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Abstract 

 Two-dimensional (2D) turbulence simulations are reported in which the balancing 

of the parallel and perpendicular currents is modified by changing the axial boundary 

condition (BC) to vary the sheath conductivity. The simulations are carried out using the 

2D Scrape-Off-Layer Turbulence (SOLT) code. The results are compared with recent 

experiments on the Controlled Shear Decorrelation Experiment (CSDX) in which the 

axial BC was modified by changing the composition of the end plate. Reasonable 

qualitative agreement is found between the simulations and the experiment. When an 

insulating axial BC is used, broadband turbulence is obtained and an inverse cascade 

occurs down to low frequencies and long spatial scales. Robust sheared flows are 

obtained. By contrast, employing a conducting BC at the plate resulted in coherent (drift 

wave) modes rather than broadband turbulence, with weaker inverse cascade, and smaller 

zonal flows. The dependence of the two instability mechanisms (rotationally-driven 

interchange mode and drift waves) on the axial BC is also discussed. 

PACS numbers: 52.35.Ra,  52.35.Kt,  52.65.Kj,  52.40.Kh 
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I. Introduction  

Plasma turbulence is an important area of basic physics research, and 

understanding edge turbulence in fusion devices is an important challenge for the future. 

In a toroidal device like the tokamak, turbulent transport in the edge plasma partly 

determines the interaction between the plasma and the first-wall and/or divertor 

structures. The turbulence influences the particle and heat flux to the boundary and sets 

the “boundary condition” (BC) for the global confinement of the core plasma. A review 

of edge turbulence measurements in toroidal devices is given in Ref. 1, and drift 

turbulence in magnetic confinement devices is reviewed in Ref 2.  An important aspect of 

edge physics is the interaction between the turbulence and the sheared flows (see the 

comprehensive reviews in Refs. 3,4)  The flows are driven by the turbulence through the 

inverse cascade process (or perhaps by nonlocal k-space interactions, loosely included in 

“cascades” in the following discussion), but the flows also help to saturate the turbulence 

and create a transport barrier, resulting in a feedback loop under some circumstances. The 

details of this process are being studied in tokamaks and other toroidal machines,1-4 but 

can also be studied in linear machines,5-13 which have simple geometry and good access 

for diagnostics. These linear experiments are also easier to simulate than fully toroidal 

plasmas, the difference being that turbulent structures can be independent of the 

coordinate along the field line and hence two-dimensional (2D) in a linear machine, but 

cannot be strictly so in toroidal geometry, even for an axisymmetric tokamak, because of 

magnetic shear.  

Recently there have been a number of computer simulations of linear plasma 

devices,8-13 including models with9,10 and without8,11-13 the sheath BC that plays an 

important role in the present work. These papers study basic turbulence properties, such 

as frequency and wavenumber spectra, direct and inverse cascades, fluctuation 

amplitudes, and spatial correlation lengths. Other important areas of study are the origin 
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of intermittency and properties of turbulent structures8-11 and the interaction between 

turbulence and sheared flows.10,12,13  In most cases, these codes do not impose a scale 

separation between the background plasma and the turbulence. Simulations have been 

compared with turbulence data from the VINETA experiment,8-10  the Large Plasma 

Device (LAPD),11 and the Controlled Shear Decorrelation Experiment (CSDX).12  The 

present paper is closely related to this earlier work, and extends the modeling of CSDX to 

include the effect of the sheath BC on regulating the parallel currents. 

 Here, we discuss the effect of parallel currents on drift-interchange turbulence and 

flows, comparing the results of computer simulations with data from recent experiments 

on CSDX. To motivate this work, we note that the vorticity equation enforces current 

conservation and thus controls the flow of perpendicular and parallel currents.  In linear 

plasma devices, where the field lines terminate on material boundaries, the magnitude of 

the parallel current ||J  (and the ratio ||J/J )  is controlled by the axial BC. For example, 

when the end plates are conducting, a sheath allows, but also limits, the parallel current to 

the end plates and influences the linear stability and related turbulence.14-18  Recently, 

this issue was studied on CSDX19 by changing the composition of the end plates in order 

to modify the axial BC. The characteristics of the plasma turbulence were measured for 

both an insulating boundary condition (IBC) and a conducting boundary condition 

(CBC),19 and were found to be quite different in the two cases. These experiments 

motivated simulations using the two-dimensional (2D) Scrape-Off-Layer Turbulence 

(SOLT) code,20-23 which can treat both insulating ( 0sh  ) and conducting ( 0sh  ) 

cases by varying the strength of a sheath conductivity parameter sh  defined in Sec. II. 

The two dimensions modeled dynamically in SOLT are the coordinates perpendicular to 

the magnetic field. The present paper describes these simulations and compares the 

simulation and experimental results.  

  Not only the magnitude, but also the nature of the turbulence, should depend on 

the axial BC.  In nonlinear edge and scrape-off-layer (SOL) turbulence, the perpendicular 
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current includes the ion polarization drift term responsible for the inverse energy cascade, 

so it is reasonable to expect that the nature of the turbulence will depend on how this term 

balances the parallel current flow. A similar situation arises in the study of blobs, where 

the competition between the polarization drift and parallel current terms influences 

parallel disconnection and the blob velocity.18,24,25 While a full study of the inverse 

cascade is beyond the scope of this paper, we will discuss the qualitative differences 

between the turbulence in the IBC and CBC cases. 

