Nonlinear radio-frequency generation of sheared flows

J.R. Myra and D.A. D'Ippolito

Lodestar Research Corp.

L.A. Berry, E.F. Jaeger, D.B. Batchelor ORNL

and the RF SciDAC Team

Outline

Introduction:

Motivation Basic Concepts Experiments Numerical Results from the rf SciDAC Project Theory of Flow Drive Summary & Conclusions

* Work supported by U.S. DOE grants/contracts DE-FC02-01ER54650, DE-FG03-97ER54392 and DEAC0500OR22725

presented at MIT, May 9, 2003

Introduction

RF-driven sheared flows may be important

1) investigate fundamental physics of nonlinear waves and flows

2) control turbulence and transport in tokamaks

The confinement time τ in a tokamak is set by turbulence

- turbulence is spontaneous
- $n\tau > (n\tau)_{Lawson}$ and transport \Rightarrow size, \$ of fusion
- nonlinear regulation
 - transport "barriers" (local reductions in transport)
 - o leading candidate mechanisms involve sheared plasma flows
- \Rightarrow study nonlinear driven flows in a controlled context

RF codes and experiments can help to understand turbulence & transport barrier formation

- rf driven flows are "open loop", easier than "closed loop" turbulence problem
- for rf problem need to understand:
 - o how a given wave affects macroscopic responses (flows)
 - o macroscopic changes affect instabilities, turbulence
- turbulence: flows modify the waves that create them
 - o important but a separate issue

rf allows fundamental nonlinear physics in a controlled context

How can nonlinear waves drive flows?

Basic physics of waves, nonlinear forces, momentum transport

- 1) photon absorption
- 2) photon reflection, reactive ponderomotive forces
- 3) momentum redistribution

wave energy = ωN_k wave momentum = kN_k

absorbed power $P_{rf} \Rightarrow$ force on absorbing medium

$$\mathbf{F} = \frac{\mathbf{k}}{\omega} \mathbf{P}_{\mathrm{rf}}$$

requires slow phase velocity (short wavelength) for good efficiency

Basic physics of waves, nonlinear forces, ...

1) photon absorption

2) photon reflection, reactive ponderomotive forces

3) momentum redistribution

$$F = \frac{2\mathbf{k}}{\omega} P_{rf}$$
reflected power $P_{rf} \Rightarrow$ force on medium

boundary conditions $\Rightarrow |E|^2$ rather than circulating power description

internal energy \Leftarrow nonlinear stresses Π , (mechanical + field) ~ $\epsilon |E|^2$ $\mathbf{F} \sim \epsilon \nabla |E|^2$

single particle ponderomotive potential $\Psi_{p} \sim \frac{|E_{\parallel}|^{2}}{\omega} + \frac{|E_{R}|^{2}}{\omega + \Omega} + \frac{|E_{L}|^{2}}{\omega - \Omega}$

Basic physics of waves, nonlinear forces, ...

1) photon absorption

2) photon reflection, reactive ponderomotive forces

3) momentum redistribution

transport of canonical angular momentum p_y by an eddy

$$\mathbf{F}_{y} = \frac{d\mathbf{p}_{y}}{dt} = \mathbf{u} \cdot \nabla \mathbf{p}_{y} = \mathbf{u}_{x} \frac{\partial}{\partial x} \mathbf{p}$$

y

phases important \Rightarrow need dissipation

related to the off-diagonal terms of the stress tensor (Reynold's Stress)

$$\mathbf{F}_{\mathbf{y}} = \frac{\partial}{\partial \mathbf{x}} \Pi_{\mathbf{x}\mathbf{y}}$$

will turn out to be related to absorbed power

$$\mathbf{F} \sim \mathbf{b} \times \nabla \mathbf{P}_{\mathrm{rf}}$$

plasma flows in a tokamak can be driven by 1) and 3) but not 2)

Basic physics: tokamak transport barriers and flows

- spontaneous transport *barriers* have been observed in some cases:
 - \circ local regions of reduced diffusion χ
 - $\circ\,$ allow locally large gradients in n and T and increase global $\tau\,$
- transport barrier control (vs. spontaneous formation) is of great interest for Advanced Tokamaks

