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‘ Summary and Conclusions

n Coherent structures (“blobs”) created by edge turbulence = convective
transport of particles and heat across the SOL

n  Experiments, simulations and theory show that the transport rate
iIncreases with collisionality.

¢ Increased collisionality A (and resistivity IN;;) = strong ballooning
(disconnection from sheaths) = faster Ex% drift

¢ hew 2-region 2D code encapsulates the essential physics
= reduced connection to sheaths, larger turbulent flux at high A

n Acorrespondence rule (y - v,/a,) has been exploited to understand new
regimes of blob transport

¢ Includes collisionality and geometry dependence
¢ Vvalid in near SOL and edge region (blob birth zone)
¢ blob transport ~ mixing length transport in edge plasma at high A
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2-region thermal equilibrium model gives good agreement
with C-Mod experiments

q¢ convective density limit (CDL) due to thermal instability
a CDL corresponds to qp> g, in edge plasma
g occurs at high collisionality

The general picture from all of this work is that:

¢ the distinction between edge and SOL disappears at high
collisionality because of shorter L, ~ A

q edge transport increases dramatically and can be estimated
using collisional blob models with “packing fraction” ~ 1
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3D BOUT turbulence simulations show faster
blobs at higher collisionality

BOUT simulation with on/n ~1
by X. Xu (2003);

Blob analysisby D. Russdll
(2004)

— 3D structure is
Important!

 density and collisionality A
Increase with time (gas puffing)

 blobsdisconnect from
divertor region and move faster
asn and A increase
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Russell et al, Phys. Rev. Lett 2004
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Physical picture: linear growth rate, blob velocity
and turbulent transport increase with N, LI v LI A

Curvature drift = current source
W

1Jsheath

Effective circuit resistance R

= potential ® R4 J, L,
= growth rate Y (linear)
= E x B speed v, (blob)

divertor

midplane large n” A

= disconnection

EPS-2006/ dasd 6/23/06 5 Lodestar



Blob transport and mixing length estimate

In the edge plasma, the blob and mixing length transport estimates agree in
order of magnitude provided that the blob “packing fraction” ~ 1 (skewness
~ 1) and we use the “blob correspondence rule” (see next page).

Mixing length estimate:

V, ~iko® , A/ng~ko®P/(wl,)

~

Use saturation condition: W~Kpvg = @ ~w/ ké
= T ~Re[NVy]~ngy/(k&L,)
Blob estimate:

[ ~nyv, where n, ~ny and v, ~vya, (correspondence rule)

Using the correspondence rule, both estimates agree.
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Correspondence rule between linear
instability and nonlinear blob physics

n As noted by Endler et al. (NF 1995) for sheath-

Interchange modes, there is a correspondence between
the linear instability and the resulting turbulence.

n For all instabilities that saturate by wave breaking
(w~ k[V) we postulate the following correspondence
rule between the instability and the blob velocity:

Vy 1
V—’_’kD — I—n — dp
/ ab/ k / \
growth rate  wavenumber ~ 4€nsity blob radius
scale length
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Two-region 2D model for studying transition
to collisional, disconnected regimes

J=0 .]-12 .]23

Notes:
« smilar egs. for T;,
@, @, but T =const. here
midplane X-point f sheath ¢ BOhm U.nltS
D (dimensionless)
s=10 S=L1 S=L1+L2
charge n,—0&,®, =, /L, —p—= N, —05%,®, =(Jos —J;») /L
g 1 - mP1 =2 b oy 27 —02P2 (Jo3—d2) /L,
Jopol ¢ ¢ curvature Jopal T Jsn Y
: dny 3 B dn, _ 3
density E'FrlZ/Ll =0, Tp=ncCy. = (M2 —Ta3) /Ly, Tyz=nyCs
-0
d_9 .vm Jp=—22(Py - ;) , Jp=nad,
dt ot Lo
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Cross-field conductivity is enhanced in region 2
(X-pt) by field line fanning f

n  Field lines from midplane region (X, y), are mapped to stretched / squeezed
coordinates in X-point region (X, y), by “fanning factor” f << 1. At present the
model neglects magnetic shear.