 We will show that there are several points of qualitative agreement between our 

simulations (see Sec. IV) and the experiment (see Sec. V and Ref. 19), including the 

following: 

1. The insulating (IBC) case is characterized by broadband turbulence and 

inverse cascade down to zero frequency ( 0 ) and to long spatial scales  

(low ky), thereby driving sheared flows; 

2. The conducting (CBC) case is dominated by coherent modes; there is reduced 

broadband turbulence, a weaker inverse cascade to low  and ky, and weaker 

low-frequency zonal flows;  

3. The Reynold’s stress profiles are different for the IBC and CBC cases; 

4. The azimuthal velocity resulting from turbulent Reynold’s stress interactions 

is larger in the IBC case than in the CBC case. 

 The CSDX experiments are also useful for testing basic simulation issues, such as 

the type of sources and sinks and the boundary conditions, and validating the code for 2D 

geometry. The 2D SOLT code has been used with some success to model edge 

turbulence in tokamaks.22,23,26 This turbulence is inherently three-dimensional (3D) due 

to magnetic shear (e.g. X-points) which can force the turbulence to vary along the field 

lines. This is treated only approximately in a 2D model by various closure relations. So, it 

is interesting and useful to test the computational model in a context where true 2D 

turbulence is a more realistic ansatz.  However, the SOLT code uses slab geometry, 
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whereas the CSDX experiment is a cylindrical device. Near the axis of the cylinder (r = 

0) the slab description will not be very accurate. For purposes of studying gradient-driven 

turbulence (which peaks near the plasma edge), we expect that the slab model will be 

adequate, but the difference in geometry means that we can only expect qualitative, not 

quantitative, agreement between theory and experiment.  

 The plan of this paper is as follows. In Sec. II we discuss the relevant time scales 

for physical processes that control the flow of charge. This allows us to understand 

analytically the two regimes corresponding to the insulating and conducting BCs, and it 

introduces the dimensionless parameters of the SOLT code. In Sec. III the computational 

model is briefly described. Simulation results are given in Sec. IV and are compared with 

experimental data in Sec. V.  Finally, Sec. VI gives a summary and discussion of these 

results. 

II.  Physical regimes 

 As noted in the previous section, the physics of edge turbulence can be 

understood by the balancing of terms in the vorticity equation, which is equivalent to the 

current conservation constraint that 0 J . There are four relevant time scales. The 

first is the time scale for BE  advection of charge by the ion polarization drift 

(~  2v ), which is given by 

 





 ~
LB

c
~~

2
1

adv v  (1) 

where v  is the vorticity and also gives the rate of advection, and L  is the 

perpendicular scale length of the turbulence. Here v is the EB velocity, c is the speed of 

light and B is the magnetic field. The second time scale is that of charge separation by an 

external force gF imn  (e.g. curvature or centrifugal forces which can be modeled as 

an “effective gravity” g), where n is the plasma density and mi the ion mass. This time 
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scale can be estimated from the ideal interchange growth rate 2/1
n )L/g(~  using 

L~Ln  to obtain 

 









 ~
L

g
~

2/1
1

g  (2) 

where r/v~g 2
  for the centrifugal force, which is the dominant force in CSDX. 

 There are also time scales related to charge loss by parallel currents. We can 

estimate the parallel loss time   for charge density en  from ||||J~t/  , viz. 

||||
1 L/J~  . On open field lines where sheath effects are important, the time scale for 

charge loss by parallel currents to sheaths ( sh ) can be estimated using the sheath 

relation )T/e(necJ s||   )c4/( s
2
pi   with  

24  and 2
i

2
pi /   (the 

polarization screening, where cs is the sound speed, T the electron temperature, pi the 

ion plasma frequency and i the ion cyclotron frequency) to obtain 

 
2
s||

2

||

||1
sh

L
~

L

J
~


   , (3) 

where s|||| c/L , iss /c  . This effect enters the vorticity equation in the SOLT 

code via a sheath boundary condition at the axial points ||Lz   where the field lines hit 

the metal boundaries, and this BC depends on the parallel connection length ||L  to the 

sheaths. The sheath BC enters the 2D SOLT model when the vorticity equation is 

averaged along the magnetic field in the SOL to obtain a 2D model. 

 The SOLT code also contains a model for the parallel current in the closed field 

line (edge) region, viz. a Hasegawa-Wakatani type model for incorporating collisional 

drift wave effects.27  When drift wave effects are important, the modes have parallel 

variation along the field lines ( 0k||  ), and the parallel current due to the drift wave 

perturbation is estimated as )T/e)(/nec(~J ssdw||||  , where  
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













||

s

eei
2
||

iss

eei

iss
2
||

dw L

2

mL

mc2

m

mck2
       , (4) 

 
se

||eiL




      . (5) 

Here, in the second form of Eq. (4) we make the approximate identification k||  1/L||, 

and in the third form we introduce )/L()m/m()m/m( ei||
2/1

iee
2/1

ie   , a 

collisionality parameter used in recent blob modeling.25  Using the drift wave parallel 

current, we can estimate the parallel loss time due to drift wave turbulence ( dw ), 

 



||||

||1
dw

1
~

L

J
~  

2
s

2L2


    . (6) 

Comparing Eqs. (3) and (6), we find that drift wave effects compete with sheath effects 

when  which is typical of CSDX parameters in the conducting regime.  

