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Introduction

RF-driven sheared flows may be important

1) investigate fundamental physics of noninea waves and flows

2) control turbulence and transport in tokamaks

The @onfinement time T in atokamak is st by turbulence
 turbulenceis gontaneous
e nT > (NT)_awson andtransport O size $ of fusion
e norinea regulation
o transport “barriers’ (locd reductions in transport)
o lealing candidate medianismsinvolve sheaed plasmaflows
o [ study norinea driven flowsin a wntrolled context



RF codes and experiments can help to understand
turbulence & transport barrier formation

 rf driven flows are “open loopd’, easier than “closed loop’ turbulence
problem

 for rf problem need to understand:
0 how agiven wave dfeds maaoscopic responses (flows)
0 maaoscopic dhanges affed instabiliti es, turbulence
 turbulence flows modify the waves that crede them
0 important but a separate issue

rf allows fundamental nonlinear physicsin a controlled
context

How can nonlinear waves drive flows?



Basic physics of waves, nonlinear forces, momentum
transport

1) photon absorption
2) photon reflection, reactive ponderomotive forces
3) momentum redistribution

wave energy = wNk
wave momentum = kNk

(T ke

absorbed power P L1 force on absorbing medium

k
F=—PR
mrf

requires slow phase velocity (short wavelength) for good efficiency



Basic physics of waves, nonlinear forces, ...

1) photon absorption
2) photon reflection, reactive ponderomotive forces
3) momentum redistribution

<: reflected power Prs [ force on medium
—> . -
- 0 rf

boundary conditions O |EJ]2 rather than circulating power description

N ER

internal energy O nonlinear stresses M, (mechanical + field) ~ €|E|2
F~e0|E|
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single particle ponderomotive potential Wp ~



Basic physics of waves, nonlinear forces,

1) phaon absorption
2) phaonrefledion, readive ponderomotive forces
3) momentum redistribution

transport of canonicd angular momentum py by an eddy

dp G
Fy :d—y u lpy, —uX py

7\,

phases important 1 need dssipation

related to the off-diagonal terms of the stresstensor (Reynold' s Stress

0
F,=—1n
y dX Xy

will turn ou to be related to absorbed power
F~b xRy

plasma flows in a tokamak can be driven by 1) and 3) but not 2)



Basic physics: tokamak transport barriers and flows

 spontaneous transport barriers have been observed in some cases:
o local regions of reduced diffusion x
o alow locally large gradientsinn and T and increase global t

* transport barrier control (vs. spontaneous formation) is of great
interest for Advanced Tokamaks

» vary location and Pt
* modify pe, pi, U, J| (nb: many rf mechanisms possible)



One possible paradigm for transport barrier formation:
wave-driven sheared flows are the trigger
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 sheared flows break up radially elongated eddies I reduced transport
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* replace turbulent-driven flows with rf-driven flows
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Experiments suggest that ITB control is possible
(ITB = Interna Transport Barrier)

direct launch ion Bernstein wave (IBW): [ short wavelength

 confinement improvement and/or profile modificaions consistent
with ITB
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T. Seki, et al., in AIP Conference Procealings 244— Charleston (1991)

e dired observation d rf-induced sheaed flows

TFTR

J.R. Wilson, et a., Phys. Plasmas 5, 1721(1998.
B.P. LeBlanc, et al., Phys. Rev. Lett. 82, 331(1999.
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PBX-M experiment observed core H-mode (CH) with
application of IBW power

» peaked profiles
* reduced transport in n, Tj, and L ¢ (momentum)
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FIG, 5. Profiles of T;, v 4, VT, and Vv 4 during the CH moede and equiva-
lent time during a NBi-only discharge.

 B.LeBlancet a., Phys. Plasmas 2, 714 (1995)
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TFTR experiment observed poloidal rotation driven by
IBW

#—
Avg (kmy/s)

FIG. 9. A change in the poloidal rotation velocity as a function of radius and

time. (a) IBW heating, P=200 kW, f=76 MHz, out-of-phase excitation,
(b) no IBW power applied.

 JR. Wilson, et a., Phys. Plasmas 5, 1721 (1998).

