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Abstract. A new quantitative approach for computing the rf sheath potential is described, which 
incorporates plasma dielectric effects and the relative geometry of the magnetic field and the 
material boundaries. The new approach uses a modified boundary condition (“rf sheath BC”)  
that couples the rf waves and the sheaths at the boundary. It treats the sheath as a thin vacuum 
region and matches the fields across the plasma-vacuum boundary. When combined with the 
Child-Langmuir Law (relating the sheath width and sheath potential), the model permits a self-
consistent determination of the sheath parameters and the rf electric field at the sheath-plasma 
boundary. Semi-analytic models using this BC predict a number of general features, including a 
sheath voltage threshold, a dimensionless parameter characterizing rf sheath effects, and the 
existence of sheath plasma waves with an associated resonance. Since the sheath BC is nonlinear 
and dependent on geometry, computing the sheath potential numerically is a challenging 
computational problem. Numerical  results will be presented from a new parallel-processing 
finite-element rf wave code for the tokamak scrape-off layer (called “rfSOL”). The code has 
verified the physics predicted by analytic theory in 1D, and extended the solutions into model 
2D geometries. The numerical calculations confirm the existence of multiple roots and hysteresis 
effects, and parameter studies have been carried out. Areas for future work will be discussed.  
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INTRODUCTION 

Plasma heating and current drive with ion cyclotron range of frequency (ICRF) 
antennas has been quite successful in past tokamak experiments and is expected to 
play an important role in ITER. An important issue that must first be addressed is that 
of developing a quantitative predictive capability for rf-enhanced sheaths on the 
antenna, limiters and other boundary surfaces, which is needed for the design and 
interpretation of future experiments. Sheath-related issues include rf-specific impurity 
generation by enhanced sputtering and self-sputtering of material surfaces in contact 
with the rf waves, and power dissipation in the scrape-off-layer (SOL), leading to local 
hot spots and reduced power coupled to the core plasma. These parasitic effects 
impact (a) the functioning and survivability of the antennas, walls and divertors; (b) 
the choice of wall material and the lifetime of the boundary surfaces; (c) the heating 
efficiency of the ICRF antennas; and (d) the impurity concentration of edge and core 



plasmas. Reviews of nonlinear ICRF interactions and an extensive list of references 
are given in Refs. 1 and 2.  The requirements for control of radiofrequency (rf) sheaths 
are even more stringent in long-pulse or steady-state experiments than in present 
devices, which motivates a renewed interest in their study. 

Sheath formation is a general phenomenon, associated with parasitic rf wave 
coupling. ICRF antennas are designed to launch a fast wave (FW), which propagates 
into the core plasma and is fully absorbed under conditions of high single pass 
damping. In practice, this is not always achieved: (i) the fast wave can propagate 
around the scrape-off-layer (SOL) and be partially absorbed by boundary structures; 
(ii) the single pass absorption in the core plasma can be low for some wave 
components, so that rf wave energy propagates through the plasma to the wall (“far 
field sheath”); and (iii) the FW antenna can also launch a slow wave (SW) component 
(either evanescent or propagating) in the SOL when the magnetic field is not perfectly 
aligned with the antenna structure, i.e. when the antenna current has a component 
parallel to the equilibrium magnetic field B (e.g. “near field” or “antenna” sheath). For 
mechanisms (i) and (ii), when the FW encounters a material structure, the Maxwell 
equation boundary conditions require that it couple to the SW at the wall.  

In all these situations, the rf sheath forms when a SW comes in contact with a 
material boundary (wall, antenna or divertor). The strength of the sheath potential 
depends both on the wave polarization and on the equilibrium B field geometry. The 
SW component B/E rf|| EB   accelerates electrons out of the plasma, with the result 
that a large (up to several hundred volts) rf sheath potential forms to confine the 
electrons and maintain ambipolarity. The plasma acts to rectify the oscillating rf 
voltage rfV  [see Fig. 1 in Ref. 1], producing a dc (“rectified”) potential of order 

erf0 T3eV~e  ,3,4 where rfV2  is the difference between the highest and lowest 
values of the oscillating rf potential and eB T3~e  is the usual Bohm result for 
thermal sheaths.  