 The main point of the experiments modeled here is to explore the effect of 

changing the characteristics of the end plates from the insulating (IBC) to conducting 

(CBC) regime. To quantify this transition analytically, we compare three time scales. The 

inertial, interchange, and sheath (~ drift-wave) inverse time scales stand in the ratio 

 
2
s||

2L
:

L

g
:


 


 . (7) 

Here, the notation A : B : C means that A, B and C are typical terms that compete in the 

equation, and a maximal ordering will have A ~ B ~ C.  Equating the first two time scales 

results in the characteristic (time, vorticity and/or potential) scale 2/1)L/g(~  , which 

is just the second relation in Eq. (2). Equating all three terms gives the following critical 

connection length  

 

2/1

4
s

2
s

5

c||
g

cL
L
















     , (8) 
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which demarcates the transition from insulating ( c|||| LL  ) to conducting ( c|||| LL  ) 

boundary conditions when the boundary plate itself is not explicitly an insulator. Here, 

the insulating (conducting) regime is characterized analytically as having a small (large) 

sheath term. Also recall that the drift wave and sheath time scales scale similarly, so that 

the limiting cases in the insulating (conducting) regimes correspond to having 

interchange (drift wave) drive as the dominant effect. 

 In dimensionless Bohm units (with all lengths normalized to s  and velocities 

normalized to sc ) and with r/v~g 2
 , Eq. (8) becomes   2/125

c|| v/rLL  .  Thus, for a 

fixed ||L , this scaling argument predicts that large (small) azimuthal velocities 

correspond to perturbations which are disconnected (connected) electrically to the end 

plates and thus to the IBC (CBC) regimes. This result agrees qualitatively with both the 

simulations and the experimental data (as discussed further in Sec. V). 

 The overall point of this discussion is the following. When conducting end-plates 

are employed, so as not to forbid parallel currents outright, the sheath itself can either act 

as an insulating or conducting end-wall boundary condition, according to Eq. (8). When 

insulating end-plates are employed, the electrical characteristics of the sheath are not 

relevant.  In the SOLT simulations which follow, we legislate the sheath to be insulating 

for the IBC simulations, but allow the sheath conductivity to take its natural value for 

CSDX parameters in the CBC case.  This value turns out to permit substantial parallel 

currents, i.e. c|||| LL  . 

 As an aside, we note that in the toroidal-curvature-driven (e.g. tokamak) case 

(with R/c~g 2
s ), solving Eq. (8) for L  gives the usual characteristic blob scale length 

 L  that separates the inertial (  ) from the sheath-connected (  ) 

regimes.24,25 However, when the turbulence is rotationally-driven ( r/v~g 2
 ) and the 

radial scale L of the turbulence is insensitive to the axial BC, Eq. (8) becomes a 

condition on the parallel scale length. 
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III. SOLT model 

 The 2D SOLT code20-23 simulates electrostatic fluid turbulence driven by 

external forces (e.g. magnetic curvature or centrifugal force), velocity shear and drift 

waves in a plane perpendicular to the magnetic field B. The physics model includes 

turbulent radial transport (turbulent Reynolds stress and blobs), sheared flow effects (KH 

instability and velocity-shear stabilization), and sheath dissipation of particles, energy 

and momentum. The simulation domain is the radial-azimuthal plane of the cylindrical 

CSDX plasma, averaged along field lines. Thus, the code is “global” (not a flux-tube 

model) and allows flexibility in setting up the transition from the core to the wall using 

reference profiles described below. The simulation plane is denoted as the (x, y) plane, 

where x is the radial distance from the center of the plasma (r = 0), and y is the binormal 

(approximately azimuthal) coordinate. The B field is in the z direction.  We note that the 

density profile in the simulation is specified all the way to x = 0, but it is a slab model 

without cylindrical coordinate Jacobian factors, so one cannot take the inner part (near 

the origin) very seriously. We will discuss this point further. 

 The physics of the model is described in an earlier paper,21 and a derivation of the 

equations is given in the Appendix of that paper. Here, we give only a brief summary of 

the model. The fundamental equations in the SOLT model are the vorticity, continuity 

and energy conservation (temperature) equations. In the present study, we simplify the 

model by assuming a constant temperature profile. Thus, the model reduces to the 

following equations: 

 
y

)nT(

n
J)n,(An

dt

d
||shdw




  (9) 

  ||
2/1

shdw JnT)n,(A
dt

dn
  (10) 
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The convective derivative is written as d/dt = /t + v where v = ez  Here, all 

quantities are made dimensionless using Bohm units, viz. inverse time-scales are 

normalized to ci = ZeB/mic and space scales to sr = csr/ci, where 2
src = Ter/mi and Ter 

is a reference temperature. The electron density ( ern/nn  ) and parallel current 

( srer|||| cen/JJ  ) are normalized using a reference density ner. In the present work, the 

temperature is taken to be a constant, so that 1T/TT ere   in these equations.. The 

dimensionless force parameter  is defined as )r/)(c/v( s
2
s

2    and thus the last term 

on the right hand side (RHS) of Eq. (9) provides the interchange drive for the turbulence. 

 Analytical closure relations are employed to describe the parallel dynamics in 

these equations. A number of closures have been used in previous work. Here, when 

)L/2( ||ssh   is large the relationship of parallel current J|| to  is prescribed by a 

sheath closure, )e1(nTJ T/)(2/1
||

B  , where B ~ 3 T is the Bohm sheath potential. 

The parameter sh is called the sheath conductivity. Additionally, an adiabaticity model 

for J|| is employed to capture basic drift-wave physics from the parallel electron 

dynamics, which dominates when k|| is large or ei is small. This results in the terms with 

the drift wave operator Adw , defined by 

  nlnTT)n,(A 2/3
dwdw  , (11) 

where  QQ  is the zonal or y-averaged part, and   QQQQ
~

   is the fluctuating 

part, of any quantity Q. The parameter dw  is defined in Eq. (4). The operator Adw 

enforces a Boltzmann response on fluctuations when the coefficient dw is large, in the 

spirit of the Wakatani-Hasegawa adiabaticity parameter.27 The term on the left hand side 

of Eq. (9) comes from the ion polarization drift. 