- vary location and P_{rf}
- modify p_e , p_i , u, J_{\parallel} (nb: many rf mechanisms possible)

One possible paradigm for transport barrier formation: wave-driven sheared flows are the trigger

 sheared flows break up radially elongated eddies ⇒ reduced transport step size

• replace turbulent-driven flows with rf-driven flows

Experiments suggest that ITB control is possible

(ITB = Internal Transport Barrier)

direct launch ion Bernstein wave (IBW): ⇐ short wavelength

• confinement improvement and/or profile modifications consistent with ITB

PBX-M

B. LeBlanc, et al. Phys. Plasmas 2, 741 (1995)

FTU

R. Cesario, et al., Phys. Plasmas 8, 4721 (2001)

Alcator C

J. D. Moody, et al., Phys. Rev. Lett. 60, 298 (1988)

PLT

M. Ono, et al., Phys. Rev. Lett. 60, 294 (1988)

JIPPT-II-U

T. Seki, et al., in AIP Conference Proceedings 244 – Charleston (1991)

• direct observation of rf-induced sheared flows

TFTR

J.R. Wilson, et al., Phys. Plasmas 5, 1721 (1998).B.P. LeBlanc, et al., Phys. Rev. Lett. 82, 331 (1999).C.K. Phillips, et al., Nucl. Fusion 40, 461 (2000).

PBX-M experiment observed core H-mode (CH) with application of IBW power

- peaked profiles
- reduced transport in n, T_i , and L_{ϕ} (momentum)

FIG. 5. Profiles of T_i , v_{ϕ} , ∇T_i , and ∇v_{ϕ} during the CH mode and equivalent time during a NBI-only discharge.

• B. LeBlanc et al., Phys. Plasmas 2, 714 (1995)

TFTR experiment observed poloidal rotation driven by IBW

FIG. 9. A change in the poloidal rotation velocity as a function of radius and time. (a) IBW heating, P = 200 kW, f = 76 MHz, out-of-phase excitation, (b) no IBW power applied.

• J.R. Wilson, et al., Phys. Plasmas 5, 1721 (1998).

Experiments show :

- IBW can drive flows
- IBW can somehow, sometimes, enhance confinement

Do rf-generated flows create transport barriers?

need tools

Theory: Idea of turbulence suppression by rf driven flows has been around for a long time

- Craddock & Diamond, PRL (1991)
- Berry et al., PRL (1999)
- Jaeger et al., Phys. Plasmas (2000)
- Myra & D'Ippolito, Phys. Plasmas, (2000)
- Elfimov et al., PRL (2000)

1D model for sheared flows generated by IBW absorption at ion cyclotron resonance layer

photo from Wan. et al. HT-7 tokamak

Directly launching the IBW can be difficult in practice

- hard to launch wave with $k\rho_i \sim 1$ from macroscopic antenna
- slow $v_g \sim v_{ti} \Rightarrow$ highly nonlinear wave at edge, $P_{rf} \sim v_g |E|^2$
- more success with high frequency wave-guides than antennas

Would really like to launch fast Alfvén wave (macroscopic wavelength mode)

- hardware available on many tokamaks
- antenna coupling is much better understood
- BUT, fast Alfvén wave typically generates negligible flows by these mechanisms
 - o long wavelength, fluid mode
 - o direct momentum input is small (\mathbf{k}/ω)
 - o Reynolds stresses (uu) and magnetic stresses (BB) cancel (Diamond, 1991) ⇒ no flow drive

New developments relevant to flow drive

- use short wavelength modes generated in the plasma interior by mode conversion (MC) from the fast Alfvén wave
 - \circ MC: small k \rightarrow large k modes at special resonant surfaces
 - \circ previously thought: MC \Rightarrow IBW
 - \circ IBW propagates *away from the ion cyclotron resonance* Ω_i , and is not useful for flow drive.
- experiment: E. Nelson-107 **IBW** Melby et al., PRL (2003): 106 **ICW** mode conversion \Rightarrow 105 °. L n_{ll}2=L o ion Bernstein wave 104 FW F۷ (IBW) 10³ $n_{\parallel}^2 = S^{\parallel}$ 102 o ion cyclotron wave 8 Btor (ICW), propagates into Tesla 4 Ω_i resonance 10Bpol 3 -6 -4 2 4 -20 $R - R_0$ (cm)
- *computation* of short wavelength wave fields in real tokamak geometry [RF SciDAC: Jaeger, Berry; Bonoli, Wright et al.]
- *theory* [RF SciDAC: Berry, Myra, D'Ippolito et al. (2003)]: *MC flow drive is possible with the ICW*
- mode conversion edge flow drive recently reported on JET, C. Castaldo et al., 19th IAEA, Lyon (2002)

