Fig. 4(b) indicate the 

times when the corresponding profiles of Fig. 4(a) occur in the simulation.  The results in 

Fig. 4(b) show that the level of turbulence is enhanced when the magnitude of the local 

velocity shear |ξ| is below an apparent threshold, and the turbulence level is reduced 

dramatically when the magnitude of the velocity shear exceeds that threshold. These 

results demonstrate that turbulence saturation occurs by the stabilizing effects of sheared 

zonal flows in the weak damping limit ( 0py !" ).   

In the strong-damping regime ( !"#py ), the zonal flows are suppressed, and the 

turbulence saturates by means of density profile modification, viz. the formation of a 

pressure plateau near the LCS. The required profile modification is given by the “wave-

breaking” condition 1~n/n trms >!"!< , evaluated near the surface of maximum 
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growth rate.  Without the stabilizing effect of sheared zonal flows, the turbulence grows 

to high levels, producing a large increase in the turbulent radial particle flux at the LCS 

and a plateau in the density and temperature profiles (see Fig. 5) as py!  increases. Figure 

5 shows that only a small amount of damping is needed to produce a significant density 

plateau in the near SOL. In this limit, the nonlinear evolution of the density profile 

saturates the turbulence by reducing the instability drive. Similar behavior was found in 

the “low confinement” regime described in Ref. 27. 

B. Marginality  (bursty regime) 

In the previous section, two turbulence regimes were discussed, one regulated by 

sheared zonal flows (at small
yp! ) and one regulated by plateau formation (at large py! ). 

Both regimes were studied in simulations that were sufficiently above threshold for 

strong turbulence that intervals of relative quiet between turbulent bursts were seldom 

observed.  But when such bursts did occur (as in the intermittent, low-νpy cases described 

above) the quiet intervals were not so long as the bursts themselves. In the case described 

below, and in many other turbulence models, as a threshold is approached from the 

turbulence side, the quiescent periods grow longer and the bursts grow more intense. 

The model has several parameters that control the intensity of the turbulence and 

the nature of  the intermittency. For example, the curvature drive strength (β) and  

dissipation rates of fluctuations (αsh, D, µ, νn, νT) can be competed to fine-tune the 

quality of the turbulence near threshold.  Here, however, we focus on the increased 

intermittency that  results when the core-side boundary potential, )0(! , is raised relative 

to its limiting value at the wall boundary, )L( x! . If the difference between these two 

boundary values is sufficiently large, the system is stabilized by the strong, ambient 

sheared flow associated with the radial electric field. Though the sheath absorption 

profile, αsh(x), plays an important role in this stabilization, as it determines the shape of 
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the sheared flow profile in the near-SOL and birth zone, we defer a more thorough study 

of that role to a future publication and keep the sheath profile of Sec. III A. 

We plot the time history of the zonally-averaged particle flux )t(!  at the entrance 

to the sheath ( cmr 4.4=! ) in Fig. 6 for two values of the core-side potential, )0(! , and 

νpy = 0.  We see the appearance of quiescent intervals between large bursts of particle 

flux for the case with the larger boundary potential but note that the time-averaged flux is 

nearly the same in each case and that the initial burst for the lower boundary potential is 

about as strong as the isolated bursts for the higher potential.  In the latter case the system 

is reset more nearly to the initial condition following a burst.  

A survey of the effect of flow damping for the higher- )0(! case yields a particle 

flux curve similar to that in Fig. 3 but with smaller fluxes for non-zero νpy because the 

boundary conditions for this case impose a stronger overall shear on the velocity profile. 

