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1. Introduction
This paper describes a theoretical model of convection in the tokamak edge plasma and

studies the effect of convection on the H-mode temperature pedestal and transport barrier. Here
we are concerned with the role of steady-state convection driven by poloidal and toroidal
symmetry-breaking of the equilibrium (e.g. by applied potentials or by heat sources and sinks),
not with turbulence-driven convection. This work is motivated by the following experimental
observations: (i) steady-state convective flows have been measured in the edge and SOL of
several tokamaks, caused by spatially localized disturbances such as rf antennas and gas puffing;
(ii) JET data [1-4] shows that under certain conditions H-mode properties such as the ratio of
τp/τΕ, the temperature pedestal height, and the ELM amplitude and repetition rate can be
significantly different for ICRF H-modes than for NBI H-modes; (iii) there is an interesting
parallel between the effects of ICRF [1-4] and gas puffing [5, 6] on the H-mode temperature
pedestals, ELM amplitudes and frequencies in JET; and (iv) recent measurements [7] on Alcator
C-MOD showing that convection may be responsible for a significant fraction of the energy
transport across the separatrix.

The theoretical approach described in this paper is valid for either the case of applied
potential or temperature perturbations, but the specific analysis considered here is the one
relevant to ICRF experiments, in which the self-biasing effect of the antennas drives an rf sheath
potential at the antenna and gives rise to a rectified (DC) E×B convection in the SOL and edge
plasmas [1, 2]. The SOL physics is modeled here by a boundary condition (BC): an applied
spatial potential modulation at the separatrix which drives the E×B flow in the edge plasma. The
main result of this paper is that strong edge convection can nonlinearly modify both the electron
temperature and radial electric field profiles in the edge in ways that would be expected to affect
the H-mode pedestal and transport barrier.

2. The Model
The calculation is based on the following reduced set of Braginskii equations for the

electrostatic potential Φ and electron temperature T:

 c
2

B2 nmi  
d
dt ∇

 2
⊥ Φ  = ∇ || J||   , (1)

  η  J||  = −∇ || Φ + αe  ∇ || Te  , (2)

3
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dTe
dt  − ∇ ||  κ ||e ∇ ||  Te − ∇ ⊥  κ⊥ e ∇ ⊥  Te  =  0, (3)

where α = 1.71, d/dt = ∂/∂t + vE • ∇∇∇∇ ,     vE = (c/B) b × ∇∇∇∇ ⊥ Φ, n = ne = ni is the particle density, mi is
the ion mass, T = Te >> Ti , Ωi  = eB/mic is the ion cyclotron frequency, η is the electrical
resistivity, and κ||  and κ ⊥  are the parallel and perpendicular electron heat conductivies. The
collisional Braginskii description is valid when the mean free path λ ii  satisfies λ ii  < L||  ∼ qR. In
writing Eqs. (1) - (3), we neglect v||i  and Ti effects, treat n as a constant, and retain only the E×B
nonlinearity to simplify the model. The neglect of the density evolution equation is made only for
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convenience and is not expected to change the conclusions reached here. The terms proportional
to J ||  neglected in Eq. (3) are small.  Radiation sink terms may be important in Eq. (3) when
thermal perturbations are driving the convection, but they are not important for the case of
convection driven by an externally applied potential perturbation considered here. The result of
these approximations is a 2-field model which, despite its simplicity, has a rich and interesting
nonlinear behavior.

The unperturbed H-mode equilibrium is treated as one-dimensional in the radial
coordinate x and we consider the effect of convection induced by the coupled (zero-frequency)
perturbations Φ1(x,y,z) and T1(x,y,z), where z is the coordinate along B, and y is in the e z×ex

direction perpendicular to B. Each quantity Q is expanded in powers of the perturbations, Q = Q0

+ ε Q1 + ε2 Q2 ..., where Q0(x) is the equilibrium quantity in the absence of convection, Q1 =
Q1(x) exp(iky y + ik|| z) is the perturbation, and Q2(x) is the second-order surface-averaged
nonlinear modification of the equilibrium. Equations (1) - (3) are linearized and made
dimensionless in terms of the following quantities: Φ−  = eΦ0/Ts, Φ

∼
 = eΦ1/Ts, T

−
 = T0/Ts, T

∼
 =

T1/Ts, v
− = v0/cs, v

∼  = v1/cs, χ = (Ts/nsη e2), χ⊥  = (2κ⊥ /3ns) and χ ||  = (2κ|| /3ns), where ns, Ts and cs

