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Abstract 

This paper is motivated by the recent measurement of large ( > 100 V) plasma 

potentials in Alcator C-Mod during ion cyclotron range of frequencies (ICRF) heating. 

The plasma potential is measured on field lines that intersect a limiter but do not pass 

near a powered ICRF antenna. The measured potential correlates with the local ICRF fast 

wave electric field and is a prime candidate  to cause increased Mo sputtering from the 

limiter surface.  In this paper it is shown that a theory of “far-field” radio-frequency (rf) 

sheaths can qualitatively explain this experimental observation. The theory describes rf 

sheath formation when unabsorbed fast ICRF waves are incident on a conducting 

boundary far from the antenna.  It is shown that the rf sheath drive is sensitive to the 

angle between the surface normal and the equilibrium magnetic field. The main 

conclusion of this work is that the rapid tangential variation in the B field-limiter 

geometry near the tip of the limiter promotes the formation of large sheath potentials of 

the same order as the measured ones.  

 

PACS numbers: 52.35.Mw, 52.40.Fd, 52.40.Kh, 52.50.Qt, 52.55.Fa 
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1. Introduction 

The importance of controlling radiofrequency (rf) sheaths in experiments with 

ICRF heating has been shown by a growing body of experimental and theoretical work. 

High-voltage sheaths forming on the surface of antennas and limiters can lead to rf-

specific impurity production, hot spots, edge power dissipation, and other unwanted 

effects. These effects are cumulative over a discharge and thus are especially important 

for longer-pulse tokamak experiments and future reactors. The physics of rf sheaths have 

been discussed in a number of recent review and overview papers,1-3  and continue to 

stimulate experimental work and modeling.4-9  Most work on this subject has dealt with 

“near field” sheaths driven by the antenna near fields. Some work has also been devoted 

to modeling “far field” sheaths,10-13 in which waves encounter surfaces far from the 

antenna and generate sheath potentials on field lines not mapped back to the active 

antenna. This is the subject of the present paper.   

Here, we apply an extension of an earlier one-dimensional (1D) local far-field 

sheath model13 to understand the results of a recent set of experiments on the ICRF-

heated Alcator C-Mod tokamak.14 We would like to establish the conditions under which 

the measured plasma potential is due to the fast-wave (FW) or slow-wave (SW) driven 

far-field sheath formation process. (Here and in the following, the term SW can refer to 

both the propagating slow wave as well as to evanescent fields that have the slow wave 

polarization.) The relevant C-Mod experimental observations14 are the following:    

a) Large plasma potentials ( V100~p , all potential measurements are with respect to 

the grounded vacuum vessel) are found on field lines connecting the emissive probe 

to a nearby plasma limiter; these probes are not magnetically mapped to the powered 

rf antennas. 

b) This plasma potential rises rapidly in the vicinity of the limiter tip and then decays 

exponentially along the major radius direction behind the limiter tip with a radial 

scale length of about 3.5 cm. 

c) The B  probe measurements show that the dominant ICRF wave component is the 

FW component (toroidal component of B ). 
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d) The FW component of the B signal is correlated with the strength of the measured 

potential, and a threshold electric field component of the FW is required to create a 

significant plasma potential ( ep T3 ).  

e) Mo sputtering of the limiter surface greatly increases in ICRF-heated discharges. 

These results are consistent with the idea that unabsorbed fast wave power leaving the 

core plasma can produce rf sheaths on open field lines in the scrape-off-layer (SOL). This 

process can provide a global mechanism for rf-specific impurity generation far from the 

antenna. Although impurity data on ICRF-heated tokamaks sometimes suggest the 

existence of a global rf mechanism, the direct measurement of large potentials on C-Mod, 

and the far-field sheath analysis of these results, are interesting because there are few 

examples of well-documented far-field sheaths. 

 The plan of this paper is as follows. Section 2 describes the experimental 

arrangement and the data under discussion here.  In Sec. 3 we summarize the sheath BC 

and the far field sheath model constructed from it. This section also discusses the 

important idea that an intrinsic short scale length (high k) occurs in the tangential 

direction near the tip of a poloidal limiter.  It will be shown that high-k  modes can drive 

large sheath potentials.  Section 4 compares the numerical results from the far field sheath 

model with the experimental data from Alcator C-Mod. A summary and discussion is 

given in Sec. 5. 