To explore the origin of the bursts, in Fig. 7 we plot a 500 µs time slice of the 

)0(!  = 10 simulation, showing the time history of the particle flux xnv=! , the 

velocity shear dx/vd y=! , and the zonally-averaged pressure gradient  

dx/)Tn(ddx/dp = .  In contrast to Fig. 6, the values plotted in Fig. 7 are computed 

inside the LCS at Δr = -2 cm.  First, we see that dp/dx and Γ are both “bursty” with a 

burst time scale of about s10 µ (small bumps) over a burst interval of 100 µs.  Second, we 

observe that the shear !  is negative during the quiet interludes, but changes sign during 

the burst, and thus there are several times at which 0=! . In fact, the bursts occur close to 

the times when the velocity shear passes through zero.  Similar behavior is observed in 

the artificial model problem described above (See Fig. 4.), but here the shear flow 

evolves self-consistently.  The bursts of particles reduce the pressure gradient in the birth 

zone and outside the LCS in the near-SOL, forming a density plateau. 

The velocity shear profile is plotted in Fig. 8 at times preceding and including a 

burst. There are two classes of zero-shear points observed in the simulations. Those 

which are perturbed but not destroyed by the bursts and those which come and go with, 
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and are directly responsible for, the bursts.  The latter lie within the birth zone (-4 cm < 

Δr < 0 cm in Fig. 8).  The former lie outside the birth zone and are found, approximately, 

by solving the momentum equation (4) in the absence of turbulence (zero momentum 

flux) as a boundary- and as an initial- value problem, e.g., following a burst. This 

quiescent profile may evolve so as to extinguish the turbulence unless there is sufficient 

residual Reynolds flux to maintain the negative shear flow layer in the birth zone between 

bursts.  

The zero-shear points associated with bursts are created locally by the growing 

unstable modes in the birth zone: a radially-localized perturbation of the zonal flow will 

introduce such points if its amplitude is sufficiently large. Since the instability is 

moderated by the flow shear, the rate at which the amplitude grows increases with the 

amplitude, resulting in a burst. This is a self-consistent, nonlinear burst, unlike the 

manufactured, linear surges of Fig. 4. 

C. Role of blobs 

Next, we examine the physics of blob generation in our simulation. One 

postulated mechanism of blob creation is that of radial streamer break-up by sheared 

flows. The following condition for streamer break-up was proposed in Ref. 24: 

 xs !<!    (8) 

where yys v/a~ !"  is the timescale for shearing the radial streamer, 

xyxyy ava)x/v(~v !"##$  is the maximum velocity shear,  ax and ay are the radial and 

poloidal dimensions of the streamer structure, and a prime denotes a radial derivative. 

The radial convection time is given by xxx v/a~! . Combining these results gives the 

following heuristic condition for streamer break-up24  

 y
2
x

x

y aa
v
v

>
!

   . (9) 
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Taking the simple limit of symmetric blobs, ax ~ ay ≡ ab, Eq. (9) says that blobs form 

when xyb vva >! .  

Here we extend this result by making a few additional self-consistent estimates.  

First, we use the blob “correspondence principle”37 (also sometimes referred to as the 

blob dispersion relation), which states that the there is a correspondence between the 

linear instability parameters )Lk,k,( n||,!"  and nonlinear blob parameters )L,a,v( ||bx  

given by 

 
||

||bn
bb

x
L
1k,aL,

a
1k,

a
v

!!!!" #   .  (10) 

(A simulation test of this principle is illustrated in Fig. 2 of Ref. 32.)  Assuming 

symmetric blobs and using the first rule, bx av != , the condition for streamer break-up 

reduces to 

 !>"yv  (11) 

But this is precisely the condition for the shear-flow stabilization regime to win out over 

the plateau (“wave-breaking”) regime, and as we will show, the equality !" ~vy  

corresponds to the “knee” of the Γ(νpy) curve shown in Fig. 3.  Note that this analysis 

implies that streamers would persist in the strong-damping regime 

( 0vypy
!"#$!% ), as observed in our simulations. 

 In summary, our simulations are consistent with the idea that radial streamers are 

broken up by strong sheared flows, and this process emits blobs which propagate across 

the SOL. The condition for blob formation is identical to the condition that the turbulence 

saturation be provided by the sheared zonal flows. Since radial streamers provide more 

continuous radial transport than do intermittent blobs, one would expect the turbulent 

particle flux !  to be larger in the weak sheared-flow regime, which is consistent with the 

behavior observed in Fig. 3.  
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D. Role of dissipation 

Another important result from the SOLT simulations is the effect of dissipation in 

the SOL on the turbulence level inside the LCS. There is a non-local coupling of edge 

plasma and SOL which comes about from the first two terms on the rhs of the poloidal 

momentum equation, Eq. (4).  

