Turbulent Transport and the Scrape-off-Layer Width

J.R. Myra,¹ D.A. Russell,¹ D.A. D'Ippolito,¹ J-W. Ahn,² R. Maingi,² R.J. Maqueda,^{3,4} D.P. Lundberg,⁴ D.P. Stotler,⁴ S.J. Zweben,⁴ M. Umansky⁵

¹Lodestar, ²ORNL, ³Nova Photonics, ⁴PPPL, ⁵LLNL

presented at the TTF Meeting, Apr. 13-16, 2010, Annapolis

work supported by DOE grants DE-FG02-02ER54678 and DE-FG02-97ER54392

Introduction

- Study the effect of midplane turbulence on the SOL width
 - use reduced model: 2D, fluid, electrostatic
- Compare predicted trends (not absolute modeling) with NSTX data

hypothesis: turbulent ExB transport of particles and energy across the midplane separatrix determines the SOL width

Outline

- the SOLT code
- low power ELM-free H-mode (NSTX)
- L_{||} scaling: simulation and theory
- $-I_p$ scaling (NSTX)

The SOLT code: physics model

- <u>Scrape-Off-Layer Turbulence (SOLT) code</u>
 - 2D fluid turbulence code: model SOL in outer midplane
 - classical parallel + turbulent cross-field transport
 - evolves n_e , T_e , Φ with parallel closure relations
 - sheath connected, with flux limits, collisional
 - strongly nonlinear: $\delta n/n \sim 1 \Rightarrow blobs$
 - model supports drift waves, curvature-driven modes, sheath instabilities
 - synthetic GPI diagnostic
 - flexible sources for n_e, T_e, v_y
- Present work:
 - curvature-driven interchange, sheath-connected
 - SOL simulation \Rightarrow edge region provides effective BC at separatrix
 - artificial sources maintain experimental n_e, T_e inside LCS
 - no sources from -1 cm to wall \Rightarrow n_{sep}, T_{sep} free

H-mode plasmas and SOL-width simulation

- previous SOLT simulations modeled L-mode
 - strong turbulence and blob emission
 - $< v_V >$ driven by Reynolds's stress, blob emission and sheaths
 - GPI comparisons of far SOL convective transport
- H-mode simulations require a different approach
 - steeper gradients, but tamer turbulence \Rightarrow regulation mechanism

- impose mean $\langle v_y \rangle$ in core $v_y \sim \frac{1}{n} \frac{d}{dx} (nT_i) \sim -E_r$
- control parameter $\tau = T_i / T_e$ regulates turbulence (E_r well depth)
- vary τ to match experimental P_{sep}
- SOL $\langle v_y \rangle$ still from RS and sheath physics
- SOLT P_{sep} scans hold core profiles fixed

Lodestar/Myra/TTF/2010

 \Rightarrow heat flux-driven BC for SOL simulation

Summary of SOLT input and output

- input from experiment
 - power crossing separatrix P_{sep}
 - connection length in SOL $L_{\parallel}(r)$
 - − plasma profiles inside LCS $n_e(r)$, $T_e(r) \Rightarrow$ gradient drive, collisionality regime Λ (or v_{e^*})
 - effective curvature R; B_t, B_p
- other input
 - dissipation parameters: viscosity, ZF damping
 - downstream / sheath conditions at divertor plate
- output
 - $\langle q_{\parallel}(\mathbf{r}) \rangle$, and heat flux width λ_q
 - $V_{X} = < nV_{X} > / < n > (or < nTV_{X} > / < nT >)$
 - $n_e(r), T_e(r) \text{ SOL}$
 - 2D turbulence snapshots or movies

compare with experiment:

probes, GPI, divertor IRTV (midplane mapped)

Low power ELM-free H-mode [J. W. Ahn - NSTX]

power scan: shots 135009 at $P_{nb} = 0.8$ MW and 135038 $P_{nb} = 1.3$ MW

exponential fits (solid)

$$P_{sep} = 2\pi R b_{\theta} \int dr \, q_{\parallel}$$

SOLT simulations: power scans reproduce trend in data

Midplane profiles: simulation vs. experiment

- NSTX shot #135009
- midplane probe data [Ahn]
- SOLT overestimates near SOL n_e (omits 3D effect of parallel sonic expansion)