6

Experiments on C-Mod have shown that the fast wave can trigger transport barriers

- off axis heating
- peaking of density
- barrier in electron thermal transport

- S.J. Wukitch et al., Phys Plasma 9, 2149 (2002) also see
- C. Fiore et al., 2003 TTF Meeting, Madison (2003).

Possible mechanisms?

- toroidal spin-up by fast ions (Perkins, Chang, Chan)
- toroidal spin-up by asymmetric edge propagation (Coppi)
- trigger by p_i(r) profile steeping
- rf-driven flows??

Numerical Results from the rf SciDAC Project

2D full wave codes:

TORIC (Bonoli, Wright; Brambilla)

- expands in $k_{\perp}\rho_i$
- finite difference in r for each (m, n) mode
- banded matrix inversion
 - o fast and/or capable of very high resolution

AORSA (Jaeger, Berry, Batchelor, et al.)

- all orders in $k_{\perp}\rho_i$; first order in ρ_i/L
- fields represented by Fourier expanding in Cartesian coordinates
- full matrix inversion
 - o memory intensive, slower
- nonlinear flow drive module implemented

rf-driven flow calculations complement the physics regime of turbulence-driven flows

- high frequency $\omega > \Omega_{i}$,
- short wavelength $k_{\perp}\rho_i \sim 1$ (nonlocal integral equation)
- fully electromagnetic
- all species kinetic: Landau, TTMP, and cyclotron resonances
- weakly nonlinear \Rightarrow do nonlinear calculations by post-processing

AORSA and TORIC have been used to simulate mode conversion in a torus

- He3-H-D mode conversion in Alcator C-Mod from AORSA (Jaeger et al., PRL, 2003)
 - mode conversion (ion-ion hybrid) and ion-cyclotron resonant surfaces
 - o IBW and ICW

Poloidal magnetic field effects control the mode conversion products

- predicted by Perkins (1977) then 25 years ...
- seen directly in experiment [E. Nelson-Melby et al., PRL (2003)]
- seen in TORIC and AORSA simulations (2003)

- weak B_{θ} on axis \Rightarrow ion Bernstein wave (IBW)
 - o propagates to smaller R
 - o absorption is on electrons
- stronger B_{θ} off axis \Rightarrow ion cyclotron wave (ICW)
 - o propagates to larger R (into cyclotron resonance)
 - o absorption is on ions

Minority ion heating and poloidal force

Jaeger et al., PRL, 2003

- net poloidal force follows heating profile
- additional sheared force contribution

1) photon absorption

2) photon reflection, reactive ponderomotive forces

3) momentum redistribution

*k*_{||} upshifts by poloidal magnetic field are critical for:

- MC physics (Perkins 1977, Nelson-Melby 2003, Jaeger 2003)
- propagation of high k modes in general (Ram & Bers, 1991)
- flow drive (Jaeger 2003)

$$\mathbf{k}_{\parallel} = \mathbf{k} \cdot \mathbf{b} = \mathbf{k}_{\mathrm{x}} \mathbf{b}_{\mathrm{x}} + \mathbf{k}_{\mathrm{y}} \mathbf{b}_{\mathrm{y}}^{\mathrm{c}} + \frac{\mathbf{n}}{\mathbf{R}} \mathbf{b}_{\zeta}$$

- k_{||} upshift mechanisms:
 - 1) n fixed, R decreases
 - 2) $k_X b_X$ important for off-axis high k modes
- high $k_{\parallel} \Rightarrow$
 - o strong i and e absorption ~ $Z(\omega/k_{\parallel}v_e)$, $Z((\omega-\Omega)/k_{\parallel}v_e)$
 - \circ strong $\nabla |E|^2$ and strong F
 - o strong flows with strong shear