The first term describes dissipation in the sheaths and tends to force the 

electrostatic potential to its Bohm value in the SOL. This loss term is a sink for the 

momentum transported across the LCS.26 (There are also corresponding sheath loss terms 

in the equations for n, T, and !~ .) Recent comparisons of SOLT code simulations with 

NSTX turbulence data showed that the agreement was sensitive to the details of the 

sheath term, implying that the sheath dissipation played an important role in regulating 

the turbulence.38  

The second term describes diffusive momentum transport, e.g. by neoclassical or 

classical effects. This term causes turbulence-induced sheared flows to diffuse from the 

edge into the core, 26 and also allows sheath-induced sheared flows in the SOL to diffuse 

back into the edge, where it acts back on the turbulence. If µ  is large enough, the 

turbulence is completely stabilized in our simulations, leading to a quiescent state. The 

role of this term in regulating turbulence was studied previously.21 

The overall picture that emerges is that the velocity shear profile, )x(vy! , is a 

balance between the effects of the turbulence (Reynolds stress) induced flow in the edge 

plasma and the sheath-induced flow in the SOL. These two sources are coupled by the 

diffusion term. 

There is also a strong dependence of the turbulence on the shear flow damping 

[third term on the rhs of Eq. (4)], as illustrated in Fig. 3. A detailed discussion of this 

effect is given in the next section. 
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IV. Theory of turbulence saturation regimes 

In this section, we investigate the parameter regimes uncovered by the simulations 

described in Sec. III. We begin by examining the poloidal momentum equation, 

reproduced here for convenience: 

 ( ) ypy

L

x

T
shyx

y pv
x

enTdxvnv
xt

p
y

x

B !µ" #
$

$
+##=

$

$
+

$

$
%

&#&

2

2
)(2/1 1    . (12) 

The first term on the rhs is a sheath damping term that drives the potential towards 

its Bohm value and thus provides a sheath-source for velocity shear in the SOL; the 

second ( µ ) term serves to diffuse the velocity shear (e.g. from the SOL into the edge 

plasma), and the third term damps the poloidal (zonal) flows. The sheath and diffusion 

terms introduce non-locality into the momentum transport model. To a very good 

approximation, the second term on the lhs can be expressed using quasilinear theory as 

 xyyxyx nvvvvnvnv +=  (13) 

where QQ !  for any quantity Q.  Here, we consider the steady state equation, drop the 

sheath and diffusion terms, and combine Eqs. (12) and (13) to obtain 

 ypxyyx pnvv
x

vvn
x y

!"=
#

#
+

#

#    . (14) 

The first term on the lhs is the Reynolds stress term, which drives sheared flows4 and the 

second term describes passive radial convection of the poloidal momentum26 outwards 

from the edge to the SOL. 

 Depending on which terms balance in Eq. (14), there are three parameter regimes 

for turbulent saturation: 

 (a) For large yp! , satisfying ypxyx pL/vvn y!<< ,  Eq. (14) reduces to 

0pypy =! , and the zonal flows are strongly damped ( 0vy ! ). In this case, the 

turbulence saturation occurs by the mechanism of “plateau formation”, viz. the strong 
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turbulent transport modifies the density and temperature profiles, reducing the gradients 

until the wave-breaking condition is satisfied, as discussed subsequently.  

 (b) For intermediate values of yp! , the passive transport term can be neglected 

when ypxxy pL/nvv y!< , and the Reynolds stress is balanced by the damping term. 

Thus, Eq. (14) reduces to 

 ypyx pvvn
x y!"=
#

#    . (15)    

Here, the turbulence saturation occurs because of the stabilizing effect of the sheared 

zonal flows.  Parameter regimes (a) and (b) correspond to the small and large yp! limits 

discussed in Sec. III A, which were illustrated in Figs. 2 and 3. 