• far SOL T_e discrepancy – far SOL L_{\parallel} used in simulation may not be accurate (no LRDFIT there)

SOL width not set by ejected blobs, but by separatrix-spanning convection

- sheared flow is too strong to let blobs detach
- growing fingers are sheared down by zonal flows, but intermittently get carried across separatrix by convective cells
- resulting cross-field motion competes with parallel flow \Rightarrow SOL width

turbulent snapshot

- density n(x,y)
 - color palette (white for n < 0.6 to illustrate the plasma edge)
- potential $\Phi(x,y)$
 - contours at {.7, .8, .9, 1.0} to illustrate separatrix-spanning convective cell

Simulated GPI – NSTX 135009

Lundberg-Stotler fits for $D_0(x)$ puff profile

• In SOLT (for this shot) blob ejection only occurs due to transients – here at the start of the simulation

(early in simulation)

10

5

Simulated GPI, t (ms) = 1.51937 fr = 394

• Experimental GPI data [Maqueda] shows intermittent but very sparse, blob ejection: Is it also driven by transients from the core?

GPI camera data shows sparse intermittent blob ejection

frames shown every 35 μ s for a total duration of 0.84 ms (higher time res. available)

Connection length scaling: simulation and theory

- use previous shot 135009 as a base case
- artificially double $L_{||}(r)$ holding everything else fixed

Transition from diffusive to convective scaling at high power

 $\lambda_{diff} \sim \sqrt{D\tau_{||}} \sim L_{||}^{1/2} \qquad \qquad \lambda_{conv} \sim V\tau_{||} \sim L_{||} \qquad \text{assuming parallel convective limit } \tau_{||} \sim L_{||}/v_{||}$

Lodestar/Myra/TTF/2010

At the diffusive – convective transition:

- strongly bursty fluxes
- convective velocity $V_x(x)$ flattens
- blob ejection events

further into convective regime
burst frequency f_p increases

Lodestar/Myra/TTF/2010

Current scaling of the power width [R. Maingi - NSTX]

 $P_{nb} = 6 MW$

NSTX IRTV data

128013 = 0.8 MA

$$\lambda_{q,int} = 1.4 - 2.2 \text{ cm}$$

$$\lambda_{q,exp} = 0.64 - 0.66$$
 cm

128797 = 1.2 MA

$$\lambda_{q,int} = 0.48 - 0.63 \text{ cm}$$

$$\lambda_{q,exp} = 0.21 - 0.27 \text{ cm}$$

Lodestar/Myra/TTF/2010

Lodestar/Myra/TTF/2010

16

SOLT suggests start of diffusive-convective transition at low Ip

128013 = 0.8 MA

... also evident in convective velocity profile and turbulent snapshots

128013 = 0.8 MA

NSTX GPI data vs. SOLT simulation

- 128013 (& 128014) $I_p = 0.8 \text{ MA}$ •
- 128808 (for 128797) $I_p = 1.2 \text{ MA}$
- midplane turbulence levels as characterized by $\delta I/\langle I \rangle$ are similar for the 2 shots in both NSTX and SOLT
 - skewness S(x) also similar
- suggests that λ_{α} differences are not due to midplane turbulence
- caveats
 - hot ions
 - downstream / sheath conditions
 - MHD activity ____

Summary

- SOLT 2D fluid simulations calculate midplane SOL profiles and SOL widths in an electrostatic model
 - important inputs are $P_{sep}, \, L_{||}/R,$ and $\Lambda \ (or \ \nu_{e^*})$
 - intermittent separatrix-spanning convective cells dominate the near-SOL width
 - blob ejection in H-mode simulations is typically triggered by transients
- Comparison with experiment for n_e , T_e and q_{\parallel} data in low-power ELM-free H-mode suggests that midplane turbulence is the main contributor to the λ_q width in this scenario
- A transition from diffusive to convective near SOL width is predicted theoretically for critical parameters (P_{sep}, L_{\parallel})
- The experimentally (NSTX) observed strong I_p scaling of λ_q is NOT seen in SOLT simulations suggesting the importance of other mechanisms (e.g. MHD, X-pt motion, divertor leg instabilities)