Experiments show :
* IBW candriveflows

e |BW can somehow, sometimes, enhance confinement

Do rf-generated flows create transport barriers?

need tools



Theory: Idea of turbulence suppression by rf driven
flows has been around for along time

e Craddack & Diamond PRL (199)])

Berry et d., PRL (1999

Jaeger et d., Phys. Plasmas (2000
Myra & D’l ppdito, Phys. Plasmas, (2000
Elfimov et a., PRL (2000

1D modd for sheaed flows generated by IBW absorption
at ion cyclotron resonance layer
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photo from Wan. et al. HT-7 tokamak
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Directly launching the IBW can be difficult in practice
 hard to launch wave with kpj ~ 1 from maaoscopic antenna

« dow vg~ Vi O highly nonlinea wave & edge, Prf ~ vglE]2
e more successwith high frequency wave-guides than antennas

Would really like to launch fast Alfvén wave (macroscopic
wavelength mode)
* hardware avail able on many tokamaks

« antenna couding is much better understood

« BUT, fast Alfvén wave typicdly generates negligible flows by these
medanisms

o long wavelength, fluid mode
o dired momentum inpu is snall (k/w)

0 Reynalds gresss (uu) and magnetic stresss (BB) cancd
(Diamond, 1991 U0 noflow drive
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New developments relevant to flow drive

 use short wavelength modes generated in the plasmainterior by mode
conversion (MC) from the fast Alfvén wave

o MC: small k - large k modes at spedal resonant surfaces
0 previously thouwght: MC 0 IBW

o IBW propagates away from the ion cyclotron resonance Q;j, and
Isnot useful for flow drive.

o experiment: E. Nelson 107} :
Melby et al., PRL (2003: 108} cw 1
mode mnversion [ . 105

0 ion Bernstein wave € jorf E

(IBW) T3k FW

0 ioncyclotronwave 102 .
(ICW), propagates into : Bor

o &
Qj resonance K g w/

=& =4 =2 0 2 4 8
R — Re {cm)

« computation of short wavelength wave fields in red tokamak
geometry [RF SIDAC: Jagger, Berry; Bondi, Wright et a ]

o theory [RF SiDAC: Berry, Myra, D'l ppdito et a. (2003]:
MC flow driveis possible with the ICW

 mode mnversion edge flow drive recently reported on
JET, C. Castaldo et a., 19th IAEA, Lyon (2002



Experiments on C-Mod have shown that the fast wave
can trigger transport barriers

 off axis heating
» peaking of density
 Dbarrier in electron thermal transport

F e e S — ——
ne [1020 m-3]
- off-axis+central
@ off-axis
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o S.J. Wukitch et al., Phys Plasma 9, 2149 (2002)

also see
 C.Fioreetd., 2003 TTF Meeting, Madison (2003).

Possible mechanisms?
* toroidal spin-up by fast ions (Perkins, Chang, Chan)

* toroidal spin-up by asymmetric edge propagation (Coppi)
* trigger by pj(r) profile stegping
e rf-driven flows??
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Numerical Results from the rf SciDAC Project

2D full wave codes:

TORIC (Bonoli, Wright; Brambilla)
o expandsinkgp,
 finitedifferenceinr for ead (m, n) mode
* banded matrix inversion
o fast and/or cgpable of very high resolution

AORSA (Jaeger, Berry, Batchelor, et al.)
o al ordersink.p; first order in p/L

 fieldsrepresented by Fourier expanding in Cartesian coordinates
o full matrix inversion

0 memory intensive, slower
* norinea flow drive modue implemented

rf-driven flow calculations complement the physics
regime of turbulence-driven flows

high frequency w > Q;,

short wavelength kpj ~ 1 (nonlocd integral equation)

fully eledromagnetic

all speaeskinetic: Landau, TTMP, and cyclotron resonances
wedkly nonlinea [0 do norinea cdculations by post-processng
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AORSA and TORIC have been used to simulate mode

conversion in atorus
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* He3-H-D mode conversion in Alcator C-Mod from AORSA (Jaeger

et al., PRL, 2003)

0 mode conversion (ion-ion hybrid) and ion-cyclotron resonant

surfaces
o IBW and ICW
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Poloidal magnetic field effects control the mode
conversion products

» predicted by Perkins (1977)

then 25years ...
» seendirectly in experiment [E. Nelson-Melby et al., PRL (2003)]
e seenin TORIC and AORSA simulations (2003)
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(Jaeger et al., PRL, 2003)
« weak Bg on axis [ ion Bernstein wave (IBW)
0 propagatesto smaller R
0 absorption ison eectrons
 stronger Bg off axis I ion cyclotron wave (ICW)
0 propagatesto larger R (into cyclotron resonance)
0 absorptionisonions
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Minority ion heating and poloidal force

(@) Minority ion heating Poloidal force
I|IIII|III|||| ||||||||||||||
0z — T —
- L i
£ oof— ] —
[ |
o ) [ i)
I|IIII|III|III I|IIII|IIII|IIT|
060 0OBS 070 060 0B85 070
R {m) R (m)
(b)
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Jaeger et al., PRL, 2003
* net poloidal force follows heating profile
 additional sheared force contribution

1) photon absorption

2) photon reflection, reactive ponderomotive forces
3) momentum redistribution



K|| upshifts by poloidal magnetic field are critical for:

» MC physics (Perkins 1977, Nelson-Melby 2003, Jaeger 2003)
 propagation of high k modesin general (Ram & Bers, 1991)
 flow drive (Jaeger 2003) q

n
ki =k (b =kyby +%gy "R

X

Loy

* k|| upshift mechanisms:
1) n fixed, R decreases
2) kxby important for off-axis high k modes

* highk) O
0 strong i and e absorption ~ Z(wk|ve), Z((w—Q)/K|ve)
0 strong LJ|E]2 and strong F
0 strong flows with strong shear
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Theory of RF Flow Drive

Nonlinear calculation of the forces is based on a
gyrokinetic formulation
« 2nd order in E, quasilinear average in time (not space)
* energy and momentum moments of Vlasov equation
* like AORSA: hot plasma, quasi-local theory
0 kpp ~ 1, gyrokinetic theory (nonlocal)
0 W UQ >> wyrift
0 nonlinear responses retain first order in p/L for rf fields
o simple high-freg. gyrokinetics (Lee, Catto, Myra, PF, 1983)

of of
—+vUyf —Q— =-0, [af
ot T VIHNT ~ Q5 0=y Hah)
R:r+iv><b
Q
a:EEB—k@@kvaIfzakeik[R_iék
mOd w0 w K
5k:ikﬂlxb
Q
* linear order
dfy _ 2um ik, v
dt g2

e nonlinear (2nd) order

2
df {2

5
—— =0y %Za%mk" e E
dt .



Energy moment
local power absorption

o Idsv mv f(z)_

use Vlasov to get of/ot

NG

%ZI Pvfev@ag +cc== 5 EROW(K k') Ey
k,K' k,K'

W = symmetric bili nea 4th rank tensor operator
related to the condctivity (Smithe, 1989

Wk, k' - k) = &(Kk)
famili ar Bessl sums, Z-functions ...

Note
» thelocd power absorptionis not ¥2Re JE = ¥2Re Exo(Kk) Ek’

0 ¥2Re JE isnot positive definite unless
= only onek is present OR
= g isindependent of k (cold fluid limit)
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Momentum moment

%(nmu) + 0 nmuu) + Op = %J XB+Fyan +F

u = fluid velocity
nm = massdensity
Firan = transport related forces (friction, viscosity, momentum diffusion)
F = dl explicit [E]2 terms
F=F -0
Contributions arise from Lorentz force (fluctuating n, E, J, B)

F_ = ZerE +JxB
C

and from noninea stresstensor

n=" )3 Id3v(w—<w>)f|£2_)k. +cC
4k

Using Maxwell’ s equations

1
F = ET[(DED) D -0 EQDED)]+ cc

411
D=—1J
where o
e D hasto be evaluated to first order in p/L ®

o Jor D isreadily available in rf codes



Nonlinear stress tensor

n=" S jd3v(w—<w>)f|£2_)k. +CC
4k

Notes:
 [1 generalizes Reynolds dress
* appeds to requires gyrophese-dependent part of f(2)

 gyrophese-average f(2) givesrise to diagonal (CGL type) pressure
terms

o don't contribute to flow drive
0 areseaular unlesshea sink is gedfied

M = [do(wv —(wv))

:%(vaxb+v><b vg) + (v vxb+vxbv))

partsintegratein ¢
use Vlasov
parts integrate in Ly
givesI1 in terms of akEy’
o don't neal f(2) explicitly ©

Then

25



combine results for Lorentz force and nonlinear stress

some nice cancellations happen

26



The [Jforce from [/field gradients

F=Fyq-0pX, +bxOXy

The Fg term contai ns the wave momentum absorption ~WH and a
reactive term ~ WA

KK e OwH e+ D) wA

F
47 40 400

Thereactive term X ~ parallel torques on the plasma,

m 3 N
X, =—(d v bV xap +cc
Tl VK k
Theterm X ~ perpendicular dissipation.

m 3 M
Xq=—1(d°vf, v @y~ +cc
d SQI k' Vo lagp

A more general result isalso available
[Jand || forcesfrom [Jand || gradients

27



Reactive terms reduce to the conventional
ponderomotive force

» forceson afluid element (not a guiding center)

o for inclusion into macroscopic evolution codes (e.g. transport
codes)

0 cold plasmalimit of previous result
= keep reactive terms
= u = fluid velocity
» add back CGL terms

0 agrees with standard ponderomotive force
= p = ponderomotive potential
= M = ponderomotive magnetization

F=-nly,+BxUxM

28
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Reactive ponderomotive forces drive no avg. flows

o <...>=flux-surface aerage
* toroidal rotationisdriven by torque <RFz>
* poloidal rotationisdriven by a mmbination d <BF> and <RFz>
* identities
10

(O :U£U<R86Aw>

_1 d¢ JBz 0Q _
<BD||Q>_UIde.[2T[ R o =0

o [ <BFp vanishes when F= Lj|(scdar)
(Reg M) =D [Reg ) == v(R?BolMy |

0 [ <RFz> vanisheswhen I'l isadiagonal tensor
o ...

