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Abstract 

Data from the XGC1 gyrokinetic simulation is analyzed to understand the three-

dimensional spatial structure and the radial propagation of blob-filaments generated by quasi-

steady turbulence in the tokamak edge pedestal and scrape-off layer plasma. Spontaneous 

toroidal flows vary in the poloidal direction and shear the filaments within a flux surface 

resulting in a structure that varies in the parallel direction. This parallel structure allows the 

curvature and grad-B induced polarization charge density to be shorted out via parallel electron 

motion. As a result, it is found that the blob-filament radial velocity is significantly reduced from 

estimates which neglect parallel electron kinetics, broadly consistent with experimental 

observations. Conditions for when this charge shorting effect tends to dominate blob dynamics 

are derived and compared with the simulation. 
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I. Introduction 

Blob-filaments1-3 (also called blobs, filaments, intermittent plasma objects, coherent 

structures) have a long history of research in plasma physics, dating from observations in the 

1980s,4 to present magnetic fusion devices.5-10 These coherent structures are of interest for fusion 

research in that they, or the turbulence from which they emerge, may influence the near-SOL 

(scrape-off layer) width11-17 as well as mid to far-SOL profiles18-21 and main chamber wall 

interactions. 

The importance of, and intrinsic interest in, blob-filaments has spawned considerable 

theoretical efforts to understand blob radial velocities2,3,22-25 Originally carried out in model two-

dimensional geometries using fluid theory,26-29 the models were later extended to three 

dimensions,30-32 and a number of fluid simulation codes now also incorporate increasingly 

realistic tokamak geometry.33-36 Recently, kinetic simulation codes have also addressed blob-

related research.37-40 In the present paper, we will continue this thrust by exploring results from 

the XCG1 code,41,42 a full-f, 5D particle-in-cell (PIC) gyrokinetic code. 

The goal of this paper is to analyze and interpret XGC1 simulation results impacting blob 

dynamics. In particular we will explore the effect of toroidal flows which vary in the poloidal 

(parallel) direction on the parallel structure of blob-filaments and the consequences of this 

imposed structure for radial blob propagation. Thus, the sheared flows considered here are 

different from the radial variation of poloidal or toroidal flows that have usually been considered 

in the literature.  However, in a broader sense, our work is at least conceptually related to a very 

large body of work on the effect of sheared flows on plasma turbulence.43-45 More specifically, it 

has been observed experimentally that blob-filaments are distorted, and sometimes even split, by 

the sheared flows that arise from radio-frequency induced convective cells in the SOL.
46

 

Recently, the effects of sheared poloidal flows on disconnection of blob-filaments from the 

divertor has been studied.47 

The plan of our paper is as follows. In Sec. II an overview is presented of the gyrokinetic 

simulation on which the subsequent analysis is based. This section discusses the magnetic 

geometry, bulk plasma parameters and the fluctuation statistics. A field line following coordinate 

system, essential to the filament analysis, is introduced in Sec. III A, followed in Sec. III B by 

the simulation results for blob-filament structure and motion.  
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The theory of charge shorting by parallel electron motion is discussed in Sec. IV. Charge 

shorting occurs when curvature and grad-B induced polarization charges, responsible for blob-

filament radial convection, are mitigated by the parallel electron conduction. A heuristic 

condition for shorting is given for a collisionless system in Sec. IV A, and this result is compared 

to and reconciled with a similar condition that applies in a collisional fluid model in Sec. IV B. 

In Sec. V, the theory is applied to the blob-filaments observed in the simulation. It is 

shown that they are in the collisionless regime and that they satisfy the condition required for 

charge shorting. Furthermore, the density and potential fluctuations in the simulation are shown 

to be nearly in phase, consistent with the dominant role of electron parallel conductivity. Several 

diagnostic methods were applied to the simulation to measure the radial velocity of the blob-

filaments. The blob-filament velocity was found to be smaller than that expected from an ideal 

analytical estimate that ignores the charge shorting mechanism. 

A discussion of some related points is given in Sec. VI and a summary of the paper and 

the main conclusions are given in Sec. VII. Three additional topics are discussed in appendices. 

Appendix A provides details of the time-lag correlation method used to measure blob-filament 

motion, Appendix B discusses the blob-velocity proxy method and Appendix C discusses 

various regimes of the two-region blob model with respect to the simulation. 

In our paper the terms blob-filament, blob and filament will be used almost 

interchangeably, the choice depending on whether the particular emphasis of the discussion is on 

perpendicular (blob) or parallel (to B, filament) structure. 

II. Simulation overview 

In this paper we analyze an XGC1 simulation of the lower single null Alcator C-Mod 

EDA high (H) mode discharge #1160930033 with plasma current Ip = 1.4 MA, toroidal magnetic 

field 5.4 T, input power 5.4 MW and record volume averaged pressure exceeding 0.2 MPa.48 The 

geometry is shown in Fig. 1. In addition to the active lower X-point, there is a “virtual” upper X-

point, i.e. an X-point outside the analyzed simulation domain whose effect on the near-separatrix 

geometry is still important. The ion grad-B drift is directed downwards, towards the (lower) X-

point.  

The simulation was initialized with experimental profiles of density and temperature and 

reconstructed (kinetic EFIT) magnetic equilibrium. This electrostatic simulation employs drift 

kinetic electrons and gyrokinetic ions. It implements a logical sheath boundary condition49 at the 
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divertor plate (which sets the plasma potential such that electrons with lower parallel velocity are 

reflected in sufficient numbers to maintain ambipolarity). Two neutral-plasma interaction models 

are available within XGC1, a built-in model which only treats atoms, and an interface to the 

more sophisticated DEGAS2 Monte Carlo neutral transport code. The former model is used in 

the present work and is described in detail elsewhere.50 Only half of the toroidal extent of the 

device was simulated; the rest was reconstructed using periodicity so that only even toroidal 

mode numbers are present in the simulation. The XGC1 code employs an unstructured mesh in 

the (R, Z) plane with spatially varying resolution., and this simulation used N  = 16 toroidal, i.e. 