 (c)  For 0yp !" , i.e. when xxyyp L/nvvpy <<! , the Reynolds stress is 

balanced in Eq. (14) by the passive (blob) momentum transport term, 

 0nvv
x

vvn
x xyyx =

!

!
+

!

!    . (16) 

Here, the sheared flows produced by the Reynold’s stress in the edge plasma are 

transported across the LCS by the passive convection term. This is the bursty regime 

discussed in Sec. III B. To see this heuristically, we solve an approximate version of Eq. 

(16) (keeping only the equilibrium gradient terms) for the particle flux: 

 
n

v

y

yx

y

yx
x L

L
v

vvn

v

vvn
nv =

!

!
="#    . (17) 

This heuristic argument suggests that the particle flux becomes large as 0vy !" .  In the 

simulations, a plateau develops in the flow profile as the instability evolves and “zero-

shear” points ( 0vy !" ) are created in the birth zone (see Fig. 8), causing the bursts of 

flux, as shown in Fig. 7. 

 Having briefly surveyed the physics of the three turbulence saturation regimes, we 

now give a more quantitative treatment of the various saturation mechanisms. Here, we 
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assume that the turbulent cross-phase gives maximum transport, i.e. |v~||n~|~v~n~ xx >< , 

which is true in the present simulations that are dominated by the curvature-driven 

interchange mode. 

 In the limit !"# yp , we use the wave-breaking condition in the form 

nn~k xy != , where n  is the background profile in the linear phase (before there is any 

turbulent profile modification). The continuity equation relates the density and potential 

fluctuations, implying n~kn~ xy !"=# . Substituting these relations into the definition of 

particle flux, !>=<"
~n~k~v~n~ yx , we obtain the following estimate of the saturated 

particle flux in the strong damping limit,  

 2
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Thus, the turbulent diffusion coefficient is just the mixing length result, 2
yk/D != .  If 

the turbulence is driven by the curvature-driven interchange mode without significant 

damping, we can estimate the dimensionless growth rate as 2/1
n )L2/(!=" , where 

cs R/2!=" and Rc is the radius of curvature. For the most highly damped case in Fig. 3,  

we find that the growth rate in the simulation is significantly lower than this estimate. 

When the numerically-obtained growth rate is used, the wave-breaking estimate for sat!  

agrees with the computed turbulent flux to within a factor of 3: Eq. (18) gives 
1217

sat scm102.3 !!
"=# in dimensional units whereas the particle flux computed in the 

simulation is 1217106.9 !!
"=# scmsat .  

 In the limit of small but finite yp!  (i.e. the intermediate damping case), the 

condition for sheared flow to stabilize the mode is taken as vyy L/v~v~ !" . Balancing 

the Reynolds stress term in the momentum equation with the damping term [Eq. (15)] 

gives the scaling of the zonal flow,  yp
23

y
2

yxy /)|~|k()k/k(v !"= . Combining this result 

with the shear flow stabilization condition provides an estimate for the saturated 

fluctuation level, 2
xy

3
yyp

2 )k/k)(k/L(|~| y!"=# . Finally, using the continuity equation, 
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n~kn~ xy !"=# , and the definition of radial particle flux, we obtain an estimate of the 

saturated particle flux for the intermediate- yp! case:  
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Using reasonable estimates of the simulation parameters for the case 005.0yp =!  (the 

“knee” of the curve in Fig. 3, we find good agreement with the computed turbulent 

particle flux, 1217
sat scm107.6 !!

"=#  in dimensional units. 

 These estimates for sat!  also agree qualitatively with the shape of the curve 

shown in Fig. 3.  For small zonal-flow damping, sat!  is proportional to yp!  and 

independent of growth rate ! , whereas for large damping sat!  is independent of yp!  and 

proportional to ! . Equating the two expressions gives an estimate of the value of yp!  at 

the knee of the curve which marks the transition between the intermediate and large yp!  

regimes: 
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 The bursty regime, obtained in the absence of damping, requires a more 

complicated dynamic model and is outside the scope of the present paper. 