« can show that for cold-fluid pondromotive force

F:—anJp+B><D><M
(BFy) =0
(RR) =0
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Flux-surface-averaged flows are driven by

1) photon (direct wave-momentum) absorption

2pheotonretlection—+eactive ponderometive forees

3) momentum redistribution (dissipative stresses)

Fais = Fap + b x Xy

KK ewH e~ K,
4w w

Fap =

* Fg1 = “photon” momentum absorption term
0 drivesnet flows
0 €lectron or ion dissipation
o b x X = dissipative stress term
o drives bipolar sheared flows (no net momentum)
o significant only for ions
_ P
20
» where P isthe power absorbed into v

Xd



Miscellaneous

Are rf-driven flows important for turbulence?

theor etical

force - flows - Ws> Ymax ?

» force caculationis slid
» flowsrequire neoclasscd theory

o handwave poloidal flows from neoclasscd viscosity for TFTR
IBW case I rough agreament with olserved flows

0 better estimates require neoclassca codes (being investigated)
* nedal Yymax from turbulence ommunity

empirical

» severa hundeds of kW (<1 MW) of dired launch IBW have
produced ITB effedsin experiments (e.g. FTU)

* many MW of fast Alfvén wave can be launched and the mode
ﬁonv%rs_i onefficiency can be >50% in scenariosthat are goodfor
ow drive
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Computational issues

suppose E isto be evaluated using N modes

E=YEekl
k

wave equation solution requires an NxN matrix inversion
o computational work is O(N2 In N)
now post-process solution to evaluate power absorption and flows

W(r) :% s EROW(K k';r) (Ey
k,k'

0 N2termsin double sum at N grid points
o computational work is O(N3)
post-processing takes longer than main code for field solvel

extensive work in the rf SCiIDAC project has mitigated this problem
(Ed D’Azevedo)

o domain decomposition takes advantage of the fact that the fields
at widely separated points are not coupled (use local Fourier
decompositions and patch results together)

o sub-sample W(k,k') and take advantage of smoothness
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RF driven flows: MC- ICW vs. minority tail ions
e minority tail ions absorb and transport momentum of wave

o0 Perkins, Chan,
o Chang

0 candrivetoroidal rotation due to finite orbit effects, preferential
absorption, preferentia loss, ...

» power into MC products vs. tail ions depends on minority fraction

0 reduced minority fraction moves Qjj and weyt-off 1NtO cyclotron
resonance layer

o fast wave resonantly interacts with fast ionsv ~ vg >> v

k||Vi —> <«

=

=)

Qmg Qjj weut-off  Cmin

light /Z minority case

 future work: unified calculation of these two mechanisms using
Monte-Carlo code
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Summary & Conclusions

Considerable progress has been made on the rf part of
the problem

* the short wavelength modes needed for flow drive can now be
followed in sophisticated 2D codes

o fully EM

0 integral equation solve for nonlocal effectskp ~ 1

0 mode conversion in 2D with poloidal magnetic field effects
0 massively parallel, scaleable computations

o improved nonlocal nonlinear algorithms have been devel oped
for flow drive

* rf theory has been developed to calculate the forces driving flows
o nonlinear nonlocal theory
0 includesimportant 2D effects
0 generalizes Reynolds, magnetic stressesand to w> Q;, kp ~ 1
0 theory necessitated and stimulated by new code capabilities

* interesting physicsis emerging from these results

0 mode conversion scenarios can generate flows, aren’t restricted
to direct launch IBW

0 mode conversion in 2D is subtle: ICW replaces IBW in
traditional scenarios (Perkins 1977, Nelson-Melby 2003)

flow drive results could not have happened without rf SCIDAC:
simulations, theory, algorithms all critical



ICRF field computations and the calculations of their
nonlinear consequences are at a mature level

 ready to integrate with neoclassical codes to get flows from forces

 open loop integrated rf and turbulence simulations may now be
feasible

» rf code ] givesforces
» neoclassical code [ flows
» turbulence ssimulations [ transport reduction

(rf e neoclassical e turbulence) ssimulations < experiment

The results of an integrated effort in this area could be

Interesting from a physics perspective

 deeper understanding of interaction of nonlinear forces, flows, and
plasma response

Important from a practical perspective
» give experiments a flexible knob for control of transport barriers
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