2. Experimental results 

 In this section, we briefly describe the experimental arrangement of the Alcator C-

Mod tokamak and the relevant probe data, which has been discussed elsewhere.14 

 As shown in Fig. 1, C-Mod has two-strap ICRF antennas located in the D and E 

ports, and a four-strap antenna in the J port. The antenna operating frequencies are 80.5, 

80.0, and 80.5 MHz for the D, E and J antennas respectively and a typical heating scheme 

is D(H) minority heating. The ICRF antennas are separated by a series of limiters. BTor 

and IP refer to the toroidal magnetic field and plasma current, respectively. A variety of 

probes are located around the machine to diagnose the local plasma density, electron 
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temperature and plasma potential, as well as the rf fields. It was previously shown that 

ICRF-induced plasma potentials on field lines that directly map to an active ICRF 

antenna had some characteristics that were consistent with the theory of the slow wave 

(SW) resonance cones propagating along field lines,15 viz. the plasma potential was large 

(50 – 200 V), increased with the local plasma density, and had a sharp local plasma 

density threshold.14  

 The subject of the present paper is a complementary set of measurements taken in 

the private SOL behind the limiters using the A-port scanning probe (ASP) in port A and 

the Lower B-side (LB) limiter probe station located on the lower B-side of the A-B 

limiter. See Figure 2 for a more detailed top cross-sectional view of the A-B limiter. All 

stated coordinates are mapped to the mid-plane. R refers to the major radius direction, B 

refers to the total magnetic field direction (B  BTor), s is the unit vector normal to the 

surface and x-y are local coordinates. The distance d defines the radial extent of the 

limiter tip—the region over which the angle between s and B rapidly changes. As 

summarized in the Introduction and discussed in Ref. 14, large plasma potentials are also 

measured at these probe stations when any of the antennas are powered. Since these 

probes are recessed behind limiters, slow waves launched at the ICRF antennas and 

travelling nearly parallel to magnetic field lines cannot access this private SOL; in any 

case, these probe stations do not directly map along field lines to any of the antennas. 

There is another mechanism that may account for the measured plasma potentials: 

unabsorbed fast waves that travel across field lines can leave the core plasma and end up 

in this private SOL region by spreading or by reflection. The far-field sheath model 

described in Sec. 3 provides a local model of this situation and allows us to estimate the 

sheath potential in the vicinity of the limiter.  

 The local plasma potential p  was measured using emissive probes, the local 

plasma density ne and temperature Te were obtained using Langmuir probes, and the 

local rf wave electric fields were measured using B  probes. The emissive probe in the 

ASP station measured the radial variation of the plasma potential shown in Fig. 3 for both 

Ohmic and ICRF-heated shots. There is a large (1 – 2 orders of magnitude) difference in 
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plasma potential between the two cases.  Note that the largest plasma potential for the 

ICRF-heated shot is nearly 400 V and occurs just behind the limiter tip. The radial decay 

length of the plasma potential behind the limiter tip is about 3.5 cm. The Langmuir 

probes mounted on the ASP station, approximately 1 mm radially behind the emissive 

probe, measured the radial variation of the plasma density and electron temperature: the 

electron density is ~6x1018 m-3 at the main limiter plasma facing surface (Rmid = 0.91 m) 

and drops exponentially in major radius with a characteristic e-folding distance of ~5 

mm; the electron temperature in the shadow of the limiter is approximately constant at 

~10 eV. 

 The emissive and B  probes at the A-B Limiter Probe station measured the 

dependence of the local plasma potential on the fast wave (FW) electric field strength for 

various positions of the ICRF D(H) minority resonance major radius location: 

]cm[5.66R res-ICRFres  . Changing the resonance location away from Ro allowed to 

sweep a wide range of FW electric field values at the probe by varying sawtooth-

modulated FW core absorption. The largest sawteeth, and accompanying FW electric 

field modulations, were observed for res = 0 cm. The resonance shift was obtained by 

varying the toroidal magnetic field strength and keeping all the other plasma parameters 

constant. This data is shown in Fig. 4. This figure shows a good correlation between the 

local FW electric fields and ICRF-enhanced plasma potentials. Also, this figure shows 

that there is a sharp threshold in FW electric field strength for the formation of a large 

plasma potential at ~6 V/cm. This is consistent with the far field sheath model discussed 

subsequently. The model describes the FW rectification process that leads to the 

increased plasma potential. 

 Additionally, Fig. 4 implies that the plasma potential at the LB limiter probe 

depends on the radial location of the ICRF minority-ion resonance, another indication 

that the ICRF-enhanced plasma potentials are driven by FW fields. Here, we will attempt 

to show that the magnitude and radial location of the rf-induced plasma potential can be 

accounted for in far-field sheath theory. 
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3. Far-field rf sheath model 

The physics of an rf sheath can be described briefly as follows. When the rf 

electric field has a component E|| parallel to the equilibrium magnetic field, rf waves can 

accelerate electrons along the magnetic field lines and enhance electron losses to material 

surfaces which intersect the field lines. An rf sheath potential rf  is required to maintain 

time-averaged quasi-neutrality in the plasma region by reducing electron losses and 

increasing ion losses. Like the thermal Bohm sheath, the time-averaged  rf sheath is a thin 

electron-poor region on the scale of a Debye length. In fusion experiments with high 

power ICRF heating, the rf sheath potential is typically much larger than the Bohm 

potential )T3~( eBrf  .  