(R, Z), planes in the half-torus simulation.  

Although the simulation encompasses the whole (R, Z) plane of the torus, albeit with 

reduced resolution in the interior core, our analysis in this paper is restricted to the edge and SOL 

region shown in Fig. 1. In the radial direction this analysis domain is defined by normalized 

poloidal flux in the range  = (0.97, 1.02) where  = 1 is the separatrix. This corresponds to a 

range of distances from the separatrix of R = 4 mm at the outboard midplane, well short of the 

distance to the main chamber wall. In Fig. 1, the location of the main chamber first wall is shown 

for general reference; the study of far SOL blobs and wall interactions is deferred to future work. 

The first wall at locations with  < 1.07 was included in the full simulation. In the region with 

   1.07 any turbulent or neoclassical potential perturbations were ignored. Thus, the simulation 

includes neutral effects in the regions where there are blobs, but the self-consistent blob 

interaction with the wall is not taken into account because of the radial buffer zone. 

 In the region of interest for this paper, namely the near-separatrix region, each of the 16 

toroidal planes contained 7.6  104 nodes for a total of over 1.2  106 nodes. The spatial 

separation of the nodes is about 0.5 mm which is comparable to the ion gyro-radius at the 

separatrix. The 16-plane toroidal resolution per half torus is sufficient because the unstructured 

mesh in the (R, Z) plane is carefully chosen to place nodes nearly along field lines. Field-line-

following (FLF) methods used in the analysis, are discussed in Sec. III A. The toroidal planes 

end up determining the parallel resolution of the filament, which is slowly varying while the 

perpendicular resolution is set by the node spacing. 

The (deuterium) plasma conditions in the simulation are roughly characterized by the 

following parameters on the separatrix at the outboard midplane: density ne = 1.310
20

 m
−

, 

electron temperature Te = 127 eV, ion temperature Ti = 203 eV and magnetic field B = 4.4 T. 
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The plasma profiles decay rapidly into the SOL. The electron pressure gradient scale length in 

the near SOL is p ~ 0.8 mm. 

 

 

Figure 1. Flux surfaces (black) in the edge and SOL region of the simulation domain in the (R, Z) plane 

and vessel walls (green). The angle  is defined to be zero at the outboard midplane. The thick blue line 

bisecting the X-point is denoted as the X-line. For a given flux surface in the SOL, there is a gap in  

corresponding to this line. For the outermost flux surface the gap is for −1.99 <  < −1.75. Analysis in this 

paper is restricted to the indicated flux surfaces for fluctuations above the X-line, and for   < 2.0, where, 

as we will see, the dominant blob filaments are confined. 

 

The RMS fluctuation amplitudes peak just outside the separatrix at ~13% for the relative 

density fluctuations n/  and ~20% for the relative potential fluctuation e/Te. Here we define 

fluctuations as departures from the toroidal () average, e.g. 

 
1

2
n d n n n n  


= +  +  (1) 

Individual fluctuations can easily reach 50% in the SOL, and infrequent stronger fluctuations 

occur, i.e. intermittency is present as expected. 

The intermittency properties are illustrated in Fig. 2 which used data in the entire range  

= (0.97, 1.02), poloidal angle  in the range (−1.7, 2.0) and a swath of toroidal angle ~ 0.48 rad 

in width. (The statistics are expected to be toroidally axisymmetric.) There is nothing particularly 
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surprising in Fig. 2; rather, it confirms that this XGC1 simulation recovers standard statistical 

results for SOL intermittency such as a skewed and asymmetric probability distribution function 

of amplitudes in Fig. 2(a), a mostly increasing normalized density fluctuation level as one moves 

from the closed to the SOL flux surfaces in Fig. 2(b), and a density fluctuation skewness that is 

negative on the closed flux surfaces passes through zero and increases through positive values as 

one moves in the SOL in Fig. 2(c). The point where the skewness S is zero has been interpreted 

as the blob birth location: from this location holes (S < 0) move inward while blobs (S > 0) move 

outwards in radius.2,3 Fluctuations in n/  peak just outside the separatrix near a normalized 

poloidal flux coordinate value of  = 1.01 where much of the blob-filament analysis in this paper 

will be carried out. This flux surface corresponds to R = 1.5 mm at the outboard midplane. 

 

III. Analysis of simulated blob-filaments 

A. Field line following coordinates 

The intermittency illustrated in Fig. 2 is present in coherent structures which emerge from 

unstable linear modes. These structures, in the form of blob-filaments, are best viewed and 

analyzed in field line following (FLF) coordinates because of the large disparity in their spatial 

scales across and along curved field lines. The FLF coordinates used in the paper are the radial 

coordinate  the parallel coordinate  and a toroidal coordinate . An individual field line is 

labeled by two parameters  and  where  specifies the toroidal angle of the field line at a 

reference poloidal location . Here that reference location is taken as the location of the X-line. 

Thus, the transformation from geometric angle (  ) coordinates to FLF (  ) 

coordinates is defined by 

 

0

0

B
d

RB






 

 

  






=

=

 = − 


 (2) 

where the equation of a field line is R dds = B/B and ds is the distance moved in the poloidal 

direction while moving through d in the toroidal direction. Position along the field line is 

denoted by  with  = 0 corresponding to the outboard midplane and increasing in the counter-
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clockwise direction in the (R, Z) plane, as shown in Fig. 1. The angle  is a geometrical angle 

referenced to the magnetic axis. 

 

 

Figure 2. Statistical properties of fluctuations in the XGC1 simulation: (a) Histogram of normalized 

density fluctuation levels for the edge-SOL domain; (b) RMS density fluctuation amplitude and (c) 

skewness, both vs. radial coordinate parametrized by the normalized poloidal flux. 