Theory of RF Flow Drive

Nonlinear calculation of the forces is based on a gyrokinetic formulation

- 2nd order in E, quasilinear average in time (not space)
- energy and momentum moments of Vlasov equation
- like AORSA: hot plasma, quasi-local theory
 - $\circ k_{\perp} \rho \sim 1$, gyrokinetic theory (nonlocal)
 - $\circ \omega \sim \Omega >> \omega_{drift}$
 - $\circ~$ nonlinear responses retain first order in ρ/L for rf fields
 - o simple high-freq. gyrokinetics (Lee, Catto, Myra, PF, 1983)

$$\begin{split} \frac{\partial f}{\partial t} + \mathbf{v}_{\parallel} \nabla_{\parallel} \mathbf{f} &- \Omega \frac{\partial f}{\partial \phi} = -\nabla_{\mathbf{v}} \cdot (\mathbf{a} \mathbf{f}) \\ \mathbf{R} &= \mathbf{r} + \frac{1}{\Omega} \mathbf{v} \times \mathbf{b} \\ \mathbf{a} &= \frac{Ze}{m} \bigg[\vec{I} \bigg(1 - \frac{\mathbf{k} \cdot \mathbf{v}}{\omega} \bigg) + \frac{\mathbf{k} \mathbf{v}}{\omega} \bigg] \cdot \mathbf{E}_{1} = \sum_{k} \mathbf{a}_{k} e^{i\mathbf{k} \cdot \mathbf{R} - i\delta_{k}} \\ \delta_{k} &= \frac{1}{\Omega} \mathbf{k} \cdot \mathbf{v} \times \mathbf{b} \end{split}$$

• linear order

$$\frac{\mathrm{d}\mathbf{f}_{k}}{\mathrm{d}t} = \frac{2\mathbf{f}_{M}}{\alpha^{2}} \mathrm{e}^{-\mathrm{i}\delta_{k}} \mathbf{a}_{k} \cdot \mathbf{v}$$

• nonlinear (2nd) order

$$\frac{\mathrm{d}\mathbf{f}_{\mathbf{k}''}^{(2)}}{\mathrm{d}\mathbf{t}} = -\nabla_{\mathbf{v}} \cdot \left(\sum_{\mathbf{k}} \mathbf{a}_{\mathbf{k}}^* \mathbf{f}_{\mathbf{k}+\mathbf{k}''} \, \mathbf{e}^{\mathbf{i}\boldsymbol{\delta}_{\mathbf{k}}}\right)$$

Energy moment

local power absorption

$$\dot{\mathbf{w}} = \frac{\partial}{\partial t} \int d^3 \mathbf{v} \, \frac{1}{2} \mathbf{m} \mathbf{v}^2 \, \mathbf{f}^{(2)}$$

use Vlasov to get $\partial f/\partial t$

$$\dot{\mathbf{w}} = \frac{\mathbf{m}}{4} \sum_{\mathbf{k},\mathbf{k}'} \int \mathbf{d}^3 \mathbf{v} \, \mathbf{f}_{\mathbf{k}'} \, \mathbf{v} \cdot \mathbf{a}_{\mathbf{k}}^* + \mathbf{cc} = \frac{1}{4} \sum_{\mathbf{k},\mathbf{k}'} \mathbf{E}_{\mathbf{k}}^* \cdot \vec{\mathbf{W}}(\mathbf{k},\mathbf{k}') \cdot \mathbf{E}_{\mathbf{k}'}$$

W = symmetric bilinear 4th rank tensor operator related to the conductivity (Smithe, 1989)

$$\vec{W}(\mathbf{k},\mathbf{k}'\rightarrow\mathbf{k}) = \vec{\sigma}(\mathbf{k})$$

familiar Bessel sums, Z-functions ...