 Finally, we conclude this section with a set of “rules” that appear to describe the 

dynamical behavior of our simulations of edge turbulence in the non-bursty weak-

damping regime: 

(1) the Reynolds stress term yxvvn  acts to increase the magnitude of the velocity 

shear, yv!  until it balances the mode growth rate γ. This can be understood from 

the classic picture of tilted ellipses.1,2 It is also related to the usual modulational 

instability picture of sheared flow generation.1-4 
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(2) the Reynolds-stress term tries to drive yv  > 0 inside the LCS, i.e. in the electron 

(diamagnetic drift) direction 

(3) the sheath term determines the sign of the flow in the SOL, i.e. 0vy < , which is 

the ion (diamagnetic drift) direction. 
 

These three elements combine to determine the velocity shear profile in the simulations.   

V. Summary and Discussion 

In this paper, we have investigated the interaction of edge turbulence, blob 

generation, momentum transport and sheared zonal flows in 2D fluid simulations using a 

Braginskii-type model for the edge and SOL. A control parameter for these studies was 

the momentum damping rate 
yp! . We have shown that the turbulent flux increases 

rapidly as 
yp!  increases and the zonal flows are damped (see Fig. 3). A more detailed 

analysis shows that the saturation of edge turbulence has three parameter regimes which 

correspond to balancing different pairs of terms in the zonally-averaged momentum 

equation, Eq. (14), as discussed in Sec. IV.  For small 
yp! , the turbulence is saturated by 

sheared flow stabilization and the convective transport occurs via blobs, whereas for 

large
yp! the turbulence is saturated by profile modification (sometimes called plateau 

formation or wave-breaking) and the convective transport occurs via radial streamers. 

The turbulent transport across the LCS is larger in the latter case. 

The dynamics of the sheared zonal flow was shown to be driven by two effects: 

the turbulent Reynolds stress in the edge, and the sheath-generated sheared flows in the 

SOL. As the velocity shear, dx/vdv yy =! , has opposite signs for the two effects, their 

competition gives reduced velocity shear in the main interaction region and can lead to 

bursty transport when yv!  is small in this layer.  Thus, the turbulence depends on the 

various sources of edge and SOL dissipation in a complex way.  A set of rules was given 

at the end of Sec. IV, which describes the behavior of the simulations. 
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Thus, in spite of differences such as lack of scale separation, sheath dissipation, 

strong turbulence and fast profile modification, the nonlinear saturation of turbulence in 

the edge and SOL has many features in common with core turbulence. It involves the 

nonlinear generation of coherent structures (radial streamers and sheared flow layers), 

which interact by a predator-prey relation and can give rise to bursty transport. However, 

the edge turbulence interaction is complicated by additional SOL physics such as blob 

creation and sheath-generated sheared flows. More work is needed to understand the full 

parameter space for these additional interactions. 
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Figure Captions 
 

Fig. 1  Schematic of the radial profiles (described in the text) which define the edge and 

SOL regions. 

Fig. 2  (color online) Time history of the particle flux (×103) at the sheath entrance (Δr = 

4.4 cm) in the limit of (a) infinite and (b) zero flow damping. The turbulence is 

more intermittent in the small damping limit, where the saturation is controlled by 

the zonal flows. 

Fig. 3 (color online) Flux and flow shear vs. the flow damping parameter  py! . 〈Γ〉max is 

the maximum of the time-averaged radial particle flux, and error bars are the 

standard deviation of the flux (σΓ), with respect to time, at the location of that 

maximum, xmax.  〈|ξ|〉 is the time-averaged magnitude of the shear, averaged over 

x < xmax, and error bars are the standard deviation of the shear with respect to 

time, averaged over x < xmax. Both quantities are normalized by their maxima 

(〈Γ〉max = 9.6×1017 cm-2 s-1 and ξmax = 4.7×104 s-1)  to aid illustration. 