 To summarize, the important physics parameters in the SOLT model are 

 
rc

v s
2
s

2 
      ,   





||

s
dw

L

2
  ,    

||

sr
sh

L

2
   , (12) 
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where )/L()m/m( ei||
2/1

ie   is a collisionality parameter. Here is the centrifugal-

force parameter, dw  is the electron adiabaticity (drift wave) parameter, and sh  is the 

sheath conductivity parameter, where L|| is the midplane-to-divertor-plate connection 

length in the SOL. If we tried to match the experimental profiles, then  dw , and  

sh would be functions of x.  Here, for simplicity, we take each of these profiles to be 

constant in radius and use a typical value. 

 The SOLT code solves the vorticity equation, by splitting Eq. (9) into zonally-

averaged and fluctuating parts. The zonally-averaged part is manipulated into a 

conservative form for zonal (i.e. y) momentum conservation. The Boussinesq 

approximation is employed on the fluctuating part. Small diffusive terms are usually 

added to Eqs. (9) – (10) to absorb high-wavenumber fluctuations before they cascade to 

the scale of the numerical grid.    

The model equations are solved subject to the following set of boundary 

conditions: (1) azimuthal (y) periodicity is assumed; (2) fluctuations are forced to vanish 

( 0
~

n~  ) on the left and right boundaries in x; (3) 0φv xy   on the core side 

(left) boundary; and (4) T3φ   is imposed at the radial wall (right hand boundary in x). 

Finally, it is important to discuss the sources and sinks in the CSDX simulations.  

To obtain an effective particle source and sink, we force the density profile to relax to a 

reference density profile )x(n0 , where the latter is based on experimental data. This 

requires an extra term in the continuity equation of the form )nn( 0n  . The temperature 

is specified to be constant in x and t at the experimentally measured value (Te = 3 eV). 

Note that the velocity profile  xy )x(v  is free to evolve in this simulation (except at 

the left boundary) and gives another point of comparison with the experiment.  

IV. Simulation Results 

 In this section, we compare SOLT simulation results for the insulating (IBC) and 

conducting (CBC) cases.  For the IBC case, the experiment19 shows strong turbulence 
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and associated flows, and there is some evidence for drift wave effects. There are no 

sheaths in the insulating limit. The IBC case is modeled by the following choice of 

dimensionless physics parameters: 01.0 , 01.0dw   and 0sh  . For the conducting 

boundary experiments, the flows are much weaker, drift wave effects are important, and 

sheath formation is expected. Thus, the CBC case is modeled by 0025.0 , 01.0dw   

and 01.0sh  .  Note that the centrifugal force parameter was reduced by a factor of 4 in 

the CBC case to model the reduced flows.  In both cases, the density relaxation parameter 

is 05.0n  . 

A.  Basic properties 

 A representative selection of results from the IBC simulation is shown in Fig. 1 

and results from the CBC simulation are shown in Fig. 2. Here, the notation 

t,yt QQ   denotes the y- and t-averaged quantity, where y is the zonal average. 

In part (a), the average density profile is shown, and the vertical lines (which appear as 

dots) denote the standard deviation of the fluctuations about the mean. The fluctuations 

are small partly because the density relaxation rate n  is large ( 5~/ dwn  ). In both 

cases the density profile relaxes to the reference profile )x(n0 , which is a tanh fit to the 

experimental density profile. Note that the scales of the two plots are different; the 

density is smaller in the CBC case because of particle losses to the sheath (particle loss 

rate shsh/1  ). 

 In part (b) the radial dependence of the average velocity profile is shown. The 

sheared velocity profile is the result of the self-consistent evolution of the turbulent 

fluctuations.  Note that the ty )x(v   profile has two lobes and the fluctuations 

(indicated by vertical lines) are large. The positive velocity lobe agrees with the flow 

direction observed in the experiment. The existence of two lobes in the simulation is due 

to azimuthal momentum conservation and the chosen initial condition for the azimuthal 

velocity. The simulations are initialized with 0)0t(vy   at all x, so by momentum 
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conservation the radially-integrated density-weighted velocity must vanish. This requires 

the dipole structure of ty )x(v   observed in part (b) of Figs. 1 and 2. The experiment 

may not conserve azimuthal momentum to the same degree as the simulations due to 

dissipation, e.g. from ion-neutral drag effects,28 and thus have only the positive velocity 

lobe. Also, cylindrical geometry (not modeled here) will affect the weighting of the 

azimuthal momentum, to the extent it is conserved.  

 The maximum azimuthal velocity in the simulation is about 400 m/s for the IBC 

simulation, compared with 950 m/s in the IBC experiment. In the simulations, the 

maximum tyv   is much larger for the insulating case than for the conducting case, in 

qualitative agreement with the experiment. (This also justifies after the fact the choice of 

a reduced value of 2v  in the CBC simulation.) We also plot the radial profile of the 

zonally-averaged Reynold’s Stress (RS), t,yyxvv  , for the two cases in part (c) of 

Figs. 1 and 2.  As in the experiment, the simulations of the two cases show that the radial 

profiles of the RS have different shapes; the magnitude is similar but the signs are 

different for the IBC and CBC cases. Thus, the axial BC strongly influences the 

azimuthal flows. 