Note

- the local power absorption is *not* $\frac{1}{2}$ Re J·E = $\frac{1}{2}$ Re E_k $\sigma(k)$ ·E_{k'}
 - $\circ \frac{1}{2}$ Re J·E is not positive definite unless
 - only one k is present OR
 - σ is independent of k (cold fluid limit)

Momentum moment

$$\frac{\partial}{\partial t}(nm\mathbf{u}) + \nabla \cdot (nm\mathbf{u}\mathbf{u}) + \nabla p = \frac{1}{c}\mathbf{J} \times \mathbf{B} + \mathbf{F}_{tran} + \mathbf{F}$$

u = fluid velocity

nm = mass density

 \mathbf{F}_{tran} = transport related forces (friction, viscosity, momentum diffusion) \mathbf{F} = all explicit |E|² terms

$$\mathbf{F} \equiv \mathbf{F}_{\mathrm{L}} - \nabla \cdot \boldsymbol{\Pi}$$

Contributions arise from Lorentz force (fluctuating n, E, J, B)

$$\mathbf{F}_{\mathrm{L}} = \mathrm{Zen}\mathbf{E} + \frac{1}{\mathrm{c}}\mathbf{J} \times \mathbf{B}$$

and from nonlinear stress tensor

$$\Pi = \frac{m}{4} \sum_{\mathbf{k},\mathbf{k}'} \int d^3 \mathbf{v} (\mathbf{v}\mathbf{v} - \langle \mathbf{v}\mathbf{v} \rangle) \mathbf{f}_{\mathbf{k}-\mathbf{k}'}^{(2)} + \mathbf{c}\mathbf{c}$$

Using Maxwell's equations

$$\mathbf{F}_{\mathrm{L}} = \frac{1}{16\pi} \Big[(\nabla \mathbf{E}^{*}) \cdot \mathbf{D} - \nabla \cdot (\mathbf{D} \mathbf{E}^{*}) \Big] + \mathrm{cc}$$
$$\mathbf{D} = \frac{4\pi \mathrm{i}}{\omega} \mathbf{J}$$

 (\mathfrak{S})

where

- D has to be evaluated to first order in ρ_i/L
- J or D is readily available in rf codes

Nonlinear stress tensor

$$\Pi = \frac{m}{4} \sum_{k,k'} \int d^3 v \left(\mathbf{v} \mathbf{v} - \left\langle \mathbf{v} \mathbf{v} \right\rangle \right) f_{k-k'}^{(2)} + cc$$

Notes:

- Π generalizes Reynolds stress
- appears to requires gyrophase-dependent part of $f^{(2)}$
- gyrophase-average f⁽²⁾ gives rise to diagonal (CGL type) pressure terms
 - o don't contribute to flow drive
 - o are secular unless heat sink is specified

$$\vec{\mathbf{M}} = \int d\boldsymbol{\phi} (\mathbf{v}\mathbf{v} - \langle \mathbf{v}\mathbf{v} \rangle)$$
$$= \frac{1}{4} (\mathbf{v}_{\perp} \, \mathbf{v} \times \mathbf{b} + \mathbf{v} \times \mathbf{b} \, \mathbf{v}_{\perp}) + (\mathbf{v}_{\parallel} \, \mathbf{v} \times \mathbf{b} + \mathbf{v} \times \mathbf{b} \, \mathbf{v}_{\parallel})$$

 \odot

- parts integrate in \$
- use Vlasov
- parts integrate in ∇_v
- gives Π in terms of a_kE_k'
 o don't need f⁽²⁾ explicitly

Then

combine results for Lorentz force and nonlinear stress

some nice cancellations happen

The \perp force from \perp field gradients

$$\mathbf{F} = \mathbf{F}_d - \nabla_\perp \mathbf{X}_r + \mathbf{b} \times \nabla \mathbf{X}_d$$

The F_d term contains the wave momentum absorption ~ W^H and a reactive term ~ W^A

$$\mathbf{F}_{d} = \frac{\mathbf{k} + \mathbf{k}'}{4\omega} \mathbf{E}^{*} \cdot \mathbf{W}^{H} \cdot \mathbf{E} + \frac{i}{4\omega} \nabla (\mathbf{E}^{*} \mathbf{E}) : \mathbf{W}^{A}$$

The reactive term $X_r \sim \text{parallel torques}$ on the plasma,

$$X_{r} = \frac{m}{8\Omega} \int d^{3}v f_{k'} \mathbf{b} \cdot \mathbf{v} \times \mathbf{a}_{k}^{*} + cc$$

