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A new magnetic configuration for magnetic confinement of fusion plasmas
is proposed. This configuration is closely related to the levitated dipole con-
figuration, and shares the same mechanism for plasma stability. The difference
between the two configurations rests in the use of shaping coils to alter the far
field region of the dipole field, resulting in greatly reduced total reactor volume
given equivalent plasma parameters and core volume. In this paper we will dis-
cuss the magnetic geometry of the compact levitated dipole configurations and

employ stability theory in the low beta limit to predict its properties.



I. INTRODUCTION

The compact levitated dipole configuration (CLD) is a magnetic configuration
for plasma confinement that arises through modifications to the existing lev-
itated dipole configuration [1]. This new configuration shares the topological
features of the levitated dipole configuration, as well as mechanical require-
ments (such as the need for a levitated central coil) and magnetic geometry in
the near-field region. The CLD diverges from this simple template by employ-
ing shaping coils to radically alter the dipole magnetic geometry in the far-field
region. Since the far-field region is the only region in which the levitated dipole
configuration resembles the ideal dipole from electromagnetic theory, the result
is a configuration that is dipole in name only. More importantly, since the far-
field region accounts for most of the volume of the dipole, this alteration results
in a configuration that has a much higher ratio of core (near peak density) vol-
ume to total volume. It is this key advantage that inspires the name of this new
configuration.

In this paper we will discuss the magnetic geometry of the CLD and employ
stability theory appropriate to levitated dipoles in the low-beta limit to assess

its properties.

II. BACKGROUND

The levitated dipole configuration is a geometry for magnetic plasma confine-

ment that is based on the naturally occurring magnetic fields of stars and plan-



ets. The notion that dipole fields could be useful for plasma confinement was
first realized by Akira Hasegawa [2]-[3]. He recognized that, unlike most mag-
netic confinement geometries, magnetic fluctuations in a dipole field can trans-
port particles and energy inward rather than outward. This property gives the
dipole a natural resistance to anomalous transport, which gives it considerable
potential for confining fusion plasmas.

This potential inspired the construction of the Levitated Dipole Experiment
(LDX) as a joint project by the Massachusetts Institute of Technology and
Columbia University [1][4][5]. This experiment consists of a superconducting
ring inside a toroidal cryostat, suspended inside a vacuum chamber by a second
superconducting coil above it. Plasma is formed in the magnetic field region
surrounding the levitated ring. Over its duration of funding, this experiment
was able to demonstrate many of the predicted properties of the dipole config-
uration [6]-[7].

While the dipole in its basic form has many appealing properties, there are
some areas where there is room for improvement. In particular, one problem
with the levitated dipole configuration is its large space requirement. In order to
achieve a high peak temperature and pressure, the plasma edge, and therefore
vacuum vessel wall, must be separated from the levitated ring by a distance
larger than its major radius. This results in a configuration in which the peak
pressure region represents only a small fraction of total plasma volume. This
presents a potential problem for the economics of a levitated dipole reactor

due to the sheer volume of its vacuum vessel; while the proportion of magnet



volume to core plasma volume in a levitated dipole is comparable to other
plasma confinement schemes, the unusual ratio of reactor volume to magnet
volume results in an extremely large reactor.

The goal of the CLD is to solve this problem by rearranging the far-field
region of the dipole into a compact flare region in which magnetic field drops
rapidly in a limited space. Because magnetic field strength drops rapidly in the
flare region, a high critical pressure gradient and therefore a high ratio of core
to edge temperature can be achieved. As we will see in Sec. IV., this can be
done in a much smaller volume than would be required by a conventional dipole
to achieve the same critical pressure differential. Consequently, the need for an

expansive vacuum vessel is eliminated.

III. STABILITY THEORY

Ideal magnetohydrodynamic (MHD) stability in a levitated dipole is achieved
by two main mechanisms. In the "inward” side of the plasma, between the
levitated ring and the peak pressure region, stability is achieved through good
magnetic field line curvature. On the ”outward” side, between the peak pressure
region and the vacuum vessel, however, good curvature does not exist.

In the bad curvature region, plasma stability is achieved through plasma
compressibility. To understand this, imagine an interchange mode involving
a particular pair of flux bundles. This mode will be unstable if it lowers the

total plasma energy and stable if it increases it. Now while the bundle moving



outwards loses energy as the plasma adiabatically expands, the bundle moving
inwards gains energy as the plasma adiabatically contracts. The energy increase
in the inwards moving bundle counteracts the energy decrease of the outwards
moving bundle, and contributes to stabilizing the interchange mode. Whether
this results in net stability can be determined from the pressure gradient and

the flux tube volume[8][9][10]:

dlnp
amu = (1)

where U = §dl/B and v = 5/3 for a three-dimensional system.
Assuming a pressure profile which is at the marginal stability limit, this

yields a formula for the peak/edge pressure ratio:

DPcore _ <Uedge ) v (2)

Pedge Ucore

In a conventional dipole, this variation in flux tube volume is achieved
through field line lengthening and magnetic field fall-off as one progresses from
the peak (vicinity of the levitated ring) to the edge. This can be analyzed in
two regimes: the near-field region and the far-field region. In the near-field
region, the magnetic field can be approximated by that of a straight wire, hence
B o« r~!. In the far-field region, the magnetic field can be approximated by
that of a dipole, hence B o r~3. In both cases, the magnetic field line has a

length proportional to radius. This results in a scaling of the flux tube volume

of U 72 in the near-field region and U o r? in the far-field region. Since



pressure scales with flux tube volume as pU” = const., this yields a marginally

—10/3 i the near-field case and p oc #~29/3 in

stable pressure gradient of p o< r
the far-field case.

The peak/edge pressure gradient is essential for confining high-temperature
plasmas in the dipole configuration because the edge does not have good confine-
ment, so the smaller the energy density of the edge plasma relative to the core
the longer the average energy confinement time which is possible. In addition, if
we assume that the plasma achieves a marginally stable gradient by convection
due to unstable interchange modes which then bring the pressure gradient back
to marginal stability, then the plasma will assume an adiabatic temperature
profile T oc UY~!. This means that a high ratio in U will correspond to a hot
plasma at the pressure peak, which is essential to fusion.

The question is: what is the most efficient means by which a high ratio in

differential flux tube volume can be achieved?

IV. COMPACT DIPOLE CONFIGURATION

As we saw in Sec. III., the conventional levitated dipole configuration achieves
a high contrast in flux tube volume mainly through the fall-off of magnetic field
strength in the far-field region. This achieves such contrast at a considerable
expense in volume, since total volume will scale as V oc 73. This means that
peak/edge pressure ratio will increase with volume at a scaling law barely greater

than 2. A more efficient design can be achieved by finding a way to achieve a



fall-off in magnetic field strength without adding substantially more volume to
the device.

This alternate method of achieving magnetic field fall-off is to constrain
the flux at the edge of the device to a cylindrical region centered around the
device’s axis of symmetry. Assuming the net flux through the cylinder is zero,
the magnetic field strength will decrease exponentially as one advances along the
cylinder. This decrease in the magnetic field creates a corresponding increase
in flux tube volume. The amount of additional volume added to the device
scales logarithmically with the desired increase in flux tube volume, which in
turn means that a given increase in flux tube volume can be achieved with a
relatively insignificant increase in device volume.

There is a practical limit to this approach, which is determined by the relative
scaling of magnetic and plasma pressure. As one progresses along the cylinder,
the effective length (flux tube volume times field strength) of each field line
remains roughly constant due to self-similarity. This means that plasma pressure
at marginal stability will scale as Ppjqsma o< B%/3, whereas magnetic pressure
scales as Pg o B2. This results in a net increase in beta, which scales as
B ox B~1/3,

A moderately high edge beta can be accepted because the x-point acts as a
cusp mirror. In the cusp mirror configuration, ideal MHD stability is achieved
through good curvature everywhere. The drawback of this configuration is poor
confinement along open field lines. Poor confinement is acceptable in this case

because the plasma pressure in the open field-line region required for stability is



extremely small compared to the peak, and thus contains only a tiny minority
of the total energy of the configuration. However, there is still going to be
a practical limit on the plasma pressure which can be confined in the edge
pedestal. For purposes of developing scaling principles, let us suppose that an
acceptable operating regime employs an edge beta comparable to the beta at
the pressure peak.

In this case, the maximum ratio of peak/edge flux volume is determined by
the aspect ratio of the levitated ring. In the near-field region, the magnetic field

2

only drops off as 1/r, yielding U oc 72. This gives Pg « r~2 and Polasma

F—10/3 4/3

which is a net beta drop of 8 «x r~ Since in the cylinder region
B o B~1/3, the amount of magnetic field falloff we can achieve in the cylinder

region is proportional to the aspect ratio of the ring to the fourth power. Given

an aspect ratio a, this yields a ratio:

U,
U, = )

Due to the sixth power dependence in this formula, only a modest aspect
ratio on the levitated ring is required to achieve an extraordinary peak/edge
pressure ratio. Consequently, the ratio of total device volume to the volume
of the peak pressure region can be quite modest for a device capable of high
core pressure at low edge pressure. Total volume in this type of device scales
roughly as the major radius of the ring with minor logarithmic scaling as the
aspect ratio increases. Peak volume scales roughly as the inverse square of

aspect ratio. Thus, the scaling of peak/edge pressure ratio with total/peak



volume ratio is roughly a fifth power proportion. This is significantly better
than the roughly quadratic proportion we saw with the conventional dipole. We
expect then that a significant reduction in volume will be realized once such a
configuration is implemented.