 In part (d) we plot the frequency spectrum of the potential fluctuations 

y
2|)(|   at a fixed radial point (x = 3.8 cm). Note the logarithmic scale of the 

fluctuations. Here, the underlying physics becomes more visible. The IBC case is 

characterized by broadband turbulence with an inverse cascade, leading to sheared flows 

at 0 .  In contrast, the CBC case has discrete modes and much less activity near 

0 . Note that this behavior persists over five orders of magnitude. The presence or 

absence of the inverse cascade in the two cases may partly explain why the flows are so 

much larger in the insulating case. The time dependence of the RS is shown as an inset to 

the frequency spectra. This shows the same features (broadband turbulence in Fig. 1 vs. 

discrete, quasi-periodic modes in Fig. 2). These results are qualitatively consistent with 

the results obtained in the CSDX experiment.19 
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 In part (e) of these figures, we show the wavenumber spectrum of the potential 

fluctuations t
2

y |)k(|   at a fixed radial location, x = 3.8 cm.  In the IBC case, the 

mode driving the turbulence occurs at 1
y cm6.0k  ; the inverse cascade then enhances 

the mode at 1
y cm3.0k  , but this does not occur in the CBC case. Thus, both the 

frequency and wavenumber spectra show the characteristics of the nonlinear cascade in 

the IBC case. The peak value of ky can be compared in the simulation and the 

experiment. In the latter, the dominant mode is m = 3, the plasma radius is a = 6 cm and 

the associated wavenumber is 1cm5.0a/mk 
  , which is close to the value 

1
y cm6.0k   in the simulation. 

 In part (f), we show an (x,y) contour plot of the potential fluctuations near the end 

of the simulation, in the saturated turbulent state. The contour plot shows the spatial 

patterns reflecting the different dominant modes in the two cases.  

B.  Dominant physics 

 A term-by-term analysis of the energy budget, derived from the vorticity 

equation, in the simulation allows us to understand the dominant physical processes in 

both cases discussed in the previous section. In Fig. 3, the following quantities are plotted 

for both the IBC (solid line) and CBC (dashed line) cases: (a) the wavenumber spectrum 

of the total kinetic energy, t,x
2

k ||  v , where k = ky; (b) the centrifugal forcing term in 

the vorticity equation, proportional to ; (c) the sheath term, proportional to sh ; (d) the 

nonlinear (NL) term t,x
2 )(v  , which is responsible for the mode coupling and 

inverse cascade of the energy; (e) the drift wave term, proportional to dw ; and finally 

(f) a dissipation (viscosity) term,  24 , which was used in these simulations. 

All terms in Fig. 3 are averaged over x and t.  The x average is justified because the 

dominant modes fill the computational domain, and the time average is taken over the 

last half of the simulation run in order to exclude initial transient effects. 
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 In part (a) note that the ky spectrum of t,x
2

k ||  v  peaks at the second 

wavenumber for both IBC and CBC cases, but the behavior as 0ky   is quite different 

for the two boundary conditions. Only the insulating case shows evidence of sheared 

zonal flows due to inverse cascade from higher k. 

 An analysis of parts (b) to (f) of Fig. 3 leads to the following physical picture. In 

the insulating case, the instability is driven by both the rotational (  ) and the drift 

wave ( dw ) drives. These are balanced by damping from the nonlinear term and from 

the dissipation term (  ). The nonlinear term takes energy away from the dominant 

mode and transfers it to the sheared flows by inverse cascade. The viscosity term 

dissipates high-k modes produced by the forward cascade of vorticity. It should be noted 

that the drift wave drive (with linear growth rate 1 nL ) is stronger than the rotational 

drive ( 2/1 nL ) for these parameters. This typically occurs when the density gradient is 

steep, as in the present simulations.  

 Turning to the conducting case in Fig. 3, we see that the drift wave provides the 

dominant instability drive and the energy sinks are provided by the sheath and viscosity 

terms. The power budget analysis shows that the sheath term is very important in the 

CBC case, whereas it plays no role ( 0sh  ) in the IBC case. The presence of sheath 

dissipation diminishes the inverse cascade and the development of sheared azimuthal 

flows in the simulation. In both the insulating and conducting cases, the drift wave 

instability drive is important in the simulations, as it is in the CSDX experiment.   

V. Experimental results 

 In this section, we will illustrate some of the main points of comparison between 

the theory (Sec. II),  the simulations (Sec. IV) and the CSDX experimental data (Ref. 19). 

Some pertinent figures from Ref. 19 are reproduced here for the reader’s convenience.   

 A dimensional analysis in Sec. II gave conditions for the sheath term to be in the 

insulating and conducting limits. The insulating BC is appropriate when the end plate is 
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covered with an insulating material or when c|||| LL   (for the case where the conducting 

end plate is covered by a plasma sheath). In the latter case, the sheath imposes a 

conducting BC when c|||| LL  , where ||L  and   2/125
c|| v/rLL  are given in Bohm units. 

We have estimated the ratio c|||| L/L  for the CBC cases using the experimental 

parameters to show that in fact it should behave in the conducting limit.  In Fig. 4, the 

experimental data for the measured azimuthal velocity profile, )r(v , is shown for both 

cases, and allows us to estimate the radius r (taken to be the point where v  peaks) and 

the perpendicular scale length L . For the CBC case, the parameters are r = 3 cm, 

cm2L  , and s/cm105v 4 . The parameters which were held fixed for both cases 

are cm280L||  , B = 1 kG, Te = 3 eV, Z = 1 and 18  (Argon gas), where Z is the 

charge state and pi m/m  is the ion / proton mass ratio. The result of this analysis is 

that 2L/L c||||   for the conducting case. Thus, to within a factor of 2,  the experimental 

data confirms at the heuristic level of the theoretical estimates in Sec. II that the CBC 

case is indeed in the conducting limit and therefore significant differences in behavior 

should be expected in the CBC and IBC cases. 

 We now turn to a comparison of the experimental and simulation profiles. In Fig. 

4, the radial profile of v  is computed using Time Delay Estimation (TDE) methods. 

