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Radio frequency wave interactions with a plasma sheath:  

the role of wave and plasma sheath impedances 
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Abstract 
Radio frequency (RF) sheaths form near surfaces where plasma and strong RF fields 

coexist. The effect of these RF sheaths on wave propagation near the boundary can be 

characterized by an effective sheath impedance that includes both resistive and capacitive 

contributions describing RF sheath rectification and RF power absorption in the sheath [J. R. 

Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)].  Here we define a dimensionless 

parameter, the ratio of incoming wave impedance to the sheath impedance, which determines the 

characteristics of the interaction, ranging from quasi-conducting to quasi-insulating, or in the 

case of matched impedances, to either perfect absorption or a sheath-plasma resonance. A semi-

analytical analysis is carried out for electrostatic slow waves in the ion cyclotron range of 

frequencies (ICRF). For the propagating slow wave case, where the incident wave is partially 

reflected, the fraction of power dissipated in the sheath is calculated.  For the evanescent slow 

wave case, which admits a sheath-plasma resonance, an amplification factor is calculated.  Using 

the impedance ratio approach, RF sheath interactions are characterized for a range of RF wave 

and plasma parameters including plasma density, magnetic field angle with respect to the 

surface, wave frequency and wave-vector components tangent to the surface. For a particularly 

interesting example case, results are compared with the rfSOL code [H. Kohno and J. R. Myra, 

Comput. Phys. Commun. 220, 129 (2017)]. Finally electromagnetic effects, absent from the 

semi-analytical analysis, are assessed. 
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I. Introduction 
Radio frequency (RF) waves in the ion cyclotron range of frequencies (ICRF) can 

provide a cost-effective and flexible means of heating and driving current in present day and 

future tokamak devices.  However, in some operational regimes unwanted interactions occur in 

places where intense RF waves, plasma and material surfaces coexist.  These interactions include 

the formation of high voltage “rectified” RF sheaths and excessive surface power dissipation. 

The former is associated with increased ion impact energies on the surface resulting in sputtering 

of impurities; the latter may result in excessive erosion and material damage. These ICRF edge 

and wall interactions have been studied in the fusion environment for many years as reviewed in 

Refs. [1, 2]. They have also been investigated in recent experiments on  many tokamaks,3-10 and 

linear test stands11,12 and they have been the subject of a number of dedicated modeling 

efforts.13-20  

Since RF sheaths are thought to play a central role in understanding the observations, 

developing models for sheaths and their interaction with RF waves is an important aspect of the 

work and is the subject of the present paper.  The RF sheaths themselves exist on small spatial 

scales perpendicular to the surface, on the order of a few to perhaps 10 or 20 Debye lengths. 

Since this scale is much smaller than RF wavelengths of interest, and certainly much smaller 

than the global scale of a whole tokamak, RF sheath effects have typically been included in 

global wave simulation codes using a sheath boundary condition (BC) which may be understood 

in terms of an effective surface impedance.21,22 In the limit of high frequencies relative to the ion 

plasma frequency, an RF sheath is dominantly capacitive and the effective surface impedance, 

i.e. the sheath impedance, is therefore imaginary and scales inversely with the wave frequency. 

For very large RF voltages driving the sheath, the sheath width and the impedance become large 

and the sheath behaves as if it were quasi-insulating,13,18  a limit which has also been referred to 

as the “wide sheath limit.” Quasi-conducting and intermediate limits are also possible, including 

that of the sheath-plasma resonance.23-25  It is of interest to know a priori, based on plasma and 

wave parameters, when various limiting cases can be expected and how one might broadly 

characterize the wave interaction with an RF sheath over a range of these plasma and wave 

parameters. That is the goal of the present paper. 

The response of the wave to the sheath depends on both the surface impedance provided 

by the sheath and an effective wave impedance.  The ratio of these two impedances is what 

actually controls whether the behavior is quasi-conducting, quasi-insulating, intermediate, or 

resonant.  The sheath impedance itself,26 denoted zs, has been studied in previous publications. 