n chargeisconserved between regions 1 and 2

n  sheath boundary conditions are applied at the end
of region 2

3= necs(l— e—e(CD—CDO)/Te)

= 3Te
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The model equations are invariant under a scale
transformation

21—3 H-1
P AP, t A L X - AX invariant scaling method:

. )\5—4u for arbitrary A, Connor & Taylor, Phys.
0 O yAH Fluids 1984

(Ps/R,Ly/R) - X *(ps/R,L/R)

n  thefollowing invariant combinations characterize the dimensionless
parameter space (A = collisionality, Q = scale size)

v L 1/2
A=Smla _ Ve by o=@ _ [LR| 1
02 Qe Ps v |2 2 2
al e Ms Ymhd I—|| KePs
n dispersion relation can be written as G)EVLZG.{/\,Q(k),S]
mhd

n samedispersion relation appliesto blobsusing the
correspondencerule: w - v /a, and L, , Yk - &,
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2-region code (with initialized blobs) shows good
agreement with blob “dispersion relation” scaling

_Y (Poloidal) -~

n  blobs speed up with increasing

collisionality A (O resistivity)
A e o for low A, small blobs move fastest
S (nb: Q = (a/a.)®2 Oblob size)

X (Radid)
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Linear instability / blob regimes

* electrostatic 2-region
N\ model

- Q = (a/a+)°?
> o o* = ps4/5 L 2/5 / R1/5
T
g e £= 8)(2 = f2 =
o1 :
= X-pt fanning factor
&)

1/81/2

scale size

Q
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Turbulence simulations: particle transport in two-
region code

The two-region fluid turbulence code predicts an increase in turbulent
particle flux with collisionality, as seen in experiments.

collisionality parameter A,

<'ﬁ v > = A at top of pedestal
X

Figure: Time history of the .

turbulent (blob) particle flux ' for 10 A =10

two values of the collisionality > 0

parameter A, with f = 1/4. 10 MW(«WW

103 -
[" is averaged over poloidal direction ,.-f-'-.-"-,.f‘-,“_.-'-.,:._ R
y for a fixed radial point in the SOL. 104 I R il 1
. 0 —

Note the earlier onset of the
nonlinear turbulent phase and the

much larger particle flux for large A,. D. Russell (2006)
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Turbulence simulations: edge / SOL turbulence &
blob structure depend on collisionality

ny(X,y)

D. Russell (2006)

8%

f=1/4,B=1,0,=1, t=1000

blobs

Note: more blobs and
faster v, as A\, increases
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‘ Disconnection caused by high local collisionality A

Red: midplane
. X-poi @), @) ],, atx=b

A = (Nny)%023 /012 Blue: X-point X,y
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partially disconnected: @,(t) > @,(t) / D. Russell (2006)
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SOL density limit due to blob heat transport

In this work, we include heat transport in an analytic 2-region model
for (®, T,) with n;, n, = const.

= SOL thermal equilibrium limit = density limit

higher density = higher collisionality « 7
— faster radial heat transport = lower T

= thermal instability = thermal collapse of SOL

n  C-Mod observes convective density limit (CDL) with g5 > g,

n our model = CDL when qgincreases as X-point cools

(thermal instability analogous to MARFE with radiative cooling — radia
convection) (D’Ippolito and Myra, Phys. Plasmas, June, 2006)
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Physical picture is supported by calculation

warm X-pt root (solid) is
thermally stable

cold X-pt root (dashed) is
unstable = thermal
instability of SOL

root coalescence = CDL
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2-region thermal equilibrium model qualitatively
agrees with C-Mod density limit experiments

M odel C-Mod data
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