= (Ts/mi)1/2 are constants, taken to be the separatrix values. Treating the transport coefficients as
constants, the linearized set of equations can be put in the form

i [ ωE ρ
2
s ∇ 2

⊥  Φ∼   −  ρ2
s ωE′′   Φ∼ ] =  k||2 χ  (Φ∼  − α T∼  ) , (4)

 i [ωE  T
∼

 − ω*T Φ∼     ]   =  χ⊥ ∇ 2
⊥ T

∼
 − k||2 χ || T

∼
  , (5)

where a prime denotes d/dx, ρs = cs/Ωi, ωE = ky vEy = kycsρs ∇ x Φ
−

, andω*T = ky v*Ty = kycsρs

∇ xT
−

. Note that the perturbations Φ∼  and T
∼

 are coupled by the thermoelectric force in the vorticity
equation (4) and by the ω*T drift in the temperature equation (5).  We assume that k||  is of order
k||  ∼ 1/qR, where q is the safety factor and R is the major radius, and the linearized Eqs. (4) and
(5) are expanded in the parameter δ = (ρ s/L ⊥ )2  (ωE/k||2χ) << 1 for typical edge plasma
parameters. To order δ0, the LHS of Eq. (4) vanishes, J||  = 0, and Φ∼  = α T∼  in this order. Thus,
there is a symmetry between perturbations in Φ and T in this model due to the thermoelectric
force.

In the nonlinear analysis, the E×B nonlinearities on the LHS of Eqs. (1) and (3) couple the
perturbations quadratically to produce a net surface-averaged modification of the underlying
equilibrium. We substitute the linear solutions for Φ∼  and T

∼
 to order δ into the nonlinear terms and

carry out the spatial averaging to obtain the following set of modified equilibrium equations for
the vorticity and the electron temperature:

∂
∂t ρ

2
s ∇  2

⊥  Φ−  +  µθ ρ2
s ∇  2

⊥  (Φ−  − Φb
− 

)   =  
kycsρ

3
s

2χ⊥
 ∇ x  [ |Φ

∼
|2  (ωE − α ω*T) ]  , (6)

∂
∂t T

− − χ⊥ ∇ 2
⊥  (T

− − Tb
− 

)  =  − 
kycsρ

3
s

2αk||2χ  χ⊥
 ∇ x  [ |Φ

∼
|2  (k||2 χ || ωE − χ⊥ ωE′′  ) ]  . (7)

A neoclassical damping term was included in Eq. (6) to provide a steady state solution. The
coefficient is given by µθ ≈ (vi/qR)2 νii -1 in the Braginskii regime, where vi is the ion thermal
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velocity and νii  is the ion-ion collision frequency. The functions Φb
− 

(x) and Tb
− 

(x) are inputs to the
present theory and denote the steady state solution in the absence of the nonlinear terms; these
functions can be regarded as source terms representing the other physical effects not explicitly
considered in our model, such as turbulent generation of E×B flow shear. Equations  (6) and (7)
must be supplemented by an equation to determine the radial penetration of Φ∼ (x) into the edge
plasma for given BCs; this equation is obtained by using the lowest order result Φ∼  = α T∼  in Eq.
(5). Neglecting the drift terms, one finds that a potential modulation imposed at the separatrix
will exponentially decay in the edge plasma with a scale length L0 = (χ⊥ /k||2χ)1/2. It can be
shown that the neglect of cubic and higher nonlinearities in Eqs. (6) and (7) is valid when  Φ∼  <<
Φ∼ c2 ≡  2χ⊥ 2 / k2

yc2
sρ4

s.

3.  Analytic Solution and Boundary Conditions
A complete analysis of the problem would entail numerical solution of the steady-state

solutions of Eqs. (5) - (7) with appropriate BCs, which has not yet been done. However, an
interesting analytic solution has been obtained in the the limit of strong convection (Φ∼  >> Φ∼ c), in
which the nonlinear terms dominate the equilibrium equations (6) and (7). The important point to
note from this solution is that in the strong convection limit the vorticity and temperature
equations impose constraints relating the equilibrium flux-surface-averaged Ex and T profiles
which are not present in the usual H-mode:

ωE = α ω*T  , (8a)

L2
0 ωE′′  − ωE  = 0  . (8b)