Azimuthal EB velocities calculated from swept Langmuir probe measurements of the 

plasma potential (not shown here) give results quite close to the TDE results. In the 

simulations, v  is obtained directly by taking both time- and azimuthal-averages over the 

turbulence of the azimuthal component of B/cEx . In Fig. 4 the main feature of interest 

here is that the peak v  is significantly larger for the IBC case than for the CBC case. 

These profiles are to be compared with the simulation results shown in part (a) of Figs. 1 

and 2.  Specifically, we compare the positive velocity lobe in the simulation with the 

positive lobe in the experimental data, looking for qualitative trends. In both experiment 

and simulation, the azimuthal velocity is stronger in the IBC case.  
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 The ratio of the peak velocities for the IBC / CBC cases is about two in the 

experiment and four in the simulation. Better agreement for this ratio could have been 

obtained by optimizing the values of the parameters in the simulation, but this was not 

intended to be a quantitative study. For a qualitative study, this factor of 2 agreement is 

reasonable. The physical reasons for the difference between the IBC and CBC cases were 

discussed in Sec. IV.B, based on an analysis of the various physical terms in the 

turbulence simulation.  

 Finally, we note again that the radial location of the peak velocity differs between 

the simulation and the experiment. Possible reasons for this difference were discussed in 

Sec. IV.A in connection with Fig. 1(a).  

 The experimental Reynold’s stress (RS) radial profiles,  vvr  , are shown in 

Fig. 5, which is to be compared with the profile of  yxvv  in part (c) of Figs. 1 and 2.  

Both the experiments and simulations have a larger RS in the insulating BC case than in 

the conducting BC case. Another point of agreement is that the peak RS in the IBC case 

is about 129 scm10   for both simulation and experiment.  

 One difference between the simulation and experimental results is that the RS 

data in the simulation [Fig. 1(c) and 2(c)]  is not filtered, whereas the experimental data 

(Fig. 5) uses a pass-band filter that removes the low frequency (< 5 kHz) fluctuations 

associated with the sheared flow and retains the frequency range (5 kHz < f < 30 kHz) 

associated with the drift waves29-31 Applying a similar pass-band filter to the simulation 

data shows that the mean value of the RS is not affected very much by the filtering, but 

the standard deviation is reduced as the allowed frequency range is reduced. Comparing 

cases with similar filtering, we note that the standard deviation of the RS fluctuations is 

larger in the simulation than in the experiment, indicating that in some sense the 

simulation is more robustly turbulent. We did not show the filtered results for the 

simulation because they are basically similar to the unfiltered results. 
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 Finally, in Fig. 6 we show the experimentally-obtained frequency spectra for the 

plasma floating potential fluctuations in the IBC and CBC cases. These figures are to be 

compared with part (d) of Figs. 1 and 2. The same qualitative character is evident in both 

experiment and simulation. In the case of the insulating boundary, there is strong 

broadband turbulence and an inverse cascade to low frequency (and long scale lengths, 

coupling to the sheared flows). With a conducting boundary, the turbulence is replaced 

by discrete modes which have a drift wave character, and there is no cascade to low 

frequencies. In both the simulation and the experiment, the peak fluctuations occur in the 

frequency range 5 – 10 kHz. The radial dependence of these frequency spectra are shown 

in Fig. 7 of Ref. 19,  confirming that the behavior described here is global in nature. 

 

VI. Summary and Discussion 

 In this paper, we have studied the influence of the axial boundary condition (and 

hence parallel currents) on drift-interchange turbulence in CSDX, a linear plasma device 

with turbulence that is quasi-two-dimensional. This study compared the results of 

analytic work (Sec. II) and numerical simulations (Sec. IV) with experimental data19 

(Sec. V). The simulations used the SOLT code,20-23 which is well-suited to studying the 

effect of parallel BCs on turbulence (Sec. III). 

 The analytic estimates yielded a condition [see Eq. (8)] for a critical parallel 

connection length   2/125
c|| v/rLL  , where all lengths are normalized to s  and 

velocities normalized to sc .  For c|||| LL  , or when endplates are explicitly insulating, 

the theory predicts a regime in which the sheath and drift wave physics is weak and the 

azimuthal flow velocity is strong. For c|||| LL  , the theory predicts that the sheath and 

drift wave terms are dominant and the azimuthal flow velocity is weak. This analytic 

result was found to hold qualitatively in both the SOLT simulations and the CSDX 

experimental results. For the present experiment, we estimate 2L/L c||||   for the 
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conducting case, so that the use of a conducting endplate should significantly alter the 

dynamics, as observed in both simulation and experiment. 

 Regarding the simulation, the strongest point of agreement was the effect of the 

axial BC, as just described. The weakest aspect was the computed behavior at x = 0, 

which corresponds to the origin (r = 0) in the cylindrical  experiment. The velocity vy has 

a negative lobe at small x in both Figs. 1(b) and 2(b) which is not present in the 

experimental data. The dipole structure of vy (in x) was attributed to momentum 

conservation, although the different behavior of slab and cylindrical coordinates near the 

origin may also play a role. It is possible that implementing cylindrical geometry in the 

SOLT code would have eliminated this discrepancy, but this lies outside the scope of this 

paper.  Published analysis of these experments28 has also shown that ion-neutral drag can 

be important, particularly in the boundary region, and allows the plasma to exchange 

momentum with the laboratory. These effects also lie outside the scope of this 

comparison and are not included in the modeling presented here. 

 Despite the difference in geometry, there is qualitative agreement between 

experiment and simulations concerning the role of the axial BC.  In the simulations, the 

plasma with an insulating axial boundary showed a greater fluctuation level, broadband 

turbulence, and inverse energy cascade with development of sheared azimuthal flows. 