Unfortunately, at present no systematic means exists to design magnetic
configurations which satisfy the above conditions. Fortunately, reasonable ge-
ometries can still be developed by a trial-and-error approach. The results of

this approach are discussed in the following section.

V. RESULTS

In order to calculate the performance of the device described above, we em-
ploy a computer program to evaluate the magnetic field of a collection of ring
currents[11]. We can then calculate the flux tube volume along various flux
surfaces, ranging from the surface of the levitated ring to the vicinity of the
separatrix. We can also calculate the minimum magnetic field along a flux
surface, which allows us to calculate whether a particular solution satisfies our
conditions for a realistic edge beta. We also calculate the volume enclosed by
each flux surface, which permits an estimation of the space requirements of a
configuration relative to its core volume. These results can then be compared
to those for a free dipole.

To make a comparison between the conventional levitated dipole and the

compact levitated dipole, we employ two configurations. One is a simple ring



current, which we will use to calculate properties of the conventional dipole.
The other consists of a levitated ring flanked by five eternal coils. Each of
these external coils carries a current which is .0775 times the levitated ring
current and in the opposite direction. Due to symmetry this applies no net
force on the levitated ring, so some adjustments will be necessary to provide for
vertical support, however since we have not specified the weight of the ring or
the strength of the magnetic field we leave this configuration in a symmetrical
arrangement for simplicity of calculation. The flux contours which result from
this arrangement of currents is shown in Fig.1.

Given this configuration, we can then calculate the flux tube volume by
integrating along specified flux surfaces. Once we have the flux tube volume, we
can calculate relative pressure by taking that to the 5/3 power, and maximum
beta can be calculated by dividing pressure by the square of the minimum
magnetic field along that flux surface. These results are shown in Fig. 2. For
comparison, a levitated dipole with roughly equivalent performance produces
the results in Fig. 3.

In terms of peak/edge pressure ratio, these results are comparable, as they
were selected to be. However, in the case represented in Fig. 3, the central flux
surface encloses a volume of 1.59 cubic units, where the unit in this scale is set
to the major radius of the central ring. The outermost flux surface encloses a
volume of 474.28 cubic units. This is a ratio of 298:1. With the compact dipole,
on the other hand, the central flux surface only encloses a volume of .69 cubic

units even though it is at the same flux coordinate. This is probably due to
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the squeezing effect of the external coils on the magnetic field on the outboard
side of the levitating ring, which would otherwise fan out significantly. The
outermost flux surface encloses a volume of 37.16 cubic units, a ratio of 54:1.
This represents a nearly sixfold decrease in total volume relative to the volume
of the core region, with no appreciable compromise in peak/edge pressure ratio.
The only price paid, other than the addition of the external coils, is a rise in beta
towards the edge, which for reasons previously discussed is within acceptable

levels for this sample geometry.

VI. CONCLUSIONS

The compact levitated dipole is a variant on the levitated dipole configuration
which offers a high peak/edge temperature ratio in a considerably smaller space
than an equivalent conventional levitated dipole. This is achieved through the
use of external coils to confine far-field magnetic flux to a roughly cylindrical
region in which it its strength falls off rapidly.

The main drawback of the CLD is the increase in beta near the edge. This
can be tolerated if the edge has good MHD stability properties, however since
tolerable edge beta will be finite this presents a constraint on reactor design.
Additional stabilizing effects might arise due to FLR effects, particularly in light
of the extreme degree of magnetic fall-off at the edge of the CLD which might
put ion Larmor radii above device scale for certain plasma parameters. Such

an effect would eliminate the need for a pressure pedestal at the separatrix,
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however, this possibility is not investigated fully in this paper. In either case, a
more detailed stability calculation at the edge is needed to accurately estimate
the potential of this type of device.

The most important result is the realization that adjustments in the mag-
netic geometry of a levitated dipole can produce significant improvements in ge-
ometric parameters relevant to reactor economics. This type of design approach
allows the creation of levitated ring devices with better plasma parameters while
making compromises at considerably scaling laws than are possible with a con-
ventional dipole. This will result in smaller, more convenient potential reactor
designs and thus improves the long-term viability of the dipole concept as a

whole.
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Figure captions

Figure 1: Flux surfaces for a compact levitated dipole. The flux surfaces shown
correspond to flux coordinates of .00001, .0001, .0003, .001, .003, .01, .03, .1, .3,

1, 2, and 3, respectively. Black circles represent positions of field coils.

Figure 2: Relative plasma pressure and relative beta as a function of flux coor-

dinate for a compact levitated dipole.

Figure 3: Relative plasma pressure and relative beta as a function of flux coor-

dinate for a conventional levitated dipole.
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Figure 1:
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