Until recently, a simple estimate of the driving voltage was used for sheath 
modeling, i.e. 

  ||sh EdsV      , (1) 

where the integral is taken along the field line between contact points (for antenna 
sheaths) and is not well defined for cases where the two contact points are far apart 
unless E|| is localized near the surface by plasma effects. However, since most antenna 
codes require a vacuum region surrounding the metal structure, plasma effects are 
usually not included in evaluating Eq. (1).  Finally, we note that in this approach Vsh 
is evaluated as a post-processing step after the rf fields are calculated, so there is no 
self-consistency between the rf fields and the sheath properties.  

The subject of this paper is a new approach5,6 to calculating the rf sheath potential 
that eliminates all of these difficulties. This approach is motivated by the following 
ordering 

 i
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ie||eD )m/m(L~       , (2) 



showing that there is a scale separation between three characteristic lengths: the sheath 
width (~ Debye length D), the perpendicular scale of the SW ( pee /c~  ), and 
that of the FW ( pii /c~  ). The first inequality in Eq. (2) suggests replacing the 
usual metallic wall boundary condition (BC) by a new “rf sheath BC” that 
incorporates the effect of the sheath directly into the solution for the rf fields. This 
approach allows incorporation of plasma dielectric and sheath capacitance effects, 
allows accurate representation of the magnetic field and wall geometry, and gives a 
local result for the sheath potential (useful for computing the surface distribution of 
the sheath voltage and for treating the far field sheath problem).  

THE MODEL 

To derive the sheath BC, the electron-poor sheath is treated as a thin vacuum region 
of width  with capacitance  1/. The form of the BC is derived from the Maxwell 
equations using continuity of Et and Dn across the vacuum-plasma interface,5,6 which 
gives 
 )D( ntt E      . (3) 

Here the rf fields are defined on the plasma side of the sheath-plasma interface with 
ED  , the subscripts n and t denote the directions normal and tangential to this 

interface (i.e. to the bounding surface), and the scalar dielectric constant in the vacuum 
sheath region is 1sh  . Note that the usual metal wall BC ( 0t E ) is recovered when 
the sheath term on the rhs is small. 

This approach incorporates plasma effects through the dielectric tensor  
(dominated by the electron term with ||). The BC also depends on the detailed 
geometry of the B field relative to the boundary, as can be seen by estimating 

||||n ED  bn , where b is the unit vector parallel to B,  and n is the unit vector 
normal to the sheath. Using this result, and taking the electrostatic (ES) limit, we 
derive a dimensionless sheath capacitance parameter as follows: Eq. (3) implies that 

 bnbn )E(~ ||||  where  
 ||||ik       . (4) 

For the simplest case with the magnetic field normal to the boundary ( 1bn ), 
there are three limits. When 1||  , the conducting wall limit of the BC is recovered 
( 0t E ), whereas 1||   gives the insulating wall limit ( 0Dn  ). For 1  there 
is the possibility of a sheath-plasma-wave (SPW) resonance when the SW is 
evanescent (see below). This is a series resonance, where the impedance of the 
capacitive current across the sheath balances that of the inductive plasma current into 
the sheath. 

The complete sheath model combines Eq. (3) with three other relations. First, the 
sheath width can be treated as constant (resulting in a linear problem) or it can be 
approximated by the dc sheath width satisfying the Child-Langmuir (CL) Law (giving 
a nonlinear problem). The CL constraint and the accompanying definitions are given 
by 



   4/3
e0D T/e      , (5) 

 e/T3VC eshsh0       ,     |D|V nsh     . (6) 

As discussed above, Vsh is the amplitude of the oscillating voltage driving the sheath 
formation, obtained here by integrating across the thin ES sheath layer, 0 is the dc 
rectified sheath potential, Csh is an order unity rectification coefficient3,4  and we have 
included the thermal (Bohm) sheath term as the low voltage limit. The full sheath 
model is given by Eqs. (3), (5) and (6); it determines the rf sheath potential, sheath 
width, and local rf field ( ||n EorD ) self-consistently. 

SEMI-ANALYTIC SOLUTIONS 

The model just described has been applied to a number of analytic or semi-analytic 
calculations to explore the physics of the BC.7-10  These include models of FW 
antenna sheaths,7 wall sheaths8,9 arising from SWs launched by the antenna, and far 
field sheaths10 resulting from low single pass propagation of FWs across the core 
plasma. Here, we will summarize the results of three calculations which can be 
compared with the numerical solutions discussed in the next section. 