The plasma with a conducting axial boundary had a lower fluctuation level, quasi-

periodic (coherent) mode activity, weak inverse cascade and weak flows. All of these 

features agree with the experimental observations described in Ref. 19.  We note in 

passing that these results suggest that linear experiments with an insulating axial 

boundary are better suited to studies of turbulent cascades and sheared flow generation 

than those with conducting boundaries. 

 In both the insulating and conducting cases, the simulations showed that the main 

driver for the turbulence was the drift wave physics, although rotational (centrifugal) 

drive also played a role. The main difference between the IBC case and the CBC case 
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with c|||| LL   was the effect of the sheath in the latter case, viz. shorting out the DC and 

turbulent electric fields in the plasma by allowing current flow to the plate. The 

simulations confirm that the sheath dissipation plays an important role by stabilizing the 

broadband turbulence and thus diminishing the inverse cascade and formation of sheared 

flows. 

 The difference between the insulating and conducting cases can also be 

understood in terms of current conservation. The integrated sheath term in the vorticity 

equation [Eq. (9)] describes the J  B force from the radial current in the current loop 

implied by 0 J . Thus, the parallel current flow into the sheaths must balance this 

radial current, ||||
L

x
x JxdJ

x   , where  sh||J  and the brackets indicate a field 

line average. This sheath-generated radial current opposes the polarization drift current 

driven by the Reynolds stress. Thus, polarization drift effects, such as the development of 

broadband turbulence and inverse energy cascade to produce sheared azimuthal flows, 

are weaker when sheath currents are present. 

 The comparison of simulation and experiment in this paper is interesting from 

several points of view. First, it represents an initial attempt at SOLT code validation 

against a plasma device with quasi-2D turbulence. With the density profile forced to relax 

to near its experimental value, the azimuthal velocity profile evolved self-consistently in 

the simulation (driven by the Reynolds’ stress) to achieve a maximum flow velocity 

similar to that in the experiment. The density profile relaxation (equivalent to specifying 

the particle sources and sinks) was essential to obtaining the correct evolution of the 

velocity. This is an example of a general property of turbulence simulations: it is crucial 

in modeling experiments to use the correct sources and sinks and to avoid arbitrarily 

defining an equilibrium and then computing fluctuations about that fixed equilibrium. 

Second, this work demonstrates that the nature of the turbulence (e.g. strength of the 

inverse cascade) is sensitive to the detailed balancing of the parallel and perpendicular 
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currents, and thus to the axial boundary condition seen by the turbulence. This result has 

also been seen in studies of blob propagation.24,25 
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Figure Captions 
 

Fig. 1 (Color online) Numerical results from a SOLT simulation of CSDX with the 

insulating axial boundary condition: (a) radial profile of the average density, 

tn  ; (b) radial profile of the average azimuthal velocity, tyv  ; (c) radial 

profile of the average Reynold’s stress, t,yyxvv  ; (d) frequency spectrum of 

potential fluctuations y
2|)(|   at a fixed radial point (x = 3.8 cm); 

wavenumber spectrum of potential fluctuations t
2

y |)k(|   at x = 3.8 cm; and 

(f) contour plot in (x,y) plane of the potential fluctuations near the end of the 

simulation run (t = 56 ms). Here, t,yt QQ   denotes the zonally- and 

time-averaged value of any quantity Q. 

Fig. 2 (Color online) Numerical results from a SOLT simulation of CSDX with the 

conducting axial boundary condition: (a) radial profile of the average density, 

tn  ; (b) radial profile of the average azimuthal velocity, tyv  ; (c) radial 

profile of the average Reynold’s stress, t,yyxvv  ; (d) frequency spectrum of 

potential fluctuations y
2|)(|   at x = 3.8 cm; (e) wavenumber spectrum of 

potential fluctuations t
2

y |)k(|   at x = 3.8 cm; and (f) contour plot in (x,y) 

plane of the potential fluctuations near the end of the simulation run (t = 80 ms). 

Fig. 3  Wavenumber spectrum of the terms in the vorticity equation for simulations with 

the insulating axial BC (solid line) and the conducting axial BC (dashed line). The 

various terms are defined in the text. Note that the most unstable mode which 

drives the system is located at 1
y cm6.0k   in both the insulating and 

conducting cases. The detailed balancing of terms and the behavior near 0ky   

(inverse cascade) is different in the two cases. 

Fig. 4 (Color online) Radial profiles of the azimuthal velocity, using Time Delay 

Estimation methods, obtained for B = 1000 G, Prf = 1500 W, argon gas pressure 

of 3.2 mTorr. Red circles are for the IBC and the blue squares are for the CBC.  

The error bars show the standard deviation measured by three different pairs of 

probe tips. 
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Fig. 5  (Color online) Radial profiles of the Reynolds stress obtained for B = 1000 G, Prf 

= 1500 W, argon gas pressure of 3.2 mTorr. Red circles are for the IBC and the 

blue squares are for CBC. 

Fig. 6 Experimentally measured frequency spectrum of the floating potential, 
2

float , at 

the radial location (r = 3.8 cm) corresponding to the maximum density gradient 

for (a) the IBC case and (b) the CBC case.     