Fig. 4 (a) Legislated flow shear profile described in the text. (b) Poloidally-averaged 

radial flux, ! (×400), at the sheath entrance (Δr = 4.4 cm) and shear, ξ (×400), at 

Δr = -2 cm, where the amplitude of the perturbation in (a) is maximized. The 

shear profiles in (a) are at times indicated by the symbols in (b). This numerical 

experiment demonstrates that the turbulence is stabilized by the sheared flows in 

the 0py =!  limit. 

Fig. 5 (color online)  Plot of the average density profile t)r(n !  for several values of 

the flow dissipation parameter py! . The degree of dissipation used in the 

simulation is indicated by the color of the curve, and the color scheme 

corresponds to that used in Fig. 3. The vertical dashed line indicates the nominal 

position of the LCS. 
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Fig. 6  Time history of the zonally-averaged radial particle flux )(t!  at the entrance to 

the sheath ( cmr 4.4=! ) for two values of the core-side boundary potential.  

Fig. 7 (color online) A time slice of a simulation near marginality ( 10)0( =! ) showing 

the history of the particle flux (Γ), velocity shear dx/vd y=!  and pressure 

gradient at Δr = -2 cm.  Note the bursts in the particle flux when the velocity shear 

vanishes. Compare with Fig. 4. 

Fig. 8  Radial profile of the velocity shear dx/vd y=!  at times before and including the 

second burst in Fig. 7: (a) 4580 µs, (b) 4620 µs and (c) 4650 µs. 
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Fig. 1  Schematic of the radial profiles (described in the text) which 
define the edge and SOL regions.   

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  (color online) Time history of the particle flux (×103) at the 
sheath entrance (Δr = 4.4 cm) in the limit of (a) infinite and (b) 
zero flow damping. The turbulence is more intermittent in the 
small damping limit, where the saturation is controlled by the 
zonal flows. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 (color online) Flux and flow shear vs. the flow damping 
parameter py! . 〈Γ〉max is the maximum of the time-averaged 
radial particle flux, and error bars are the standard deviation of 
the flux (σΓ), with respect to time, at the location of that 
maximum, xmax.  〈|ξ|〉 is the time-averaged magnitude of the 
shear, averaged over x < xmax, and error bars are the standard 
deviation of the shear with respect to time, averaged over x < 
xmax. Both quantities are normalized by their maxima (〈Γ〉max = 
9.6×1017 cm-2 s-1 and ξmax = 4.7×104 s-1) to aid illustration. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 (a) Legislated flow shear profile described in the text. (b) 
Poloidally-averaged radial flux, ! (×400), at the sheath 
entrance (Δr = 4.4 cm) and shear, ξ (×400), at Δr = -2 cm, 
where the amplitude of the perturbation in (a) is maximized. 
The shear profiles in (a) are at times indicated by the symbols 
in (b). This numerical experiment demonstrates that the 
turbulence is stabilized by the sheared flows in the 0py =!  
limit. 
 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 (color online) Plot of the average density profile t)r(n !  for 
several values of the flow dissipation parameter py! . The 
degree of dissipation used in the simulation is indicated by the 
color of the curve, and the color scheme corresponds to that 
used in Fig. 3. The vertical dashed line indicates the nominal 
position of the LCS. 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Time history of the zonally-averaged radial particle flux )(t!  at 
the entrance to the sheath ( cmr 4.4=! ) for two values of the 
core-side boundary potential.  

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 (color online) A time slice of a simulation near marginality 

( 10)0( =! ) showing the history of the particle flux (Γ), 
velocity shear dx/vd y=!  and pressure gradient at Δr = -2 cm.  
Note the bursts in the particle flux when the velocity shear 
vanishes. Compare with Fig. 4. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Radial profile of the velocity shear dx/vd y=!  at times before 
and including the second burst in Fig. 7: (a) 4580 µs, (b) 4620 
µs and (c) 4650 µs. 

 