3.1  Sheath BC 

A proper treatment of rf wave propagation requires a self-consistent treatment of 

the interaction between the waves and the sheaths. One approach is to use an rf sheath 

boundary condition (BC),12,16 which treats the electron-poor sheath region as a thin 

vacuum layer. This vacuum layer approximation, employed previously in some codes as 

a sub-grid model,17 captures the large change in the rf parallel electron response across 

the sheath interface, i.e. from the quasineutral plasma to the electron-depleted sheath 

layer. The rf sheath BC is derived from Maxwell’s equations using the continuity of the 

normal component of the displacement EεD   and of the tangential components of the 

electric field E across the plasma-vacuum (sheath) interface. The BC at this interface is 

given by12,16 

 )/D( shntt E  , (1) 

where the subscripts n and t denote “normal” and “tangential” to the sheath surface, the 

field components are defined on the plasma side of the interface, and   is the time-

averaged sheath width (sufficient for computing the rectified sheath potential defined 

subsequently). The dielectric constant sh  in the sheath region is given by its vacuum 

value, 1sh . The right hand side contains the effect of the sheath capacitance (  /1 ). 

When the sheath capacitive impedance (  ) is neglected, one recovers the usual metal 
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wall BC, 0t E . Also note that the BC incorporates plasma dielectric effects through 

||||n ED εbs  , where s is the unit vector normal to the sheath pointing into the plasma 

and B/Βb   is the unit vector parallel to the magnetic field. Only the waves with 0E||   

make a significant contribution to the rhs of Eq. (1).  

 If the sheath width   is regarded as specified, the sheath BC gives a linear 

relation between the rf fields and the rf sheath potential, n
)sh(

nrf D E , where 

the superscript (sh) indicates a field component on the vacuum side of the sheath-plasma 

interface.  However, for self-consistency, the sheath width and the rf sheath potential 

have to satisfy the nonlinear Child-Langmuir (CL) law,18  

   4/3
eshd T/e .  (2) 

Here the electron Debye length is defined by 2/12
ed )ne4/T(   and sh  is the 

“rectified” (i.e. steady-state or DC) sheath potential defined by  

 erfshsh T3C    , (3) 

The second term on the rhs of Eq. (3) is the (approximate) Bohm sheath potential due to 

thermal electron loss, rf  is the amplitude of the time-varying rf sheath potential, and 

rfshC   is the DC sheath potential obtained by rectification of the oscillating rf sheath 

potential (Csh is an order unity rectification coefficient),19 with the conducting boundary 

assumed to be at zero potential. An interesting feature of the model with self-consistent 

sheath width is that the CL constraint makes the BC nonlinear and can lead to multiple 

roots.  

 A number of model problems using the sheath BC have been solved analytically 

in one-dimensional geometry. The reader is referred to the introduction of Ref. 20 or to 

Appendix A in Ref. 21 for detailed summaries of this work, which illustrates the effects 

of the sheath capacitance on the rf fields and on sheath formation.  

3.2  B field and wall geometry  

 The sheath BC in Eq. (1) is sensitive to the geometry of both the magnetic field 

and the bounding surface. Consider the case where the static magnetic field B is not a 
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flux surface and thus has a component normal to the material boundary ( 0bs ). In this 

case, both the FW and SW electric fields have components tangential to the surface 

which are coupled by the BC, even in the weak sheath limit where the BC reduces to 

0tE .  By coupling to the SW polarization, which has 0E||  , the FW can generate a 

sheath potential. In low density plasmas these slow waves, generated at the sheath 

surface, could be propagating, but in high density plasmas they would be evanescent 

fields, decaying into the plasma. 

 Calculations using a 1D far-field sheath model13 show that the requirement for 

getting large far-field sheath contributions is to have rapid spatial variation (or 

equivalently, large kt) in the direction tangential to the sheath. This condition can be 

satisfied near the tip of a limiter.  A sketch of the limiter geometry is shown in Fig. 2.  As 

shown in that figure, the magnetic field is well aligned with the limiter when it is 

tangential to the limiter surface ( 0bs ); this occurs near the tip of the limiter.  It is 

poorly aligned when it is normal to the limiter surface ( 0bs ).   Assuming that the k 

vector lies in the plane of s and b, the typical wavenumber tk and index of refraction 

c/ωkn tt   are proportional to 1/d ,  where d is the distance over which the misalignment 

factor bs   varies from 0 to . (The proportionality constant is not determined in our 1D 

model;  a reasonable estimate of the range of uncertainty would be π/2d to1/d~kt .)  In 

the experiment, cm1~d , and we note that d is comparable to the characteristic scale 

length over which the plasma potential rapidly rises to its maximum value, see Fig. 3.   
 