Equation (8b) implies that the equilibrium profile Ex(x) varies on the same scale L0 as the
convection, and Eq. (8a) then relates the sign of Ex to the sign of ∇ xT. Equation (8a) also justifies
the neglect of the drift terms on the LHS of Eq. (5). This 3rd order system has been solved
subject to the following BCs: T(xm) = Tm , T(xs) = Ts , and Ex(xs) = Es , where xs  denotes the
separatrix position and xm denotes the interior point where Φ∼  = Φ∼ c. The temperature Tm is set by
core and edge physics outside the convective layer, Ts is set by the atomic physics in the SOL,
and Es is determined by the sheath physics in the SOL. Previous simulations [2] of the SOL
sheath physics show Es can have either sign, depending on the antenna voltage and the antenna-
plasma separation. Other means of biasing, such as probes [8], can also give both signs of Es. An
analytic solution of Eqs. (8) for these BCs shows that a variety of behaviors are possible as Es is
varied for fixed ∆ T = Tm  −  Ts , including regimes of nonlinear cooling or heating of the
convective layer and unphysical regimes [T < 0 or non-monotonic T(x)]. The most
experimentally-relevant regime is obtained for moderate Es.  In this case, the convection cools the
edge by flattening the T profile near the separatrix, and the constraint (8a) forces Ex > 0 and
reduces the shear Ex′  in the convective layer; here Ex has the opposite sign from the normal H-
mode and is in the direction to increase ion losses. Thus, our model suggests that strong
convection can significantly modify the H-mode pedestal and transport barrier region by
modifying the plasma profiles near the separatrix.
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4. Summary and Discussion
For collisional edge plasmas described by the Braginkii equations, we have derived a set

of nonlinear model equations describing the interaction of steady-state E×B convection with the
edge plasma electric field and electron temperature. The convection can be driven by a spatial
modulation of either the equilibrium edge potential Φ (e.g. due to ICRF-driven sheath effects) or
the edge T (e.g. due to gas puffing). Application to the former case was illustrated here. These
zero-frequency perturbations satisfy Φ∼  = α T∼  to lowest order, because of the thermoelectric force.
The quadratic interaction between Φ∼  and T

∼
 give nonlinear terms in the flux-surface-averaged

vorticity and electron temperature equations which can modify the equilibrium profiles in the
convective layer. An analytic solution of the nonlinear equations in the limit of strong convection
(1 <<  Φ∼ c << Φ∼  << Φ∼ c2) and for reasonable choices of the BCs yields additional constraints on
the profiles T(x) and Ex(x). This solution implies that the convection can produce significant
cooling, a reversal in the sign of Ex, and a reduction in the E×B shear in the edge plasma inside
the separatrix.

Combined with the SOL model of rf-driven convection in Ref. [2], this work provides a
mechanism to explain the experimental dependence of the ICRF H-mode on the JET A1 antenna
phasing [1, 2]. It may also be relevant to the other experimental observations described in Sec. 1.
Convective cooling can reduce the temperature pedestal, increase the edge plasma resistivity, and
thereby change the character of the MHD modes producing ELMs; the modified E×B shear
affects the edge turbulence and the global confinement, if the convection penetrates into the
transport barrier region; also, the sign reversal in Ex should reduce the ion confinement in the
convective layer.  For example, the H-mode biasing experiments on Textor [8] showed a clear
asymmetry between H-modes produced with positive and negative Ex: comparable τ Ε in the two
cases, but the ratio of τ p/τΕ was about three times lower for Ex > 0. A similar reduction in τp was
obtained in the “low particle confinement” H-modes on JET [9] and the “Enhanced Dα” H-modes
on C-Mod [10].  In future work, we will extend this model to include non-rf-driven convection,
density evolution and particle transport, and examine in more detail the relation of the theory to
these experiments.

Acknowledgements
We would like to thank V. Bhatnagar and J. Jacquinot for providing us with unpublished

JET data and for stimulating conversations which have motivated the work reported here. This
work was supported by the U.S. DOE under Contract No. DE-FG03-97ER54392.

References

1. The JET Team, presented by J. Jacquinot, Plasma Phys. Contr. Fusion 33, 1657 (1991).
 2.  D. A. D’Ippolito, J. R. Myra, J. Jacquinot, and M. Bures, Phys. Fluids B 5, 3603 (1993).

3. V. P. Bhatnagar, et al., Proceedings of the 24th EPS Conference on Controlled Fusion and Plasma Physics,
Berchtesgaden, Germany, Vol. I , p. 77 (1997).

4.  D. A. D’Ippolito, J. R. Myra, V. P. Bhatnagar,  and J. Jacquinot, Bull. APS 43, 1755 (1998).
5.  J. Jacquinot et al., Phys. Fluids B 4, 2114 (1992).
6.  G. M. Fishpool, Nucl. Fusion 38, 1373 (1998).
7.  M. V. Umansky, S. I. Krasheninnikov, B. LaBombard, and J. L. Terry, Phys. Plasmas 5, 3373 (1998).
8.  R. Weynants, G. Van Oost, et al., Nucl. Fusion 32, 837 (1992).
9.  M. Bures, D. J. Campbell, N. A. C. Gottardi, et al., Nucl. Fusion 32, 539 (1992).

10.  Y. Takase, R. L. Boivin, F. Bombarda, P. Bonoli, et al., Phys. Plasmas 4, 1647 (1997).