A Debye-scale physics model21 was employed to parametrize the sheath impedance in terms of 

analytical functions and numerical fits.22  The result is a dimensionless function of the form
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),b,ˆ,ˆ(ẑ n   where the dimensionless ẑ  is related to the dimensional sheath impedance in 

Gaussian (zs) and SI (zs,SI) units as follows 

 s
d

pi
SI,s

d

pi0
n z

4
z),b,ˆ,ˆ(ẑ









  (1) 

In the remainder of this paper, Gaussian CGS units will be employed; however, the important 

quantities are in any case dimensionless ratios. Here the dimensionless inputs are given by ̂ = 

pi,  ̂= ipi , bn = sb and the absolute value of the normalized RF sheath voltage  = 

e|Vrf|/Te. The RF wave is proportional to exp(ikxit) where  is the wave frequency and k is 

the wave-vector;  i  is the ion cyclotron frequency and pi is the ion plasma frequency. The 

magnetic field direction b is at an oblique angle to the unit normal to the surface s, and bn is the 

component of b directed into or out of the surface. (To avoid confusion with the index of 

refraction, we use s instead of n for the surface normal.) In the present paper, we employ the 

function ),b,ˆ,ˆ(ẑ n   from Ref. 22 as given and concentrate on the implications for wave 

reflection, absorption and amplification at the sheath surface.  

The scale separation implicit in defining a sheath BC is valid for rf where  is a 

measure of the RF sheath width and rf is the RF wavelength.  Within this approximation, the 

Debye-scale model determining ẑ contains a rich amount of physics, including the effect, on the 

RF waves, of plasma profiles and any wave resonances within the magnetic and non-neutral 

regions of the sheath. An example, discussed in Ref. 22 (see Fig. 2 and the associated discussion 

therein) is the ion plasma resonance, which for the illustrated sheath parameters is the remnant of 

the lower hybrid resonance in the non-neutral sheath. (See also Fig. 2 of the present paper.) We 

emphasize that although the present paper, in order to obtain analytic insight, will employ 

constant plasma parameters in the plasma volume (i.e. the region explicitly modeled in Fig. 1), 

the sheath impedance model yielding ),b,ˆ,ˆ(ẑ n   is more general and takes into account 

plasma profile variations within the sheath.21 The physical model within the sheath is 

electrostatic, justified by the short spatial Debye-length scales. 

A significant limitation of the RF wave and sheath interaction model discussed in this 

paper is that the RF waves in the plasma volume are restricted to slow waves in the electrostatic 

limit (except for electromagnetic effects treated briefly in Sec. VI). RF antennas dominantly 

launch the fast wave; however, perfect fast wave polarization of the RF fields in the tokamak 

edge plasma is unachievable in practice.  The slow wave component is generally believed to be 

responsible for RF sheath interactions, whether created directly by the antenna3,4 (e.g. due to 

misalignment or the parasitic effect of septa and limiters), or indirectly in the far field by 

conversion of fast waves to slow waves caused by interaction with non-flux-surface conforming 
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walls.16,27 The former case is usually associated with sheaths that are magnetically connected to 

the antenna; the latter with sheaths that are not magnetically connected. Both cases have been 

observed experimentally and are discussed in Ref. 10. The model in this paper applies 

straightforwardly to the magnetically connected case. It may also be a useful guide in the case of 

fast-to-slow wave conversion at the sheath surface, provided that the dominant wavevector of the 

slow wave can be estimated. (See e.g. Refs. 19 and 27 for relevant considerations.)  

A more complete treatment, directly embedding the possibility of fast-to-slow wave 

conversion, would require a substantial, and necessarily electromagnetic, generalization of the 

present work. Although the fundamental equations can be written down, analytical progress 

seems to be elusive, and a fully numerical approach comes at the cost of loss of intuition and 

analytical transparency. In principle, although some important details are different, the more 

complete treatment should be equivalent to the calculation of the connection coefficients already 

discussed in Ref. 16, i.e. the “output” (outgoing) fast and slow wave amplitudes resulting from 

given “input” (incoming) fast or slow wave amplitudes. 