3.3  Solution of model equations  

 The far field sheath model developed in Ref. 13 is the starting point for the 

present calculation. It uses a wave-scattering formulation, with incoming and outgoing 

fast and slow waves coupled by the rf sheath BC. This model is 1D (varying in the 

direction normal to the sheath) and local to a particular contact point with the sheath. We 

define the following local coordinate system: x denotes the direction normal to the sheath 

(with unit vector xês ) and (y, z) are the ignorable directions tangential to the sheath. 

The sheath is located at x = 0 and the plasma region has x > 0. For given values of 
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zy nandn  the wave structure in x is determined analytically by the sheath BC in Eq. (1). 

This BC can be written in the form 

  nD sEs   , (4) 

where all quantities are evaluated at the sheath-plasma interface. We assume constant 

density in the vicinity of the boundary which makes Fourier analysis possible. For 

simplicity, we assume that all waves have the same Fourier components in y and z, which 

is a limitation of the model. For each wave, xk  is determined numerically from 

zy kandk  using the homogeneous plasma dispersion relation.  

 In Ref. 13 we considered a minimal three-wave coupling model, which is 

generalized here to include four waves:  an incident and reflected FW and an incident and 

reflected SW. These waves can be propagating or evanescent. For consistency with the 

notation of our earlier paper, we use subscripts 0, 1, 2 and 3 to denote incident FW, 

reflected FW, reflected SW and incident SW, respectively.  In a homogeneous plasma, 

the wave equation yields a 4th order dispersion relation for the four coupled fast and slow 

waves, 0nDet 2  Innε , where ε  is the Stix dielectric tensor22 and n is the index of 

refraction.  The solution of this dispersion relation has four roots for kx¸ which are chosen 

according to the following rules:  

 the incident FW (kx = kx0) or SW (kx = kx3) corresponds to the root that satisfies 

0]Im[kx  , or 0]Re[kthen,0]Im[kif xx  . The two roots that satisfy these 

inequalities are ordered such that 2
x3

2
x0 kk  .   

 the reflected FW (kx = kx1) or SW (kx = kx2) roots satisfy 0]Im[kx  , or 

0]Re[kthen,0]Im[kif xx  . The two roots satisfy the ordering 2
x2

2
x1 kk  .   

The naming convention for the FW and SW roots summarized here is the usual one when 

the roots are well separated, but breaks down when the B field is normal to the sheath 

(i.e. when kt which is specified is essentially k) because the fast and slow wave 
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solutions will, by fiat, have similar scale lengths.  In this case, what we choose to call the 

roots is somewhat arbitrary. 

 The total rf electric field in Fourier space is written as 

 
xxjik

j
j

j
zzikyyikti eEeee eE 




3

0


  . (5) 

where the vectors without carats, )3to0( jje , are the wave  polarization vectors, not 

to be confused with the Cartesian unit vectors, )z,y,xj(ˆ j e . The FW and SW 

polarization vectors were defined in Ref. 13 and will not be repeated here. We also define  

 )(i jjjj eεskeg       (6) 

which adjusts the polarization vectors to include the effect of the sheath capacitance on 

the rhs of the sheath BC (resulting in the term proportional to the sheath width ). 

Substituting Eq. (5) into Eq. (4) and solving for the reflected wave amplitudes as a 

function of incident wave amplitudes, we obtain  

 21

32
3

21

02
01 ggs

ggs

ggs

ggs








 EEE    , (7) 

 
  

21

13
3

21

10
02 ggs

ggs

ggs

ggs








 EEE  . (8) 

Thus, if we specify some linear combination of the incident waves 0E  and 3E , we can 

calculate the reflected wave amplitudes from Eqs. (7) and (8).  Setting 03 E  recovers 

the solution in our earlier paper.13 We will compare two cases, 0,0 30  EE  and 

0,0 30  EE .   

 At this point it is useful to mention a few properties of this solution:  

(1) dependence on field line angle:  In the limit of glancing magnetic field angles (i.e. B 

nearly tangential to the limiter), the j = 0 root of the dispersion relation can be identified 

as the incident FW and the j = 3, root is the incident SW. In the opposite limit, where B is 

nearly normal to the limiter surface, there is no clear separation between the FW and SW, 
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and the,roots show a mixed polarization. Thus, we expect the character of the waves near 

the sheath surface to change as the B field misalignment angle varies from 0 to /2, and 

the corresponding sheath potential will also show significant variation.  

(2) SPW resonance: Note that the field solution in Eqs. (7) and (8) has the factor 

21 ggs  in the denominator. When this factor vanishes, the solution exhibits a resonance 

due to a class of waves called “Sheath Plasma Waves” (SPW).23,24 This resonance can 

lead to multiple solutions for the sheath potential in various models, as discussed in 

earlier papers.13,20,25 

(3)  rf sheath parameter:  It is useful to define a parameter   measuring the effect of the 

sheath capacitance in the rf sheath BC [Eqs. (1) or (4)]. We define ||||  k  

(electrostatic limit) or 2
||  nk   (general electromagnetic case).  The two terms in the 

rf sheath BC are comparable in magnitude when 1~ , at which point the nonlinearity of 

the sheath BC becomes important.  This often appears as a threshold for enhanced rf-

sheath interactions.   