The term $X_d \sim$ perpendicular dissipation.

$$\mathbf{X}_{\mathbf{d}} = \frac{\mathbf{m}}{8\Omega} \int \mathbf{d}^3 \mathbf{v} \, \mathbf{f}_{\mathbf{k}'} \, \mathbf{v}_{\perp} \cdot \mathbf{a}_{\mathbf{k}\perp}^* + \mathbf{cc}$$

A more general result is also available \perp and $\mid\mid$ forces from \perp and $\mid\mid$ gradients

Reactive terms reduce to the conventional ponderomotive force

- forces on a fluid element (not a guiding center)
 - o for inclusion into macroscopic evolution codes (e.g. transport codes)
 - o cold plasma limit of previous result
 - keep reactive terms
 - **u** = fluid velocity
 - add back CGL terms

o agrees with standard ponderomotive force

- ψ_p = ponderomotive potential
- **M** = ponderomotive magnetization

$$\mathbf{F} = -n\nabla\psi_p + \mathbf{B} \times \nabla \times \mathbf{M}$$

Reactive ponderomotive forces drive no avg. flows

- <...> = flux-surface average
- toroidal rotation is driven by torque $\langle RF\zeta \rangle$
- poloidal rotation is driven by a combination of $\langle BF_{\parallel} \rangle$ and $\langle RF\zeta \rangle$
- identities

Ο

$$\left\langle \nabla \cdot \mathbf{A} \right\rangle = \frac{1}{\upsilon} \frac{\partial}{\partial \psi} \upsilon \left\langle \mathbf{R} \mathbf{B}_{\theta} \mathbf{A}_{\psi} \right\rangle$$

 $\left< \mathbf{B} \nabla_{\parallel} \mathbf{Q} \right> = \frac{1}{\upsilon} \int d\theta \int \frac{d\varsigma}{2\pi} \frac{\partial \mathcal{L}\varsigma}{\mathbf{R}} \frac{\partial \mathbf{Q}}{\partial \zeta} = 0$ $\circ \implies <\!\!BF_{\parallel}\!\!> vanishes when F_{\parallel} = \nabla_{\parallel} (scalar)$

$$\left\langle \mathbf{R}\mathbf{e}_{\zeta} \cdot \nabla \cdot \Pi \right\rangle = \left\langle \nabla \cdot \Pi \cdot \mathbf{R}\mathbf{e}_{\zeta} \right\rangle = \frac{1}{\upsilon} \frac{\partial}{\partial \psi} \upsilon \left\langle \mathbf{R}^{2} \mathbf{B}_{\theta} \Pi_{\psi \zeta} \right\rangle$$

$$\circ \Rightarrow \langle \mathbf{R}F\zeta \rangle \text{ vanishes when } \Pi \text{ is a diagonal tensor}$$

$$\circ \dots$$

• can show that for cold-fluid ponderomotive force

$$\mathbf{F} = -n\nabla\psi_{p} + \mathbf{B} \times \nabla \times \mathbf{M}$$
$$\left\langle \mathbf{B}F_{\parallel} \right\rangle = 0$$
$$\left\langle \mathbf{R}F_{\zeta} \right\rangle = 0$$

Flux-surface-averaged flows are driven by

- 1) photon (direct wave-momentum) absorption
- 2) photon reflection, reactive ponderomotive forces
- 3) momentum redistribution (dissipative stresses)

$$\mathbf{F}_{dis} = \mathbf{F}_{d1} + \mathbf{b} \times \nabla \mathbf{X}_{d}$$

$$\mathbf{F}_{d1} = \frac{\mathbf{k} + \mathbf{k}'}{4\omega} \mathbf{E}^* \cdot \mathbf{W}^H \cdot \mathbf{E} \sim \frac{\mathbf{k}}{\omega} \mathbf{P}_{rf}$$

- $\mathbf{F}_{d1} =$ 'photon'' momentum absorption term
 - o drives net flows
 - o electron or ion dissipation
- $\mathbf{b} \times \nabla X_d$ = dissipative stress term
 - o drives bipolar sheared flows (no net momentum)
 - o significant only for ions

$$X_d = \frac{P_\perp}{2\Omega}$$

• where P_{\perp} is the power absorbed into v_{\perp}

Miscellaneous

Are rf-driven flows important for turbulence?

theoretical

force \rightarrow flows $\rightarrow \omega_s > \gamma_{max}$?

