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Abstract. Recent progress on the numerical computation of 2D full -wave field solutions has 
motivated advances in the nonlinear theory of rf-induced plasma flows for the control of 
turbulence.  Here, an accounting of how momentum is injected into the system by the antenna, 
and how it can be transferred from waves to plasma flows and to the equili brium magnetic field 
coils and walls is given.  Equations for both the plasma momentum and the wave momentum are 
developed.  The former is a recapitulation of results from nonlinear flow drive theory. The latter 
equation yields a generalized form of the Maxwell stress tensor, including plasma dielectric 
effects. It is shown that momentum is conserved by the plasma-wave-antenna-wall system for 
poloidal and toroidal flux-surface-averaged flows.  In general, however, momentum exchange 
with the equili brium magnetic field coils is possible. 

INTRODUCTION 

Pioneering1 as well as  more recent2-6 theoretical papers have considered the topic 
of rf-driven flows in tokamak plasmas.  It has been suggested that ICRF waves could 
be employed both to flexibly control internal transport barriers, and also to enable 
fundamental physics investigations of nonlinear waves, flows and turbulence. 

Recent advances in the numerical computation of rf f ields have permitted full -wave 
solutions of ICRF fast waves undergoing mode conversion in 2D (axisymmetric) 
tokamak plasmas where the equili brium poloidal magnetic field plays an important 
role.5  In addition to the bipolar sheared-flow layers that were investigated previously, 
these solutions have ill ustrated the importance of direct wave-momentum absorption 
by the plasma leading to net (unipolar) flows.  In this paper, we investigate the 
conservation laws for wave and plasma momentum, and address the question of when 
forces on the equili brium magnetic field coils need be considered. 

Waves of frequency ω cause plasma motion both on the rapid ω time scale 
(accounted for in the plasma dielectric) and on the slow ("dc") time scale, treated in 
the plasma momentum equation below. The external world interacts with the wave-
plasma system through the Lorentz force F = ρE + (1/c) J × B.  Each of the quantities, 
ρ, E, J and B, have both oscill atory (ω) and dc (slow) contributions.  We account for 
the ω*ω products of external forces in the wave momentum equation and the dc*dc 
products in the plasma momentum equation in the sections which follow. 
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PLASMA MOMENTUM 

The species-summed plasma momentum equation describes the evolution of plasma 
flows by the rf (plasma wave) force Fpw, 
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Here u is the dc flow velocity of the plasma, p = n(Te + Ti) is the equili brium plasma 
pressure, J is the dc plasma current, B is the equili brium magnetic field, 0Π

(

 is a 
viscosity tensor (e.g. due to neoclassical physics) that describes the reaction of the 
plasma to the driven flows and D

(

 is a diffusion tensor (e.g. describing turbulent 
diffusion of toroidal momentum).  In Eq. (1) we have neglected ρE ~ ∇2φ∇φ relative 
to ∇p as it is smaller by (λd/L)2 << 1 for a quasineutral plasma. Diffusion describes 
momentum loss of plasma flows to the wall . 

The total nonlinear force of the waves on the plasma is4,5 
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where ρ1 = Σj n1jZje and J1 are the species summed charge density and current 
[~exp(−iωt), i.e. first order in wave fields], qlΠ
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 is the nonlinear  stress tensor3 and 
<…> is a fast (ω) time average.  Using only Maxwell ’s equations and defining P = 
Σj jχ
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After some algebra, in the case where parallel rf forces on ions are negligible,4,5  

 21d210
hrf

pw UUUUU
P ∇×+∇−≡∇×+∇−∇ε−
ω

= ⊥⊥ bFbkF  (4) 

where Prf is the absorbed rf power density, k is the wavenumber (in general summed 
over all modes), εh is the Hermitian part of the dielectric tensor and U0, U1 and U2 
(whose exact forms are not needed here) are given as bili near products of the wave 
electric field.  The "direct" term Fd, defined by Eq. (4), has a more general form in 
terms of sums over modes using the W tensor.2,4  The U1 and U2 terms give rise to a 
redistribution of the plasma momentum by the waves (e.g. sheared flows with no net 
momentum input).  The kPrf/ω term represents momentum exchange between the 
plasma and the waves. The U0 term is the standard reactive ponderomotive potential 
term and does not give rise to flux-surface-averaged poloidal or toroidal flows because 
it has the form of a gradient in the parallel and toroidal directions.  The flux-surface 
averaged poloidal and toroidal flows come from the direct (kPrf/ω) and the dissipative 
stress (U2) terms.  