These points are illustrated by the numerical modeling in Sec. 4. 

 Finally, given the field solution it is straightforward to calculate the rf sheath 

potential using this formalism.13  The rf potential is given by 

 




2

0j
jjrf Eεs    , (9) 

and the steady-state (rectified) sheath potential is then given by Eq. (3), repeated here for 

convenience 

 erfshsh T3C  . (10) 

 A numerical solution of these equations is obtained as follows. The full 

electromagnetic dispersion relation is solved for the four values of nx, which are then 

sorted to determine ||n and n  for each of the four waves, as described earlier. For a 

given sheath width , the vectors jg  are known, and Eqs. (7) to (10) give a solution for 

the sheath potential sh . In general, these values of  and sh  will not satisfy the 
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Child-Langmuir constraint in Eq. (2),  and a nonlinear root finder must be used to obtain 

a self-consistent solution of the full set of equations. The nonlinearity of the problem 

means that there can be multiple roots for the sheath potential. The set of values of sh  

is then compared with the experimentally measured plasma potential. 

4. Numerical results and comparison with C-Mod data 

 In this section, we discuss the numerical solution of the model described in Sec. 3 

for Alcator C-Mod parameters and look for qualitative areas of agreement with the data. 

It is important to keep in mind that such a local 1D model cannot give quantitative 

results, nor can it give the radial profile of the sheath potential. Our goal here is to study 

the phenomenology of far field sheath formation, and in particular the role of the limiter 

geometry in creating enhanced rf sheath potentials.  

 For this study, the base case parameters (local to the limiter) are B = 3.94 T,  ne = 

6 × 1018 m-3, Te = 10 eV, charge state Z = 1, mi/mp = 2 (deuterium). The ICRF 

frequency and power are f = 80 MHz, and PICRF = 4 MW.  As discussed in the Appendix, 

we consider a fast wave amplitude in the range Erf = 6 - 22 V/cm.  (The lower bound is 

the inferrred rf electric field at the LB probe, and the upper bound is obtained from a 

Poynting flux argument assuming that 5% of the ICRF power is unabsorbed in the core 

and uniformly spread around the SOL).  Unless stated otherwise, the index of refraction 

in the tangential directions is assumed to be in the range c/ωkn tt   = 60 – 100, where    

π/2d to1/d~kt  and d = 1 cm.  The tangential component of the wavevector is estimated 

from the limiter curvature in the radial-toroidal plane, as illustrated in Fig. 2. Finally, we 

set nz = 0 (no poloidal variation, see below).   

 For simplicity, we take the magnetic field in the toroidal direction (neglecting the 

small poloidal component) and define a local coordinate system such that x is the 

coordinate normal to the sheath surface ( xês  ), see Fig. 2. The y and z coordinates 

define the plane tangential to the limiter sheath, with z in the vertical (approximately 

poloidal) direction (in this paper we take ty nn   and nz = 0).  As the solution point 

moves around the tip of the limiter, the magnetic field  has both x and y components in 
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general, and bs   varies from 0 to 1.  For example, consider the limiting cases: when B is 

normal to the sheath ( 1bs ), it is purely in the x direction, and when B is tangential to 

the limiter tip ( 0bs ), it is purely in the y direction. The k vector is also assumed to lie 

in the (radial, toroidal) or (x,y) plane so that kz = 0. Keep in mind that B is always in the 

toroidal direction; it is the direction of s that varies around the limiter tip. 

 We turn now to the numerical results. First, consider the dependence of the 

rectified potential sh  on the B-field component normal to the rf sheath, bx = Bx/B. 

Plots of sh  vs bx are shown in Fig. 5 for two cases, viz. 0)E,EE( 3rf0   and 

)EE0,E( rf30   with Erf = 22 V/cm.  At small bx, the incident FW-driven case 

0)(E0   gives the lower curve, and the incident SW-driven case 0)E( 3   gives the 

upper curve.  For bx > 0.7 the somewhat arbitrary names of the two roots exchange 

places, as discussed previously.  

 An important point shown in Fig. 5 is that for a fixed and large value of ny, a 

small (large) sheath potential is obtained when the magnetic field line is nearly tangential 

(normal) to the sheath. In terms of our limiter picture in Fig. 2, this means that the plasma 

potential will be small in the main SOL and rapidly increase with major radius in the 

private SOL behind the limiter tip until the point is reached where the B field is normal to 

the flat side of the limiter. This prediction agrees with the data (see Fig. 3).  This rapid 

variation is modeled in the base case by taking ny = 62 near the limiter tip.  The other 

point in Fig. 5 concerns the overall strength of the sheath potential.  For bx = 1, the sheath 

potential is of order 100 V in rough agreement with the experiment. 