The plan of our paper is as follows. The geometry of our model and the analytical theory 

leading to the definition of wave impedance, or its inverse the wave admittance, are given in 

Sec. II. The coefficients that describe reflection, absorption and amplification of the incoming 

slow wave are also obtained. Some important qualitative properties of the variation of zs with 

wave and plasma parameters concludes Sec II B. In Sec. III we present basic wave physics for 

the electrostatic slow wave (SW) together with a numerical example illustrating the procedure 

employed in the rest of the paper. Sec. IV presents the variations of the wave response with 

density, magnetic field strength and angle, RF frequency and wavenumber. In Sec V comparison 

is made of the present theory with a result from rfSOL. The rfSOL code is a finite-element code 

with Eq. (1) implemented in a sheath boundary condition.25,28 In Sec. VI electromagnetic effects 

are briefly considered.  Although an analytical electromagnetic theory is not presented in this 

paper, numerical results show that the present electrostatic theory captures the correct qualitative 

behavior.  Finally a summary and conclusions are given in Sec. VII.  Some details of the 

calculations are deferred to the appendices: Appendix A discusses the relationship between the 

incident and reflected wave admittances; Appendices B and C establish power balance identities 

for propagating and evanescent waves, respectively; and Appendix D provides details of the 

electromagnetic calculation used in Sec. VI. 
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II. Geometry and model problem 

A. Basic geometry and wave impedance theory 

The geometry under consideration is shown in Fig. 1. An important quantity is the 

magnetic field angle with respect to the surface, , given by tan  = Bx/By. The tangential (t) 

direction on the sheath surface is in the y-z plane.  We regard ky and kz as inputs, and use the 

dispersion relation to obtain kx. For the electrostatic SW model, there will be two roots, one 

incoming (denoted k1) and one outgoing (denoted k2). For propagating waves, the determination 

of incoming and outgoing requires an analysis of the group velocity vgx. Incoming propagating 

modes have Re vgx1 > 0. In the case of evanescent modes the incoming branch must satisfy Im 

k1x > 0 

Assuming for brevity a unit amplitude incoming wave (final results will not depend 

explicitly on the amplitude), the electrostatic potential takes the form 

 tiixikxik tx2x1 e)Aee(  xk  (2) 

where )k,k,k( zyx11 k  is incoming, )k,k,k( zyx22 k is outgoing and kt = (0,ky, kz) is 

common to both. Here the subscript “t” denotes the tangential component to the surface. The 

amplitude A is unknown at this stage. The sheath boundary condition is21 

 





 




 DsE
i4

zs
tt  (3) 

where the unit normal pointing from the surface into the plasma is xes  and ED  with 

cold-fluid dielectric tensor  . 

Using Eq. (2) and choosing x = 0 to be the location of the sheath-plasma interface where 

the sheath BC is to be applied21 we have 

 )A1(i tt  kE  (4) 

The total electric field at the sheath, suppressing the exp(iktxit) dependence, is 

 xik
2

xik
1

21 Aeiei kkE   (5) 

The sheath BC may be written as 

 )A(
4

z
)A1( 21

s kks 



  (6) 

which determines A, the amplitude of the reflected wave. Explicitly 
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

  (7) 

where 

 wjs
wj

s
j

s
j yz

z

z

4

z





 ks  (8) 

Here zwj is defined as the wave impedance corresponding to wave-vector kj (j = 1,2), and its 

inverse ywj = 1/zwj is the wave admittance. When discussing properties of the wave admittance 

yw for general values of k, the index j will be suppressed in the following. 

From Eq. (7) several main features are already evident. For |j| << 1 (negligible sheath 

impedance seen by the waves) one obtains A = 1 and the sheath BC behaves like a perfectly 

conducting wall BC. For |j| >> 1  (large sheath impedance) the result is A = 1/2.  If, in 

addition to being large, 1 = 2 as it will be for the case of a perpendicular magnetic field (|bn| 

= 1) the sheath BC behaves like an insulating BC (i.e. A = 1). For 1 = 1 (A = 0) the waves are 

perfectly absorbed by the sheath (impedance matching) and for 2 = 1 (A = ) we encounter a 

resonance (the sheath-plasma resonance). Finally for |A| = 1 it will be shown that there is no 

power absorption of the incoming Poynting flux by the sheath. 