   
 

 24 

 
Fig. 1 



   
 

 25 

 
Fig. 2 



   
 

 26 

 
Fig. 3 



   
 

 27 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 

 



   
 

 28 

 

 

 

 

 

 

Fig. 5 

 

 

 

 

 



   
 

 29 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 

 



   
 

 30 

 References 
 
1 S. J. Zweben, J. A. Boedo, O. Grulke, C. Hidalgo, B. LaBombard, R. J. Maqueda, P. Scarin, and 

J. L. Terry, Plasma Phys. Controlled Fusion 49, S1 (2007). 

2  G. R. Tynan, A. Fujisawa and G. McKee, Plasma Phys. Control. Fusion 51, 113001 (2009). 

3  P. W. Terry, Rev. Mod. Phys. 72, 109 (2000). 

4  P. H. Diamond, A. Hasegawa and K. Mima,  Plasma Phys.Control. Fusion 53, 124001 (2011). 

5 M. J. Burin, G. R. Tynan, G. Y. Antar, N. A. Crocker, and C. Holland, Phys. Plasmas 12, 

052320 (2005). 

6 T. A. Carter, Phys. Plasmas 13, 010701 (2006). 

7 O. Grulke, S. Ullrich, T. Windisch and T. Klinger, Plasma Phys. Control. Fusion 49 B247–B257 

(2007). 

8 T. Windisch, O. Grulke, R. Schneider, and G. N. Kervalishvili, Contrib. Plasma Phys. 48, 58 

(2008). 

9 V. Naulin, T. Windisch and O. Grulke, Phys. Plasmas 15, 012307 (2008). 

10 T. Windisch, O. Grulke, V. Naulin and T. Klinger, Plasma Phys. Control. Fusion 53, 085001 

(2011);   T. Windisch, O. Grulke, V. Naulin and T. Klinger, Plasma Phys. Control. Fusion 53, 

124036 (2011). 

11   M. V. Umansky, P. Popovich, T. A. Carter, B. Friedman, and W. M. Nevins, Phys. Plasmas 

18, 055709 (2011). 

12  C. Holland, G. R. Tynan, J. H. Yu, A. James, D. Nishijima, M. Shimada and N. Taheri,  

Plasma Phys. Control. Fusion 49, A109 (2007). 

13 N. Kasuya, M.Yagi, K. Itoh, and S-I Itoh, Phys. Plasmas 15, 052302 (2008). 

14 W. B. Kunkel and J. U. Guillory, in Proceedings of the Seventh International Conference on 

Phenomena in Ionized Gases, Belgrade, 1965, edited by B. Perovic and D. Tosić 

(Gradjevinska Knjiga Publishing House, Belgrade, Yugoslavia, 1966), Vol. II, p. 702. 

15 A. V. Nedospasov, V. G. Petrov, and G. N. Fidel’man, Nucl. Fusion 25, 21 (1985). 

16 H.L. Berk, R.H. Cohen, D.D. Ryutov, Yu.A. Tsidulko and X.Q. Xu, Nucl. Fusion 33, 263 

(1993). 

17 O. E. Garcia, N. H. Bian and W. Fundamenski, Phys. Plasmas 13, 082309 (2006). 
 



   
 

 31 

 
18  I. Furno, C. Theiler, D. Lançon, A. Fasoli, D. Iraji, P. Ricci, M. Spolaore and N. Vianello, 

Plasma Phys. Control. Fusion 53, 124016 (2011). 

19 S. Chakraborty Thakur, M. Xu, P. Manz, N. Fedorczak, C. Holland and G. R. Tynan, submitted 

for publication in Phys. Plasmas  (2012) . 
20 J. R. Myra, D. A. Russell, and D. A. D’Ippolito, Phys. Plasmas 15, 032304 (2008). 

21 D. A. Russell, J.R. Myra and D.A. D’Ippolito, Phys. Plasmas 16, 122304 (2009). 

22 J.R. Myra, D.A. Russell, D.A. D’Ippolito, J-W. Ahn, R. Maingi, R.J. Maqueda, and J. Boedo, 

Phys. Plasmas 18, 012305 (2011). 

23 D. A. Russell, J. R. Myra and D. A. D’Ippolito, T. L. Munsat and Y. Sechrest, R. J. Maqueda, 

D. P. Stotler, S. J. Zweben and the NSTX Team, Phys. Plasmas 18, 022306 (2011). 
24

 S. I. Krasheninnikov, D. A. D’Ippolito and J. R. Myra, J. Plasma Phys. 74, 679 (2008). 

25 D. A. D’Ippolito, J. R. Myra and S. J. Zweben,  Phys. Plasmas 18, 060501  (2011). 
26 J.R. Myra, D.A. Russell, D.A. D'Ippolito, J-W. Ahn, R. Maingi, R.J. Maqueda, D.P. Lundberg, 

D.P. Stotler, S.J. Zweben, and M. Umansky, J. Nucl. Mater. 415, S605 (2011). 
27 M. Wakatani and A. Hasegawa, Phys. Fluids 27, 611 (1984); A. Hasegawa and M. Wakatani 

Phys. Rev. Lett. 59, 1581 (1987). 

28 Z. Yan, M. Xu, P. H. Diamond, C. Holland, S. H. Müller, G. R. Tynan, and J. H. Yu, Phys. 

Rev. Lett. 104, 065002 (2010). 
29  M. Xu, G. R. Tynan, C. Holland, Z. Yan, S. H. Müller, and J. H. Yu, Phys. Plasmas 17, 032311 

(2010). 
30 Z. Yan, G. R. Tynan,  C. Holland,  M. Xu, S. H. Muller and J. H. Yu, Phys. Plasmas 17, 

012302 (2010). 

31 Z. Yan, G. R. Tynan,  C. Holland,  M. Xu, S. H. Muller and J. H. Yu, Phys. Plasmas 17, 032302  

(2010). 


	D. A. D’Ippolito, D. A. Russell, and J. R. Myra
	Lodestar  Research Corporation,
	2400 Central Avenue, Boulder, Colorado 80301

	S. C. Thakur, G. R. Tynan and C. Holland
	June, 2012
	Submitted to Phys. Plasmas