  We have suggested that the spatial variation tangential to the sheath, which is a 

consequence of the limiter geometry in Fig. 2, is an important part of the far field sheath 

model. In the 1D theory used here, the rapid spatial variation of bs    is represented by 

using a large value of ny.  The variation of the computed sh  with ny is shown in Fig. 6 

for the polarization 0)E,EE( 3rf0   with two values of Erf and the B field normal to 

the sheath.  Figure 6(a) shows the complete solution for V/cm22Erf  , and we see that 

there are 3 roots of the nonlinear self-consistent sheath problem. This 3-root structure has 

been obtained before in rf sheath calculations and is due to a sheath-plasma-wave 
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resonance.13,20,25  Even if only the lowest root is physically accessible,  Fig. 6(b) shows 

that the lowest root has a sheath potential of about 100 - 200 V when ny ~ 40 - 60, 

consistent with the limiter geometry. The other polarization )EE0,E( rf30   leads to a 

3-root structure similar to that shown in Fig. 6 and a transition to large sheath potentials 

for ny > 40. Thus, for sufficiently large rf electric fields there is a sharp threshold in ny 

for the formation of large rf sheath potentials. In Fig. 6(c) we show the solution for 

V/cm6E rf  .  Again there is a sharp threshold with multiple roots, leading to a larger 

sheath potential at large ny. Even for this reduced electric field it is possible to obtain 100 

V potentials near the threshold. 

 Finally, we consider the scaling of the rf sheath potential with electric field 

amplitude Erf.  In Fig. 7, sh  is plotted vs Erf for the case 0)E,EE( 3rf0  , B normal 

to the sheath, and ny = 30.  Note that the typical 3-root structure again results in a 

threshold condition for the lowest root to take a large jump. For these parameters, the 

threshold electric field amplitude is about 30 V/cm, which is close to the top end of the 

range considered here (Erf ~ 6 - 22 V/cm).  Also, the transition from the first to the 

second root at the threshold happens at around 100 V, similar to the measured plasma 

potential. In this respect the model agrees qualitatively with the data. However, we hasten 

to add that the threshold is sensitive to parameters (such as ny) and the 1D model is rather 

crude, so we can only establish the existence of the threshold and not claim quantitative 

agreement.  To illustrate this sensitivity, in Fig. 7(b) we show the dependence of sh  on 

Erf for the same parameters except now we use  ny = 100.  The result is that multiple 

roots are not found and a larger rf electric field is required to obtain sheath potentials in 

agreement with the experiment.   

 The theoretical calculations suggest that multiple roots and a threshold for large 

sheath potentials are characteristic features of the model in a certain parameter range.  As 

discussed in Sec. 3.3, the threshold condition for the formation of large sheath potentials 

(enhanced by the non-linearity) is 1 , where the sheath capacitance parameter is 

defined as 2
|| nk  .  A more detailed discussion of these points can be found in some 
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of our previous papers.13,20,25  The numerical solutions using Alcator C-Mod parameters 

discussed here show that this threshold condition holds to within a factor of 2 - 4. 

5. Summary and discussion 

 This paper has discussed a candidate mechanism to explain the observed plasma 

potentials in excess of 100 V in the SOL plasma during ICRF heating on Alcator C-

Mod.14 The experimental data is briefly summarized in Sec. 2. It is estimated that about 

5-10% of the fast wave power launched by the C-Mod antenna was not absorbed in the 

core plasma. These fast waves propagate or evanesce into the SOL, where the field lines 

intersect poloidal limiters and thus do not map back to the powered antenna. The fast 

waves must couple to slow waves in order to satisfy the boundary condition at the limiter, 

and the slow wave fields with 0E||   generate an rf sheath potential. This potential varies 

on each field line and the observed plasma potential profiles in the SOL are consistent 

with the FW mechanism. 

 The problem of calculating the “far-field” sheath potential has been solved in 1D 

using the rf sheath BC approach13 and was generalized here to include all roots of the 

fourth-order dispersion relation [Sec. 3].  Because the model geometry is simplified, the 

goal of this work is only to obtain qualitative agreement with the experiment. We should 

add that the Alcator C-Mod data analyzed here provides the first direct experimental test, 

albeit a qualitative one, of the far-field sheath theory. It was found that a key element in 

obtaining large sheath potentials in the modeling was to take into account the rapid 

tangential variation of the angle between the magnetic field line and the normal to the 

limiter surface, as discussed in Sec. 3.2 and illustrated in Fig. 2. 

 The following are points of agreement between the experiment and the far field 

sheath model when Alcator C-Mod parameters are used: 

(a) Large sheath potentials (~ 100 V) are obtained on field lines which do not pass 

near a powered antenna but are near the tip of the poloidal limiter; the magnitude and the 

radial location of the sheath potentials in the model and experiment are in rough 

agreement. 
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(b)  There is a threshold in FW intensity for obtaining large sheath potentials. The 

threshold corresponds physically to the limit 12
||  nk  in which the sheath 

capacitance term in the sheath BC exceeds the vacuum term.    