 

Special care is taken in performing the data analysis by using FLF interpolation. First 

fluctuation data is obtained on each computational mesh node in the (R, Z) plane for each of the 

N  = 16 toroidal planes in the half-torus simulation. We denote these toroidal planes by the 
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discrete index i  = (1, N)  The data is interpolated to create N  continuous functions of n/ , 

one for each toroidal plane. The transform to FLF coordinates is then carried out to obtain n/  

at an arbitrary value of (, , 0) using the following method. 

We first note that a given field line (, 0) will intersect each toroidal plane i  at a 

particular value of  denoted by i. We identify the two adjacent toroidal planes (i, i+1) defined 

by i <   i+1. Finally, we then interpolate along the field line to obtain the fluctuation at the 

desired point (, , 0). 

It should be noted parenthetically that a straightforward three-dimensional interpolation 

of the raw simulation data (i.e. in the form of nodal mesh values of R, Z on each toroidal plane) 

yielded unsatisfactory results because of the disparity in the perpendicular and parallel structure 

of the fluctuations. 

B. Blob-filament structure and motion 

An example of a blob-filament structure in FLF coordinates is shown in Fig. 3. At a given 

time there are many (~50) such filaments in the SOL of the half torus (0 < 0 < ) of the 

simulation. In this FLF plane, the magnetic field lines are vertical lines at fixed 0 parameterized 

by . The blob radius (half-width-half-max of n/ ) in the direction perpendicular to B is about 

1.8 mm or about 4i. In the parallel direction the filaments extend for about 1m along the 

outboard side of the torus from near the top of the device to a location slightly above the X-line. 

Toroidal flows and the shear in those flows have distorted the blob-filaments and possibly 

contributed to the X-point disconnection.47 The flow can be visualized from the two illustrated 

frames in Fig. 3(a) and 3(b), snapshots taken at a time separation of 3.9 s. (Data was saved 

every 0.062 s, thus, there were many other intermediate frames.) The angular velocity may be 

roughly estimated from these two frames to be about 23 krad/s. This estimate is confirmed and 

greatly improved upon by the time lag correlation method, as discussed next. Both the time lag 

correlation method and the blob tracking method discussed in Sec. V were carried out during an 

interval of 7.9 s at the end of the 95 s total simulation time, when the turbulence was in quasi-

steady state. 



9 

 

 

Figure 3. Snapshots showing positive contours of n/  for blob-filaments for a 0.12 radian (6.9 degree) 

range of toroidal angles on a given flux surface,  = 1.01 at two different times: (a) an arbitrary reference 

time during the quasi-steady turbulent state of the simulation, (b) the same toroidal range 3.9 s later. The 

blob is being convected by the toroidal flow. Here  = -1.7 is at the X-line,  = 0 is the outboard midplane 

and  = 2 is near the top of the machine where there is a virtual X-point. Filled contours of n/n are 

shown for contour levels 0.1 to 0.5 in steps of 0.1. 

 

The time lag correlation method provides a measure of the velocity of structures by 

searching for two space-time points with maximum correlation. The assigned velocity is then v = 

x/t where x is the spatial separation of the maximally correlated points and t is the time lag. 

The method is essentially similar to that described in Ref. 51  to analyze experimental GPI data, 

although some details of the implementation are different. A summary of the method as 

implemented here is given in Appendix A. The results of the toroidal angular velocity () 

analysis are shown in Figs. 4 and 5. 

Figure 4 shows the radial dependence of  at two different poloidal locations: the 

midplane and a point just above the X-line. The angular velocity is roughly constant in the region 
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just inside the separatrix, 0.98 <  < 1.00 but deviates strongly from that value in the SOL where 

it also varies with poloidal position. The error bars in the figure indicate the standard deviation of 

multiple measurements including at various 0 locations and over different time intervals. (See 

Appendix A.) In summary the  flow is strongly sheared as a result of both radial and poloidal 

variation in the SOL. This flow shear accounts for the appearance of the sheared filaments in 

Fig. 3. 

 

Figure 4. Toroidal angular velocity  of the filaments vs. radial flux coordinate at two different poloidal 

angles:  = 0 (black) corresponding to the outboard midplane and  = −1.5 rad (red) corresponding to the 

lower end of the filament near the X-point line. Note the velocity shear due to radial and poloidal 

variation, especially in the SOL. Error bars indicate the standard deviation of multiple measurements (see 

Appendix A) 

 

The parallel variation of  is analyzed in more detail in Fig. 5. Again, it can be seen 

that the flow is more or less uniform in the central region of the filament, but becomes strongly 

sheared at both extremities near the top and bottom of the torus, and can even change sign. Part 

of the reason for the poloidal variation of the flows may be associated with the development of 

structure in the electrostatic potential near X-points, e.g. caused by X-point losses.52 

The blobs also move radially, although the radial motion is about two orders of 

magnitude smaller than the toroidal motion and is therefore rather difficult to detect by the 

correlation method. We will return to the radial motion in Sec. V. 
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Figure 5. Toroidal angular velocity  of the filaments vs. poloidal angle on the flux surface  = 1.01. 

Note the difference in toroidal velocity between the midplane and the lower ( = -1.5) or upper virtual ( 

= 2) X-points. Error bars indicate the standard deviation of multiple measurements (see Appendix A) 

IV. Theory of charge shorting 

We have seen that spontaneous poloidally-sheared flows that develop in the plasma, 

particularly in the SOL and near the X-points (real and virtual) distort the blob-filaments, 

causing them to depart slightly from the magnetic field lines. Although the departure is only on 

the order of the blob perpendicular dimensions, perhaps a few millimeters over a meter or more 

of field line length, it can play a significant role in the dynamics of the structure. Exploring this 

is the topic of the present section. 