This completes the definition of the wave admittance as 

 ks 




4

yw  (9) 

Since the total current in the plasma (including displacement current) is 

 







 kDJ
4i4

 (10) 

the wave admittance for a single plane wave, with current density and potential given by J and 

is simply 

 


 x
w

J
y  (11) 

To proceed further we introduce the dielectric tensor 

 Ii)(I ||   bbb  (12) 

which yields the admittance of a plane wave with wave-vector k in the present geometry as 
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 ]ikb)(k[
4

y x||x||xw kbe 



   (13) 

Here, b = B/B, and for applications to ICRF we may take )/(1 22
i

2
pi  , 

22
pe|| /1  and )(/ 2

i
2

i
2
pi  . In the present paper, we will only consider a 

plasma with a single ion species, taken to be deuterium, although the expressions up to Eq. (13) 

are general in this respect.  

B. Qualitative behavior of the sheath impedance 

Since the parametric dependence of zs will play a role in the results of this paper, it is 

important to understand some of those basic properties qualitatively. Figure 2 shows the results 

of a scan in ̂, which is quite instructive in this regard. Considering first the small ̂= /pi 

(high density) limit, as the density ne rises, Im ẑ  typically falls. The reason is because of smaller 

d and hence smaller RF sheath width  that controls the capacitive contribution  i/. On the 

other hand, for large ne the particle currents, in particular the electron current, becomes more 

important than the displacement current. Because the electron current is in phase with the RF 

voltage, this results in large Re ẑ .  At low density, large ̂ (i.e. the right end of the plot), the 

converse is true: the capacitive contribution dominates, but it decreases with increasing wave 

frequency causing Im ẑ  to decrease; the resistive electron contribution decreases with ne causing 

Re ẑ to decrease with ̂. 

The RF amplitude  is also an important parameter (not illustrated).  As  increases, zs 

generally increases22 (because of a wider sheath, and hence larger ) which implies a longer 

distance for particles and displacement current to traverse. Hence, as Te rises at fixed Vrf,  will 

drop causing zs to drop. 

Thus at low ne and Te and high Vrf the sheath is most likely to be in the quasi-insulating 

“wide sheath” limit. Conversely, at high ne and Te and moderate Vrf the sheath is more likely to 

be in the conducting limit.  However, as we shall see, the wavenumber and frequency of the RF 

and other factors such as impact angle of the magnetic field play an important role as well. 

III. Dispersion relation, group velocity and Poynting flux 

A. Theory 

For the model geometry we have yyxx|| bkbkk  , 2
||

22 kkk   and in this section we 

assume k is pure real since we are concerned with the propagation properties. The electrostatic 

slow wave dispersion relation is30 

 0kk)k,( ||
2
||

2
x  D  (14) 
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and the group velocity is 

 








/

/
g D

D k

k
v  (15) 

After some manipulation we find 

 kbkbkv   Re
G

1
]k)([

G

1
)k(

G

1
||||||||g  (16) 

where 

 
3

2
pe

2
||

22
i

2

2
pi

2 k

)(

kD

2

1
G














 
 (17) 

The x-component, vgx, is of particular interest for determining the incoming and outgoing roots. 

It is given by 

 
G

yRe4
]bk)(k[

G

1
v w

x||||xgx 


   (18) 

The denominator obeys G> 0 for all situations of interest (propagating waves, i.e. k pure 

real). The numerator, Re yw, can have either sign. For example, when bz = by = 0, bx = 1 

(perpendicular case) vgx = kx||/G and it follows that vgx has the same sign as kx, i.e. the wave 

is a forward wave. However, when bz = 1, bx = by << 1 (glancing case) and k|| is sufficiently 

small, vgx = kx/G; propagation occurs when  > 0 (tenuous plasma) therefore vgx has the 

opposite sign from kx, i.e. the wave is a backward wave. These conditions for forward and 

backward propagation of the SW are well known. 