This work provides experimental evidence for far field sheaths, discussed in earlier 

theoretical papers (e.g. see Refs. 12, 13 and references therein) but not studied much 

experimentally. It is of practical importance for tokamak experiments, because it provides 

a mechanism for a global ICRF-generated impurity source. As noted in the introduction, 

significant Mo sputtering occurs in C-Mod on limiter surfaces in the presence of ICRF 

power, and ICRF-enhanced plasma potentials are a leading candidate responsible for the 

increased Mo sources. Indirect evidence for such an impurity source was also provided 

by the Ti impurity analysis on TFTR.26  
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Appendix:   Estimate of FW electric field 

 In this appendix, we estimate the FW field amplitude at the limiter using a 

Poynting flux argument. The FW Poynting flux across the B field in the radial direction is  

 
2

213
*
21 En

8π

c
c.c.BE

16π

c
S      (A1) 

where 213 EnB   and the coordinates ( 321 ,, xxx ) are in the radial, poloidal and toroidal 

directions, respectively (not to be confused with the local coordinate system used in Sec. 
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3).  Equating the Poynting flux to the FW power flowing radially across the separatrix, 

we obtain the following relation between the FW electric field and the power: 

 2
21

24 (V/cm)En)A(cm106.6P(W)    . (A2) 

where P  PrfS is the rf power flowing across the separatrix and A  AS = 24 cm1064.7   

is the surface area of the separatrix in C-Mod.  Solving for the FW electric field, one 

obtains 

 

2/1

2
S1

rfS
2

)(cmA n

(W)P
38.9(V/cm)E 










   , (A3) 

where c/ωkn 11   with s/rad105 8  and /cω~k pi1 . This is a rough estimate for 

the wavenumber of the propagating fast wave just inside the separatrix, and it depends on 

the local density. Since the density gradient is large at the separatrix, the WKB 

approximation is not valid and the ion skin depth estimate should be averaged over the 

density profile near the separatrix. In any case, the appropriate density is larger than the 

density at the antenna limiter used in Sec. 4 for the sheath calculation (ne = 6 × 1018 m-3 

 neL), which provides a lower bound.  

   For these experiments, the launched FW power was 4 MW.  Although the ICRF 

heating was not modeled for these specific shots, typically the single pass absorption is 

about 60-70%.27  We use the conservative estimate that 5-10% of the launched ICRF 

power is not absorbed in the core and flows into the SOL, and we assume that the power 

in the SOL is evenly spread around the tokamak. This gives PrfS = 0.2 - 0.4 MW and a 

power density of  PrfS / AS = 2.6 - 5.2 W/cm2.   

 We have used a range of densities (ne = 1 – 4 neL) and rf power fraction lost (0.05 

– 0.15) in doing estimates of the rf field using Eq. (A3). The result varies from roughly 

20 – 40 V/cm.  As an example,  we obtain V/cm22~E for an rf power fraction of 5% 

and a density of 2 × 1019  m-3. The FW field may be evanescent in the SOL, so the value 

at the antenna limiter could be somewhat reduced from that given by Eq. (A3). This 

estimate is consistent with the measured electric field at the stationary LB probe. In Sec. 
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2, the rf electric field corresponding to the sharp threshold in Fig. 4 is calculated to be 

V/cm6~E  (see the caption of Fig. 4). Thus, for purposes of illustration, in our base 

case we consider the range V/cm22-6~E .  For the far field sheath analysis in Sec. 4, 

we assume that this value is characteristic of the rf electric field tangent to the limiter 

surface. 
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Figure Captions    

Fig. 1  View of the outer wall in the Alcator C-Mod tokamak showing the experimental 

arrangement. The present paper models plasma potential data taken by the A-Port 

Scanning Probe (ASP) and the Lower B-side (LB) stationary probe, which are not 

magnetically connected to the D, E and J antennas. Typical field line trajectories 

are shown. LH refers to Lower Hybrid. 

Fig. 2 Schematic of a top (radial-toroidal) view of the tip of a poloidal limiter showing 

the magnetic field in the toroidal direction and the unit vector s (normal to the 

sheath). The important point is that the geometric parameter bs   varies rapidly 

from 0 to 1 around the limiter tip. Also note that the x-y coordinate system is 

defined locally at each point on the limiter.  The drawing is not to scale. 

Fig. 3   Radial variation of the plasma potential p  on Alcator C-Mod, measured by the 

A-port Scanning Probe and mapped to the midplane. Shown are the potential 

profiles in Ohmic (open squares) and ICRF-heated (filled circles) plasmas.  Note 

for the ICRF-heated case that the plasma potential is largest near the tip of the 

limiter and decays with distance from the tip. Its maximum value is p ~ 400 V. 