A. Heuristic condition for collisionless kinetic electrons 

The basic idea is illustrated in Fig. 6 which shows a field line (black) and a filament 

which departs from the field line. The sketch is in field line following (FLF) coordinates 

corresponding qualitatively to Fig. 3. Curvature and B drifts charge-polarize the blob-filament 

in the standard picture of blob dynamics,1-3 indicated by the red positively charged side of the 

blob and the blue negatively charged side. If the electron parallel motion along the (black) field 

line is rapid enough, it will short out the charge polarization. However, the internal charge 

polarization of the blob is responsible for an internal electric field that propels the blob in the 

radial direction through its EB drift. Thus, the shorting mechanism enabled by electron parallel 

conductivity and the parallel shearing of the filament will suppress radial motion of the blob. 

Essentially, the parallel variation of the filament caused by the sheared flows imposes a k|| on the 
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filament, making it susceptible to electron conductivity. Some different aspects of a similar 

mechanism in the presence of magnetic shear were also examined in a fluid model in Ref. 53.  

The effect of parallel variation of density in a filament and the subsequent development 

of a Boltzmann response in the electrostatic potential on the blob-filament dynamics was also 

investigated in a fluid model.54 The resulting mechanisms discussed therein, namely secondary 

drift-wave instability of the blob and Boltzmann spinning, are different from the charge shorting 

mechanism considered here and will be discussed in Sec. VI. 

 

 

Figure 6. Sketch of a sheared blob filament (red and blue) and magnetic field line (black) in FLF (field 

line following) coordinates for a particular flux surface. The red and blue lines indicate the two “sides” of 

a blob of cross-sectional diameter 2b. The two sides are anchored on different field lines (parametrized 

by 0), on which positive (red) and negative (blue) polarization charges from curvature and grad-B drifts 

accumulate. Electrons moving along the field line a parallel distance d|| can short out the charge 

imbalance. 

 

A heuristic condition for the shorting mechanism to be effective may be obtained by 

comparing some time scales. Three time scales are of interest, that of (i) parallel electron motion 

across the sheared filament e|| = d||/vte, (ii) curvature drift of charges across the filament  = 

b/v and (iii) perpendicular shearing s = b/vs. Here d|| is the parallel distance between the two 

sides of the filament (see Fig. 1), vte is the electron thermal velocity, b is the perpendicular blob 

radius, v is the curvature (or grad-B) drift velocity and vs is the shearing velocity of the 

filament, i.e. s is the time for the filament to distort by b in the frame of its average motion. If 

e|| < , s then the charge polarization from curvature and grad-B drifts would be shorted out 
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before it can build up. Conversely, the charge shorting mechanism is ineffective in the limit e|| > 

. The only other possibility is s < e||  <  in which case the filament distorts significantly by 

sheared flow before the electrons can move. In this case the shorting mechanism is modified 

because the field line may or may not connect opposite charges any longer, or the filament may 

break up.  

The curvature, or equivalently B, drift velocity in a tokamak is estimated as 

 s sccT
v

eBR R



= =  (3) 

independent of species for Te = Ti = T. Here cs = (Te/mi)
1/2

 is the sound speed and s = cs/i is 

the ion sound radius where i is the ion cyclotron frequency. For a fixed shape of sheared blob-

filament like that illustrated in Fig. 6 we have noted above that shorting will occur when e|| < . 

The entire blob-filament can be EB drifting both in the radial and binormal directions. This will 

have no effect on the shorting mechanism since the electrons drift with the structure. However, if 

the blob-filament is subject to sheared flows then the structure illustrated in Fig. 6 will distort 

with time. The relevant shearing velocity is vs = R  where  is the change in toroidal 

angular velocity over a distance comparable to the parallel scale length of the filament. 

Neglecting dynamical shearing for the moment, and assuming the filament is already 

distorted as shown in Fig. 3, the relevant condition to fulfill for electron shorting of blob 

propagation in the collisionless kinetic limit is e||  <   or equivalently d||css < bRvte. When 

Ti > Te as it is for the blobs in this simulation, the estimate of the curvature velocity in Eq. (3) 

should be modified by the replacement css → vtii. Thus, a more general condition for charge 

shorting in the collisionless regime takes the form 

 
||

1 1
s s i

te b e

d c T

Rv T





 
+  

 
 (4) 

The preceding inequality is typically easily satisfied since cs << vte, s < b and in the presence 

of sheared structures d|| < R. This condition, Eq. (4), and importantly the condition for this 

collisionless estimate to apply, will be compared with simulation parameters in Sec. V.  

B. Collisional fluid electrons 

Since most of the previous simulation work on blobs has been done in the context of fluid 

models, in this section a condition for electron shorting is developed in the collisional fluid limit. 
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It will be sufficient to consider an isothermal reduced fluid model, as described e.g. in Appendix 

A of Ref. 55.  

In Bohm-normalized variables (i.e. time normalized to 1/i, space to s and density to a 

reference density n0), the electrostatic potential and plasma density obey the coupled equations 

 ||( , )


  =  + −


dw sh sh
d n

n A n J
dt y

   (5) 

 ( )||( , )=  − −dw sh sh
dn

A n n J
dt

  (6) 

where the convective derivative is written as d/dt = /t + v with v = ez  and Adw is the 

adiabatic (drift wave) operator 

  ( , ) lndw dwA n n =  −  (7) 

 

2 2
||

0

2 te
dw

ei i

k v



=


 (8) 

Here, for any quantity , < >   denotes the zonal or y average part and in Eq. (7)  

{ }   denotes the fluctuating part. In the reduced model (x, y) are the radial and binormal 

variables, and B = Bez. Thus, Adw enforces a Boltzmann response on fluctuations when the 

coefficient dw is large, in the spirit of the Wakatani-Hasegawa56 adiabaticity parameter. Here, 

the collision frequency ei0 is based on the reference density. 

Other coefficients appearing in the model are: the sheath conductivity parameter sh = 

s0/L|| where s0 is the reference sound gyro-radius, and the curvature parameter  = 2s0/R 

where R is the effective radius of curvature. In this reduced model, the parallel sheath current 

J||sh is ultimately given in terms of n and  by closure relations in the sheath-limit and 

conduction-limited (collisional) regimes. 