When the B field is tilted with respect to the antenna (such that 0ant Jb ), the 
FW antenna launches an unwanted SW. A sketch of the situation and of the domain of 
our model problem is given in Fig. 1. 

 
 
 
 
 
 
 
At low density (  LHe nn  lower 

hybrid density), the electrostatic SW propagates along the magnetic field as a 
resonance cone (RC).8 When it encounters a boundary, the RC reflects off the sheath, 
and the resulting sheath voltage depends on the parameter 2/1

e
8/3

rf||||0 nP~a/ , 
where a|| is the width of the SW pulse of voltage V0 launched at the antenna. In Ref. 8 
it was shown that the fraction of the launched voltage transmitted to the sheath, 

0sh V/V , becomes order unity above a threshold, 30  . The existence of the voltage 
threshold is a consequence of the nonlinear CL constraint for the self-consistent sheath 
width. For C-Mod parameters it is possible to satisfy the voltage threshold condition, 
so this mechanism may explain the observed rf interaction with the vessel surface.11 

At high density ( LHe nn  ), the SW propagates along B ( along z) but is 
evanescent in the radial direction (x). If the limiter is far away, there is no coupling of 
the antenna to the limiter sheath. But the linear calculations in Ref. 9 (for specified 
sheath width) show that this coupling occurs when i||L   (sufficiently close limiters) 
and 1L/ ||||   (sufficiently strong driving voltage), where L|| is the connection 

FIGURE 1.   Schematic of SW propagation 
from antenna to limiters, looking down on 
the torus. Also shown is the domain of  the 
model problems solved in Refs. 8 and 9. 
Reprinted from Ref. 9 with permission from 
the Institute of Physics. 



length of the antenna to the limiter along the magnetic field. If these conditions are 
satisfied, the evanescent SW couples to the sheath plasma wave10-13 (SPW), which 
propagates radially along the sheath boundary, carrying the rf voltage away from the 
antenna. Figure 2 shows an example of a SPW solution; in this case the parameters 
were chosen to localize the mode near the sheaths. 

 
 
 
 
 
 
 
 
When the CL constraint is enforced 

(nonlinear solution),  one finds that 
there are multiple roots with a 
characteristic hysteresis structure. We 
return to this point in the next section. In each case, the root represents a coupling of 
the evanescent SW to the SPW, which allows the voltage to propagate away from the 
antenna. 

The previous two examples discussed slow waves which are launched at the 
antenna and drive sheaths in the vicinity of the antenna (e.g. on nearby limiters). As a 
third example, we discuss the case of far field sheaths,6,10 which arise when the FW 
propagates away from the antenna and encounters a metallic boundary, e.g. in the case 
of low single pass absorption or propagation around the SOL. If the B field has a 
component normal to the wall (i.e. the wall is not a flux surface), the FW cannot 
satisfy the BC at the wall without coupling to the SW. (This is true even for the metal 
wall BC, but the sheath BC adds the possibility of multiple, higher voltage roots for 
the sheath potential.) A three-wave coupling analysis in Ref. 10 derived an expression 
for the FW-SW coupling from the sheath BC, viz. 

 )(i,EE jjj
21

10
FWSW eεneg

ggn

ggn





      . (6) 

Here, j = 0, 1 and 2 denotes the incident and reflected FW and the coupled SW, 
respectively; je  is the polarization unit vector for the constant density wave solution, 
and jg  is the generalization to include the sheath capacitance effect in the sheath BC. 
A numerical 1D solution of Eqs. (3), (5) and (6) showed that the self-consistent sheath 
BC permits multiple roots and the SPW resonance. The latter can occur if 02 g  (ES 
limit) or  021 gg  (EM case).  These results will be discussed in connection with 
the numerical solution in the next section. 