The tip radial length is defined by the distance d  1 cm.  

Fig. 4  Plasma potential enhancement vs. fast wave electric field modulations induced by 

sawtooth core electron temperature fluctuations. The data is obtained with the 

stationary LB probe at Rmid  0.93 m, and is shown for several different major 

radius positions of the ICRF resonance with respect to Ro = 0.665 m.  This plot 

shows the existence of a threshold FW electric field strength ~ 6 V/cm for 

formation of a large plasma potential.  

Fig. 5 Plot of rf sheath potential rf  vs. /BBb xx   (magnetic field component into the 

sheath) for the case ny = 62. There are two roots corresponding to mixtures of the 

two polarizations (FW and SW) of the incident waves, as described in the text.  
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Fig. 6 Plot of rf sheath potential rf vs. index of refraction ny tangential to the sheath: 

(a) complete root structure of the nonlinear sheath problem for Erf = 22 V/cm; (b) 

magnified view of the region with sheath potential comparable to the measured 

plasma potential; (c) solution with Erf = 6 V/cm.  Note the rapid increase in rf 

sheath potential for ny greater than a threshold value. Also note the existence of 

multiple roots (denoted by solid circles, squares and diamonds) for certain values 

of the index of refraction ny. This plot assumes 0)E,EE( 3rf0   and B normal 

to the sheath. 

Fig. 7  Plot of rf sheath potential rf vs. rf electric field amplitude at the sheath for 

0)E,EE( 3rf0   with B normal to the sheath. Two cases are considered: (a) 

ny = 30 and (b) ) ny = 100. Note the existence of multiple roots (denoted by solid 

circles, squares and diamonds) and a sharp threshold in sheath potential for case 

(a) but not for case (b). This shows the sensitivity of the model to the two 

parameters ny and Erf.   
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Fig. 1   View of the outer wall in the Alcator C-Mod tokamak showing the experimental 

arrangement. The present paper models plasma potential data taken by the A-Port Scanning 

Probe (ASP) and the Lower B-side (LB) stationary probe, which are not magnetically connected 

to the D, E and J antennas. Typical field line trajectories are shown. Note that the field lines 

intercepted by the probes are bounded by two passive limiter surfaces as the probes are located 

in the shadow of the limiter. LH refers to Lower Hybrid. 
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Fig. 2 Schematic of a top (radial-toroidal) view of the tip of a poloidal limiter showing the 

magnetic field in the toroidal direction and the unit vector s (normal to the sheath). The important 

point is that the geometric parameter bs   varies rapidly from 0 to 1 around the limiter tip. Also 

note that the x-y coordinate system is defined locally at each point on the limiter. The drawing is 

not to scale. 
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Fig. 3   Radial variation of the plasma potential p
 
on Alcator C-Mod, measured by the A-port 

Scanning Probe and mapped to the midplane. Shown are the potential profiles in Ohmic (open 

squares) and ICRF-heated (filled circles) plasmas.  Note for the ICRF-heated case that the 

plasma potential is largest near the tip of the limiter and decays with distance from the tip. Its 

maximum value is p ~ 400 V. The tip radial length is defined by the distance d  1 cm.  
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Fig. 4  Plasma potential enhancement vs. fast wave electric field modulations induced by 

sawtooth core electron temperature fluctuations. The data is obtained with the stationary LB 

probe at Rmid  0.93 m, and is shown for several different major radius positions of the ICRF 

resonance with respect to Ro = 0.665 m.  This plot shows the existence of a threshold FW electric 

field strength ~ 6 V/cm for formation of a large plasma potential.  
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Fig. 5 Plot of rf sheath potential rf  vs. bx = Bx/B  (magnetic field component into the sheath) 

for the case ny = 62. There are two roots corresponding to mixtures of the two polarizations (FW 

and SW) of the incident waves, as described in the text.  
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Fig. 6 Plot of rf sheath potential rf vs. index of refraction ny tangential to the sheath: (a) 

complete root structure of the nonlinear sheath problem for Erf = 22 V/cm ; (b) magnified view of 

the region with sheath potential comparable to the measured plasma potential; (c) solution with 

Erf = 6 V/cm.  Note the rapid increase in rf sheath potential for ny  greater than a threshold value. 

Also note the existence of multiple roots (denoted by solid circles, squares and diamonds) for 

certain values of the index of refraction  ny. This plot assumes 0)E,EE( 3rf0   and B 

normal to the sheath. 
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Fig. 7  Plot of rf sheath potential rf vs. rf electric field amplitude at the sheath for 

0)E,EE( 3rf0   with B normal to the sheath. Two cases are considered: (a) ny = 30 and 

(b) ) ny = 100. Note the existence of multiple roots (denoted by solid circles, squares and 

diamonds) and a sharp threshold in sheath potential for case (a) but not for case (b). This shows 

the sensitivity of the model to the two parameters ny and Erf.   

 
 