As is well known, the radial blob velocity vb ~ /y ~ /b (in Bohm normalized 

variables) is obtained from the blob polarization potential   by balancing either (i) the sheath 

current sh J||  in the sheath-connected limit, or (ii) the ion polarization current (d/dt)n ~ 

vn  ~ n2
/b

4
  in the inertial limit, with the curvature term  n/y ~ n/(Rb). 

For a Gaussian shaped blob profile in density, n(y) is even about the blob centroid and 

n/y is odd. This gives rise to an odd or “dipole” potential profile (y) ~ n/y which in turn 
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provides an even poloidal electric field /y to propel the radial EB blob propagation. When 

dw is large enough to dominate the vorticity equation, it instead enforces  ~ ln n, i.e. an even 

(y) for even n(y) and no net radial propagation. In the language of turbulence theory, the cross-

phase between n and  is /2 for small dw (high collisionality) which promotes curvature 

driven radial transport, but the cross-phase tends to 0 for large dw (low collisionality, adiabatic 

electrons) which mitigates that transport channel. 

A heuristic condition for adiabatic shorting of the curvature-driven charge polarization in 

fluid theory is obtained by estimating the potential response arising from Eq. (5) 

 
2
⊥

+
=

+

dw y

dw

ik
n

k

 
 

 
 (9) 

where ky and k⊥ are typical inverse spatial scales (blob sizes) and  is a characteristic inverse 

blob time scale. Here the sheath term, which is not relevant to this discussion, has been dropped 

for simplicity. Comparing the curvature and electron parallel streaming terms in the numerator 

we see that the phase between  and n transitions from hydrodynamic-like (  iky n) to 

adiabatic-like (  n) when dw > ky, or restoring dimensional variables, when 

 s
dw

b


 


  (10) 

At even larger dw >> k⊥
2 >> ky the transition to adiabatic electrons is complete.  Equation 

(10) can be written in the form 

 
||

||
te

te b s s
ei

k v
k v R c 


  (11) 

Fluid theory, and the above condition, are valid for the electrons in the short mean free 

path limit k||vte < ei. At the validity boundary of the fluid regime k||vte ~ ei and identifying k|| 

~ 1/d|| Eq. (11) agrees, as it should, with the kinetic result given in Eq. (4).  Thus, the charge-

shorting mechanism should be present in a 3D fluid turbulence simulation, provided the required 

conditions, including Eq. (11), are satisfied.   
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V. Application to the simulation 

To decide whether the charge shorting mechanism is active in the XGC1 simulation, we 

first evaluate the collisionality ratio k||vte/ei at the location  = 1.01 where the relative 

fluctuation levels maximize. Employing the parameters ne = 5.610
19

 m
−

, electron temperature 

Te = 40 eV, ion temperature Ti = 155 eV and B = 4.4 T and taking k|| = 2/L||b where L||b is the 

parallel dimension of the blob ~ 0.9 m, we find k||vte/ei ~ 2.4 which puts the blob in the 

collisionless kinetic regime. It may also be reasonable to estimate k|| ~ 1/d|| where d||, defined in 

Fig. 6, is estimated next. This leads to the same conclusion: the blob is at least marginally in the 

kinetic regime. 

A detailed analysis was carried out on the filament shown in Fig. 7. Comparing it with 

the filaments shown in Fig. 3 also illustrates both the similarity and variability of these 

structures. The filament shown in Fig. 7 has its centroid at the location of the dashed vertical line 

at 0 = 1.487. From a cut along this line the full width half maximum (FWHM) in the  variable 

was measured and converted to distance along the connecting field line. This results in the 

estimate d|| = 18 cm. For the same blob-filament, the perpendicular size b was measured by 

converting its half width half maximum (HWHM) in   to an equivalent distance in the 

binormal direction, yielding b = 0.18 cm. 

Substituting the preceding estimates into Eq. (4) yields d||scs(1+Ti/Te)/(Rbvte) = 0.002 

<< 1 indicating that the condition for charge sorting is easily satisfied. However, in this 

simulation, the filament shearing is sufficiently pronounced that a simple static picture like that 

implied in Fig. 6 may not apply. For the parameters given in the first paragraph of this subsection 

one finds e|| = 0.07 s and  ~ 36 s. From Fig. 5 we estimate the change in toroidal angular 

velocity to be on the order of  ~ 20 to 40 krad/s resulting in v = R  ~ 18 to 36 km/s 

and s ~ 0.10 to 0.05 s. Thus, the simulation is in the regime s ~ e|| <<  where charge 

shorting should occur, but may be modified or even partly mitigated by dynamical shearing. 
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Figure 7. Snapshot showing positive contours of n/  for a blob-filament on the flux surface  = 1.01. 

The dashed horizontal line passes through the centroid, where the parameter d|| is measured using the 

FWHM.  

 

These considerations suggest a nearly adiabatic electron density response to potential 

perturbations. In Fig. 8 the electron density and electrostatic potential are overlaid for a field line 

in the closed surface region. The electron response is indeed nearly adiabatic. The adiabaticity is 

even more pronounced in the SOL (not shown) where the curves essentially overlay. This nearly 

adiabatic response mitigates radial blob propagation. Of course, there may be additional reasons 

for a nearly adiabatic electron density, including the presence of drift-type turbulence with finite 

k||. In the nonlinear state the turbulence and filament shearing are coupled.  

To study the actual radial velocity of the structures, several diagnostic methods were 

employed. First is the time-lag correlation method, described in Sec. III B and in more detail in 

Appendix A. As explained there, the time-lag correlation method does not provide a very 

sensitive diagnostic for the radial velocity in these simulations. The resulting radial blob 

velocities shown as black data points in Fig. 9 come with large standard deviations on the order 

of 0.5 km/s. The means are nearly zero but show a slight tendency to decrease moving from the 

closed surface region into the SOL. 