The terms on the lhs of Eq. (1) are in conservation law form, while those on the rhs 
contain momentum exchange with the coils and the waves.  In general both waves and 
flows can induce plasma currents that cause the plasma to exchange momentum with 
the coils.  This can be demonstrated by considering the case of f lows guided through a 
turn by a curved magnetic field.  Another example is the case of ponderomotive drift 
currents J ~ Fpw × B induced by rf waves.  However, the relevant toroidal and parallel 
flux-surface-averages of Eq. (1),6 viz. <B⋅(1)>ψ and <Reζζ⋅(1)>ψ annihilate J × B.  
Thus, momentum exchange between the plasma and the equilibrium magnetic field 
coils plays no role in understand flux-surface-averaged toroidal and poloidal flows. 
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FIELD AND WAVE MOMENTUM 

The momentum conservation law for the electromagnetic fields is given by7 
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where the external force Fext is defined in Eq. (10) and the Maxwell stress tensor is 
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with I
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 the identity tensor.  When ρ and J consist of both plasma charges and currents 
(ρ �  and J � ) and "external" (i.e. antenna and wall , ρext and Jext) charges and currents, 
then part of the plasma responses contained in Fpw′ can be absorbed into the field 
momentum terms and Eq. (5) takes the form (after some algebra) 
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where D = E + P.  Note that the nonlinear stress tensor qlΠ
(

 is not present in the wave 
momentum equation, while the vacuum part of the Maxwell stress tensor does not 
appear in the plasma momentum equation.  

The terms in Fd′ are not manifestly conservative, and contain the physics of dc 
momentum exchange between the waves and the plasma.  For example, in the eikonal 
limit , to zero order in the wave envelope gradient Fd′ = Fd  = kPrf/ω.  More generally, 
the eikonal limit of Eq. (7) yields the momentum moment of the wave-kinetic 
equation8 
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where Nk = Wk/ω is the wave action (Wk is the wave energy density), vg is the group 
velocity and γ is the damping rate of the wave.  The last two terms on the lhs of Eq. 
(11) can be derived from Fd′. 

In the full wave form [Eqs. (7) – (10)], wave-plasma momentum exchange can 
occur even for a cold-fluid plasma.  Consider for example, the cold-fluid mode 
conversion from the fast wave to the ion cyclotron wave.5,9  In the cold-fluid limit the 
Fd′ term reduces to −(∇ ε

�

):EE/8π.  We can interpret this force as compensating for 
mode-conversion or reflection-induced changes in the wave momentum flux term wT

(

.  
Mode-conversion or reflection alone (without absorption) cannot drive flux-surface-
averaged flows.  However, this does not rule out radial forces on the plasma which 
would need to be balanced by corresponding J × B forces on the coils.  In a reflection 
scenario, the wave momentum normal to the reflection surface is not conserved.  Also, 
waves can be guided through a turn by a curved (e.g. poloidal) magnetic field.  Again, 
the Fd′ term compensates for the change in the wave momentum flux and ultimately 
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represents a force that is transmitted to the supporting (coil ) structures, analogous to 
the case of light being guided along a curved path by a fiber optic cable. 

Finally, the integrated form of Eq. (5) may be useful for testing momentum 
conservation of the field solutions from full -wave rf codes, 
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If the integration volume is bounded by a vacuum region in front of the antenna and 
walls, then Fext = 0 and the emT

(

term describes the input of momentum.  If the 
bounding surface is inside the antenna and walls, then emT

(

 = 0, and the antenna-wall 
forces arise from the surface currents and charges by Eq. (10).  If the bounding surface 
is in the vacuum or the walls, then the nonlinear stress term vanishes there (i.e. Fpw′ = 
Fpw), and the net force exerted by the antenna and walls equals the net force on the 
plasma from direct wave momentum absorption. 

CONCLUSIONS 

We have shown that, as far as flux-surface-averaged toroidal and poloidal plasma 
flows are concerned, momentum is conserved by a system that consists of the plasma, 
the wave fields and the antenna-wall boundary conditions on the rf f ields.  In general, 
(i.e. not flux-surface averaged, or when considering radial momentum) the system 
must include the equili brium magnetic field coils, because of induced J × B forces.  
These forces can be seen to arise in situations where waves or particles are guided by 
curved magnetic fields, or where waves undergo reflection or mode conversion.  For 
flux-surface-averaged flows, the plasma and waves exchange momentum by direct 
absorption of wave momentum and by dissipative stress terms.  An integrated form of 
the field momentum equation including rf forces on the antenna and walls should be 
useful in testing momentum conservation in full -wave rf codes, and relating it to the 
net rf force on the plasma that drives flux-surface-averaged flows. 
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