- force calculation is solid
- flows require neoclassical theory
 - o handwave poloidal flows from neoclassical viscosity for TFTR IBW case ⇒ rough agreement with observed flows
 - o better estimates require neoclassical codes (being investigated)
- need γ_{max} from turbulence community

empirical

- several hundreds of kW (< 1 MW) of direct launch IBW have produced ITB effects in experiments (e.g. FTU)
- many MW of fast Alfvén wave can be launched and the mode conversion efficiency can be > 50% in scenarios that are good for flow drive

Computational issues

• suppose E is to be evaluated using N modes

$$\mathbf{E} = \sum_{k} \mathbf{E}_{k} e^{i\mathbf{k} \cdot \mathbf{r}}$$

- wave equation solution requires an N×N matrix inversion
 - \circ computational work is O(N² ln N)
- now post-process solution to evaluate power absorption and flows

$$\dot{\mathbf{w}}(\mathbf{r}) = \frac{1}{4} \sum_{\mathbf{k},\mathbf{k}'} \mathbf{E}_{\mathbf{k}}^* \cdot \ddot{\mathbf{W}}(\mathbf{k},\mathbf{k}';\mathbf{r}) \cdot \mathbf{E}_{\mathbf{k}'}$$

- N² terms in double sum at N grid points
- \circ computational work is O(N³)
- post-processing takes longer than main code for field solve!
- extensive work in the rf SciDAC project has mitigated this problem (Ed D'Azevedo)
 - o domain decomposition takes advantage of the fact that the fields at widely separated points are not coupled (use local Fourier decompositions and patch results together)
 - \circ sub-sample W(**k**,**k**') and take advantage of smoothness

RF driven flows: MC- ICW vs. minority tail ions

- minority tail ions absorb and transport momentum of wave
 - o Perkins, Chan,
 - o Chang
 - can drive toroidal rotation due to finite orbit effects, preferential absorption, preferential loss, ...
- power into MC products vs. tail ions depends on minority fraction
 - $\circ\,$ reduced minority fraction moves Ω_{ii} and $\omega_{cut\text{-}off}\,$ into cyclotron resonance layer
 - \circ fast wave resonantly interacts with fast ions v ~ v_a >> v_i

light μ/Z minority case

• future work: unified calculation of these two mechanisms using Monte-Carlo code

Summary & Conclusions

Considerable progress has been made on the rf part of the problem

- the short wavelength modes needed for flow drive can now be followed in sophisticated 2D codes
 - o fully EM
 - \circ integral equation solve for nonlocal effects kp ~ 1
 - o mode conversion in 2D with poloidal magnetic field effects
 - o massively parallel, scaleable computations
 - improved nonlocal nonlinear algorithms have been developed for flow drive
- rf theory has been developed to calculate the forces driving flows
 - o nonlinear nonlocal theory
 - o includes important 2D effects
 - o generalizes Reynolds, magnetic stresses and to $\omega > \Omega_i$, $k\rho \sim 1$
 - o theory necessitated and stimulated by new code capabilities
- interesting physics is emerging from these results
 - mode conversion scenarios can generate flows, aren't restricted to direct launch IBW
 - mode conversion in 2D is subtle: ICW replaces IBW in traditional scenarios (Perkins 1977, Nelson-Melby 2003)

flow drive results could not have happened without rf SciDAC: simulations, theory, algorithms all critical

ICRF field computations and the calculations of their nonlinear consequences are at a mature level

- ready to integrate with neoclassical codes to get flows from forces
- open loop integrated rf and turbulence simulations may now be feasible
 - rf code \Rightarrow gives forces
 - neoclassical code \Rightarrow flows
 - turbulence simulations \Rightarrow transport reduction

(rf • neoclassical • turbulence) simulations ⇔ experiment

The results of an integrated effort in this area could be

interesting from a physics perspective

• deeper understanding of interaction of nonlinear forces, flows, and plasma response

important from a practical perspective

• give experiments a flexible knob for control of transport barriers