A second velocity diagnostic may be referred to as the velocity proxy method. In this 

method, we do not attempt to diagnose the actual motion of structures from one time to the next 

but rather look at the average EB velocity vE at locations where n > 0. (See Appendix B for 

details.) The results are shown in Fig. 9 as a solid black curve which peaks at about 300 m/s in 
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the closed surface region and drops to nearly zero in the SOL. The same technique may also be 

applied to only the most positive parts of the structure n > nth for some positive threshold 

nth. As seen in Fig. 10 results are not overly sensitive to nth but tend to rise somewhat in the 

edge region as the threshold is raised. 

A third method is to measure the blob velocity by a tracking method described in Ref. 40. 

Briefly, in this method a region of plasma in the (R, Z) plane with n/  exceeding a threshold 

(0.1 here) is first identified as a blob in a given frame, i.e. at a given time. A blob with similar 

features (size, spatial proximity, etc.) is then identified in a subsequent frame and the velocity of 

the structure is determined directly from its spatial motion in the given time interval. This 

analysis, applied to 128 frames yielded 629 trackable blobs in the range ψ = 1.00 to 1.01 and 798 

trackable blobs in the range ψ = 1.01 to 1.02. Outside of these  intervals, there were too few 

trackable blobs for a statistically significant result. Results for the mean blob velocity from this 

analysis are shown as thick blue bars in Fig. 9. Similar to the blob proxy method in the SOL, the 

blob radial velocities from the tracking method are nearly zero.  

The blob tracking code also yields other information about the blob structure. Of 

particular interest here is the size distribution, which indicates a mean b of 0.23 cm, close to the 

0.18 cm of the example shown in Fig. 7. 

Of course, the different “blob velocity” diagnostics all measure subtly different things. 

They are not expected to agree in detail. In particular the correlation method is the most sensitive 

to small structures while the proxy and tracking methods explicitly invoke a threshold on 

amplitude. 

Finally, Fig. 9 shows an analytical estimate of what the blob velocity would be for these 

parameters in a reduced fluid model where the shorting mechanism is not operative. As shown in 

Appendix C, the appropriate estimate is from the inertial or RB regime of the two-region 

model.24 In this regime the radial blob velocity vb is obtained  by balancing the ion polarization 

current (d/dt)n (i.e. inertia) with the curvature (charge polarization) term.  The inertial 

regime blob velocity is 
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  
+  

   

 (12) 

where fb  n/  is a proxy for the perturbation amplitude. For nominal parameters given in the 

preceding this evaluates to vb,in ~ 1.4 to 3.2 km/s for fb in the range 0.1 to 0.5. A more accurate 
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evaluation of Eq. (14) using local plasma parameters and corresponding rms values of fb is 

shown as the red curve in Fig. 9. In principle, for pressure driven perturbations, one should take 

fb  p/ p  which could increase vb,in even further; however, for present purpose the conservative 

estimate shown in Fig. 9 will suffice. 

From these diagnostics and estimates, it can be concluded that the observed blob 

velocities are indeed much smaller than Eq. (12) would yield were an ideal fluid model 

applicable. This is consistent with the predicted shorting mechanism.  

It is interesting to note that experimentally observed blob velocities in Alcator C-Mod 

span a range comparable to the scale of Fig. 9. Using a similar correlation technique to that 

described here, Zweben51 finds typical radial turbulence velocities for C-Mod in the range 0.1 to 

< 1 km/s. In different sets of discharges Grulke57 reported 0.5 to 2 km/s using correlation and 

tracking, with  most  structures  having  vb  ~  0.5  km/s;  Terry58  finds  typical radial turbulence  

 

 

Figure 8. Cross-field variation of normalized density (blue) and potential (red) fluctuations for a range of 

toroidal field line labels 0 near the outboard midplane on the flux surface  = 0.98. Curves are 

normalized to their maximum values for the purpose of superposition. 
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Figure 9. Ideal analytical (red) and gyrokinetic simulation radial blob velocities measured by three 

techniques (black, blue) at the outboard midplane. The ideal analytical blob velocity is a reduced fluid 

model estimate appropriate to the inertial (also called resistive ballooning RB) regime in the absence of 

parallel shearing and electron shorting effects. The solid black curve is obtained using the blob velocity 

proxy method; the data points with error bars result from applying the correlation method; the blue bars 

indicate results from the blob tracking method. The reasons for the limited spatial range of the latter two 

methods is given in the main text and the interpretation of the error bars is discussed in Appendix A. 

  

velocities that are less than 1 km/s. These experimentally results are roughly consistent with the 

XGC1 simulation reported here, although the suppression of blob velocities in the SOL is not as 

strong in the experiments as in the simulation. We can also speculate that the occasional larger 

velocities reported experimentally in C-Mod (~ 1 km/s) may have been filaments that were 

unaffected by shearing, perhaps because of flow variations throughout the discharge, which is 

much longer than the 95 s that could be simulated here. 
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Figure 10. Sensitivity of the blob velocity proxy method to the threshold amplitude nth/nrms. Results for 

two different radial positions are shown:  = 0.99 (blue) and  = 1.01 (black). The poloidal location is at 

the outboard midplane. 

VI. Discussion 

As previously noted, the mechanism for dipole charge shorting that is the main point of 

Sec. IV, is different from the mitigation of dipole charges by “Boltzmann spinning.”54  The 

dipole charge shorting condition, given in the collisionless electron limit by Eq. (4) and for 

collisional fluid electrons in Eq. (11), is applicable when the filament is not aligned along the 

magnetic field.  In this case the parallel motion of the electrons can respond to the dipole 

pressure gradient and potential perturbations that are responsible for radial blob convection and 

thereby slow the convection.   

On the other hand, the Boltzmann spinning mechanism is most easily understood when 

the filament is perfectly aligned along the magnetic field but has a parallel density gradient.  