FIGURE 2.   Spatial structure of Re Ez(x,z) 
for the SPW for the case 1.0 . Reprinted 
from Ref. 9 with permission from  the 
Institute of Physics  
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NUMERICAL SOLUTIONS (RFSOL CODE) 

We have shown that the sheath potential is sensitive to both the magnetic field and 
wall geometry. Thus, numerical methods are required to treat sheaths in realistic 
tokamak SOL geometry. The sheath BC approach allows a wave code to compute both 
the rf fields and the sheath quantities self-consistently, although the latter requires a 
nonlinear solver. In the past two years, a new code, rfSOL, was developed to treat rf 
waves and sheaths in the SOL.14,15 This code uses finite element techniques to handle 
the geometry of the boundary and was parallelized to allow sufficient resolution for 
slow wave studies. Comparing the code solution with the analytic work, we find that 
rfSOL recovers the physics in the analytic models, but allows generalizations to 
include 2D geometry, density profiles, model antennas, spatially varying B fields, etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a first example, we discuss the case of a propagating SW in 1D with a constant 

B field tilted into the wall ( 0Bx  ). This tilt drives an rf sheath. As shown in Fig. 3, 
the antenna launches a SW that propagates up the density profile until a reflection 
point occurs where 0 ; this reflection (instead of the usual lower-hybrid 
resonance) is due to 0Bx  , which changes the dispersion relation. A graphical 
solution of the self-consistent sheath problem is shown in Fig. 4, where the black line 

FIGURE 3.  Schematic of a 1D 
model problem with a propagating 
SW trapped between the SW cut-
off and the sheath.  

FIGURE 4.  Graphical solution of the 
nonlinear sheath problem for different 
values of the antenna current K.  

FIGURE 5.  Root structure for the sheath 
potential with hysteresis curve, obtained from 
the nonlinear rfSOL solution.  



denotes the rfSOL code solution for the rectified sheath potential shsh0 VCV   
(normalized to the antenna current K) for a specified value of sheath width  and the 
colored curves give the function V0() from the CL constraint, plotted vs. . The peak 
in the black curve is due to a standing wave resonance, and finite dissipation was used 
to limit the height of the peak. Note that there are multiple roots for this nonlinear 
problem. In Fig. 5, the root structure is further illustrated by plotting the rfSOL 
solution for V0 vs. the antenna current K. Note the hysteresis structure and the region 
of multiple roots. This type of structure was also observed in recent semi-analytic 
models9,10  of sheaths in different physical regimes, and seems to be a general result. 
Note that this structure requires the sheath capacitance effect in the sheath BC together 
with the CL constraint enforcing self-consistency between the sheath width and sheath 
potential. 

 
 
 
 
 
 
 
 
 

 
Now we turn to 2D solutions with the rfSOL code. First, we consider the low-

density case ( LHe nn  ) with constant B field tilted into the wall ( 0Bx  ). As 
predicted by simpler models,8 the SW propagates as a resonance cone (see Fig. 6). 
The code solves for the self-consistent CL sheath at the right-hand boundary, and one 
finds that the sheath affects the phase shift of the wave reflected off the wall, which 
could affect the near field of the antenna. Comparing the solution for different values 
of the antenna current K, we find that 0)K/D( n   as K . This confirms the 
scaling .const)K/D( n  , which follows from the sheath BC and illustrates the 
transition from the conducting ( 0 ) to the insulating (  ) limit as K (and 
hence ) increases. 

 
 
 
 
 
 
 
 
 
 

FIGURE 6.   The 2D rfSOL 
solution for Im(E||)/K of the 
SW with tilted B field in the 
low density limit. Here the rf 
wave and self-consistent sheath 
are computed, showing reson-
ance cone propagation in both 
directions from the antenna. 

FIGURE 7.   The 2D rfSOL solution for 
Im(E||) of the SW with curved B field in 
the high density limit. The rf wave and 
self-consistent sheath are computed, 
showing an evanescent SW coupling to the 
sheath plasma wave (SPW). The poloidal 
asymmetry is due to the tilted and curved B 
field.



We have also investigated the 2D high-density case ( LHe nn  ) both for a constant 
tilted B field and for a model 2D curved B field. In this high-density limit, the SW 
launched by the antenna is evanescent but couples to the SPW, which propagates 
along the sheath, in agreement with earlier work.9  The wave phase follows the field 
lines and couples kx and ky, which results in the observed poloidal asymmetry (Fig. 7). 

SUMMARY AND FUTURE WORK 

By a series of increasingly numerical calculations, we have demonstrated the 
tractability and physics content of the rf sheath BC. We have demonstrated SW sheath 
formation, sheath plasma waves, multiple roots, and obtained parametric dependences 
in simple geometries. In the future, the rfSOL code will be used to study more 
complicated geometries, leading eventually to a treatment of the tokamak SOL. 
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