Assuming the parallel electric field and parallel pressure gradient terms dominate Ohm’s law, a 

Maxwell-Boltzmann monopole potential with parallel variation 1 ~ ln n results (in 

dimensionless variables assuming isothermal electrons and a parallel filament density variation 

n). It was shown in Ref. 54 using 3D fluid simulations and analytical analysis that Boltzmann 

spinning develops under these conditions and mitigates the dipole polarization charges when the 

monopole potential 1 exceeds the dipole potential 2 (within an order unity factor). Boltzmann 

spinning and polarization charge rotation were also seen in 2D simulations55 using a model 

similar to Eqs. (5) and (6).   
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Other mechanisms can also give rise to spinning, such as a cross-field temperature 

gradient in sheath-connected blobs,59 resulting in the same effect (reduction of radial velocity 

and a transfer of radial velocity to the poloidal component). While this particular mechanism is 

not directly relevant here because the blobs are electrically disconnected from the sheaths, any 

cross-field process that links the perpendicular electrostatic potential and temperature or density 

gradients would also have an analogous effect. 

The simultaneous effects of dipole charge shorting for poloidally sheared filaments and 

spinning have not been studied, but it is clear that blob-filament spinning occurs whenever the 

electron response allows a monopole potential, and that the mitigation condition 1 > 2  should 

be more easily satisfied if 2  has been reduced by charge shorting. Thus, there may be 

synergistic effects. Indeed, in the simulation under study, any charges not mitigated by the 

shorting mechanism would be mitigated by Boltzmann spinning since it can be seen from Fig. 8 

that the Boltzmann contribution dominates the total potential. 

Ideally the effects of charge shorting on blob motion would best be quantified by 

comparing simulation results with and without sheared flows satisfying Eq. (4), but with other 

conditions unchanged as much as possible. This would account for mechanisms in addition to 

charge shorting that could slow the blob motion.  For example, one caveat of our analysis is that 

neutrals were present in the analyzed simulation; they could in principle affect the blob velocity 

through charge-exchange friction. The large computation expense of running the XGC1 code has 

so far made such direct comparative runs impractical. Shorter seeded-blob simulations are 

presently under investigation for this purpose. 

Although the dynamics of filaments that are sheared by poloidally varying toroidal flows 

were studied in the present paper using results from a gyrokinetic simulation, the phenomena of 

poloidally shearing and charge shorting should in principle be accessible to fluid codes in the 

appropriate parameter regime.  Specifically, Eq. (11) must be satisfied, which in practice is 

usually easy, even in the strongly collisional plasmas required for the validity of fluid models. 

However, for marginally collisional SOL plasmas, it is well known that fluid models may be 

subject to some inaccuracies in the electron parallel response, and the representation of charge 

shorting would be more qualitative. Also, some mechanisms for generating sheared flows such 

as direct particle loss, may not be present. 

In this paper we have not addressed the causes for the observed poloidally varying 

toroidal flows. This is certainly an interesting question, but one which is well beyond the scope 
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of this paper. We speculate that X-point ion losses, neoclassical physics, turbulence physics and 

the transition from closed to open field lines are involved. All of these likely play in role in 

establishing the electrostatic potential in the edge and SOL regions.  Some aspects of the 

interplay among these mechanisms has been discussed in other works, both for XGC114,40,52 

and fluid turbulence codes.47,60 

VII. Summary and conclusions 

The primary results of this paper are to be found in Eqs. (4) and (11) and Figs. 3 – 6 and 

in Fig. 9. Figure 3 visually illustrates the shearing of blob-filaments within a flux surface in the 

gyrokinetic simulation. It is caused by poloidal (parallel) variation of toroidal flows. The 

filament shearing is quantified in Figs. 4 and 5 where it is shown that the shearing is largest near 

X-points and in the scrape-off layer. Conversely, shearing is smallest near the outboard midplane 

and in the closed surface region just inside the separatrix. The causes for these flow patterns are 

outside the scope of this paper.  Rather, the focus of the paper is on the consequences of such 

flows, when they occur, on filament shearing and radial propagation. Our focus on the 

consequences of filament shearing on blob propagation is not meant to imply the absence of 

other, possibly synergistic or competing mechanisms relevant to blob propagation.  

The sketch in Fig. 6 illustrates the fundamental mechanism of charge shorting by parallel 

electron currents when a filament is sheared by the parallel variation of toroidal flows. This 

effectively generates a k  which enhances the role of the electrons and enables the electron 

response to approach an adiabatic response. Analytical conditions for when the shorting 

mechanism is applicable are given for the collisionless kinetic electron limit in Eq. (4) and for 

collisional fluid theory in Eq. (11). Figure 9 compares the blob velocities diagnosed from the 

simulation with an analytical estimate of what those velocities would be from an ideal fluid 

model in the absence of the shorting mechanism. The shorting mechanism inhibits charge 

polarization of the blob-filament and therefore inhibits the mechanism by which blobs are 

propelled radially, slowing them down as observed in the simulation. The resulting blob 

velocities were also found to be broadly consistent with experimental observations. 

While simple scaling arguments like those proposed in the original two-region model24 

and related models25 give definite values for the blob velocity for given plasma parameters, 

experimentally and in codes a statistical distribution of blob radial velocities is invariably 

observed.5-7 One reason for this is that the velocity depends on blob size, b, and the turbulence 
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generates a statistical distribution of sizes. Given the present study, it is also of interest to 

speculate that another reason for the distribution of blob velocities is that the blob-filaments are 

subject to sheared flows which may vary throughout a discharge in space and time, on longer 

time scales than could be simulated here. Blob-filaments may be influenced differently by the 

charge shorting mechanism depending on the background sheared flows they encounter. 

It is possible that the shearing mechanism could be deliberately employed to control blob 

velocities by biasing. Biasing has been tried experimentally with some success,61 motivated by 

other theoretical considerations.62
 Strongly sheared flows in the SOL may already be present due 

to self-biasing in experiments which apply RF waves in the ion-cyclotron range of frequencies 

(ICRF).46,63,64 

In closing, we emphasize that it will be important to continue studies of kinetic and fluid 

effects on blob-filament dynamics in order to better understand and predict the impact of these 

turbulent structures on the near-SOL width and on main chamber wall interactions in the far 

SOL. 
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Appendix A: Time-lag correlation method 

The correlation method provides a measure of the velocity of structures by searching for 

two space-time points with maximum correlation. The assigned velocity is then v = x/t where 
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x is the spatial separation of the points and t is the time lag. However, many detailed 

considerations enter the actual implementation of this rather simple idea.  

The correlation function for the density perturbation n is defined by 
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where the data record starts at t = t1 and stops at t = t2. First, we choose a time delay that is a 

multiple of t, the time resolution of the data set, i.e. t = n t where n is an integer parameter. 

Then for a given x, the maxima of C must be located within a given search box. The n = 1 search 

box is chosen to contain a typical blob as it moves with one t step. The choice of initial box 

requires some judgment and experimentation; it is not unique. Typical values used include data 

up to 3 spatial grid-points from the reference location. Have determined the initial (n = 1) box, 

for n larger than 1, the box is expanded by a factor of n, so that blobs do not escape the search 

box. Thus, the correlation velocities so determined depend on the numerical parameters n and the 

search box dimensions. Different choices offer competing advantages in terms of velocity scale 

and resolution. 

The velocity resolution is limited by the spatial resolution of the simulation and the 

largest t that can be accommodated without using an unduly large search box. The smallest 

velocity that can be detected is 

 min min( ) /v t=  x  (A2) 

where x is the grid (or node) spacing. If t is made large to improve resolution, then either 

some fast velocities will be missed, or the search box must be increased to the point where 

adequate spatial resolution and spatial range are lost, the latter because the search box begins to 

overlap the boundary of the domain. 

In the present application x may be interpreted as an abstract vector in FLF coordinates, x 

= ( 0). Since the fluctuations are statistically independent of the toroidal coordinate 0, 

velocities may be determined for a sequence of toroidal positions. In Figs. 4, 5 and 8 we show 

the mean and standard deviations over 0 and n = 1, … nmax where the standard deviations are 

plotted as error bars. Typically, we found good results for nmax in the range 3 to 5. 
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The method yields good results for the toroidal velocity because the toroidal resolution in 

FLF coordinates is very good and, because of periodicity, the search boxes never encounter a 

domain boundary. On the other hand, the method does not work so well for the radial velocity. 

The first issue is that the radial velocity is much smaller than the toroidal velocity making an 

optimal choice of t for simultaneous measurement of both difficult. This was mitigated by 

transforming the data into a frame rotating toroidally with the mean toroidal velocity. The second 

issue is that the radial resolution of the data limits the radial velocity resolution for the reasons 

just stated to about 1 km/s, and this only over the middle of the radial domain, where boundary 

issues do not interfere with the calculation. 

Appendix B: Blob velocity proxy method 

In this method the blob velocities are not determined by direct detection of their motion 

but rather it is assumed that the plasma moves radially across field lines at the local EB 

velocity. Because the EB velocity can have spatial variation on the scale of the blob itself (see 

e.g. Fig. 7) an appropriate average velocity must be defined. Here we define the blob velocity 

proxy as 
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where H is the Heavyside step function, nth is a threshold fluctuation level, Bp is the poloidal 

magnetic field and the radial EB velocity in FLF coordinates is given by 
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An approximation has been made in the final form of Eq. (B2): the contribution of the 

parallel variation   in FLF coordinates is assumed to be negligible, specifically 
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(In principle, FLF makes a contribution to vE because the poloidal electric field in 

geometric angle coordinates (  ) is expressed in terms of both 0 and  in FLF 

coordinates.) 

The blob velocity proxy given by Eq. (B1) averages vE over that part of the blob for 

which the fluctuating density exceeds a threshold value, n > nth. Thus for nth = 0 the average 

is taken over all locations with positive fluctuations (“blobs”). As nth increases, the computed 

proxy velocity typically increases, as shown in Fig. 9. At large nth /nrms the statistics become 

poor. 

Appendix C: Two-region model estimates 

It should be kept in mind that the two-region model is rather rudimentary in its 

representation of X-point geometry, and while useful for understanding blob velocity scaling 

laws, it is not expected to give accurate order-unity coefficients in those scaling laws or in the 

regime boundaries. Nevertheless, it is useful to understand the model’s implications. 

The fundamental parameters of the two-region model are 
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and the X-point geometry factor x. Here L|| is the midplane to divertor connection length ~ 8 m,   

R ~ 0.89 m is the major radius, and in the X-point region on the  = 1.01 flux surface, we 

estimate x from the flux expansion ratio x~ RBp(X-pt)/RBp(midplane) ~ 0.1. Blob and plasma 

parameters in the SOL from the simulation give ne ~ 5.6  1019 m-3, Te ~ 40 eV, Ti ~ 155 eV, B 

= 4.3 T, and b ~ 0.18 cm resulting in  ~ 0.4,  ~ 0.4. This places the blobs on the RB-RX 

boundary,  =  where the blob velocity is estimated from the RB scaling as 
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Taking fb ~ 0.1 yields vb ~ 0.6 km/s similar to Fig. 9 in the SOL.  Equation (12) adds the 

additional curvature drive weighting from finite Ti. Of course, on the RB-RX boundary the RX 

scaling will give the same result as Eq. (C3). 

The parallel structure of the mode is broadly consistent with these findings. The rms 

fluctuation level at  = 1.01 decays to half of its maximum value at  = −1.20 and  = +1.07 in 

FLF coordinates. At these locations the factor x defined in the two-region model is respectively 

0.88 and 0.95, hardly different from its midplane value of 1.  Thus, the filaments do not 

experience significant X-point effects such as enhanced inertia and are disconnected from the 

divertor. This eliminates the relevance of the connected-interchange (CI) regime and the sheath-

connected (CS) regime, as expected since the CI regime requires  < x and CS regime 

requires x   In the simulations, however, the parallel decay and disconnection of the 

filaments may be assisted by effects other than resistivity, e.g. shearing by the poloidal variation 

of the background flows. 
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