The Poynting flux is30 

 cc
16

c
1 


  BES  (19) 

cc implies complex conjugate and B1 is the RF magnetic field perturbation. In the electrostatic 

limit we cannot use B1 = nE, where n = kc/, but instead must work to higher order in the 

electrostatic approximation.  From n B1D, crossing with n and using nB1 = 0 we find 

 DnB 
21

n

1
 (20) 
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Note that this is not zero, but is indeed smaller by 2n/  than the  nE estimate, where n >> 1 

applies in the electrostatic approximation. Combining and employing E = ikwhere we 

consider a single plane wave (either k1 or k2) 

 

cc]k[
k16

cc)(
k16

2
2

2

2

2













kkkk

kkkS

 (21) 

Using the fact that propagating waves must satisfy the dispersion relation Eq. (14) which 

is kk  = 0, we are left with just the second term. Furthermore, taking the x-component of S 

leads to an intuitively reasonable result 

 )J(Re
2

1
yRe

2

1

8
ReS xw

2
x

2

x



















 ke  (22) 

Here Eq. (13) has been used. Comparing with Eq. (21) we see that, as is well known,30 

 Egxx vS   (23) 

where the energy density of the electrostatic wave is 

 )(
1616

2 EE 













 D
E  (24) 

The net Poynting flux into the surface (i.e. the difference in the magnitudes of the 

incoming and reflected Poynting fluxes) gives the power per unit area absorbed by the sheath, 

P/An  where An is the total surface area of the sheath. Using the normalization of Eq. (2) it 

follows that 

 )A1)(y(Re
2

1
)yAy(Re

2

1
SSA/P 2

1w2w
2

1w2x1xn   (25) 

where we have used the fact that for propagating modes, i.e. k pure real,  1w2w yy . This is 

proved in Appendix A. 

Alternatively, we can evaluate the sheath power dissipation from 

 2
s

2
sns A1)yRe(

2

1
)0()yRe(

2

1
A/P   (26) 
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where Vs =  is the RF sheath voltage and ys = 1/zs.  It is shown in Appendix B that 

energy is conserved, i.e. sPP  . As a result, the fraction of the incident power that is absorbed is 

 2
P A1f   (27) 

Unfortunately a general calculation of power transfer for evanescent modes is not 

presently available. However, for the special case of perpendicular incidence, an illustration of 

power transfer between two overlapping evanescent modes and a corresponding analytic proof of 

energy conservation is given in Appendix C. The general case is treated numerically in the 

following. 

B. Sample results 

Figure 3 illustrates a sample solution for the behavior of the SW vs. density.  For the 

chosen parameters (see caption) there is a lower hybrid (LH) resonance () at ne = neLH = 

3.161010 cm3 (log10 ne/cm3 = 10.5). Below this density the SW is propagating, but both 

values of kx that satisfy the dispersion relation are negative due to the SW behavior at oblique 

angles of propagation. However the group velocity indicates distinct incoming and outgoing 

branches.  For  ne > neLH  the SW is evanescent and the incoming branch is the one with Im kx > 

0. These choices allow identification of kx1 and kx2 for use in evaluating 1 and 2 required in 

Eq. (7). 

The parameters chosen in Fig. 3 to compute j  are for large kt and large .  Large kt is 

chosen to insure validity of the electrostatic approximation, viz. ||
2n  . This choice is 

consistent with pure slow wave propagation but has other consequences as well, as discussed in 

Sec. VI. Large kt and  tend to make |j| > 1 almost everywhere in the plot because yw scales 

with k, and large  results in large zs. However, even in this case, |j| becomes small near the LH 

resonance. The reason is evident from Eq. (13). The first term in yw is negligible when  is 

nearly zero. The second term is usually dominant because of the large  factor; however, when 

 = 0 and k is finite then k|| = 0 from the dispersion relation which eliminates the second term. 

Finally, the third term, proportional to bykz, remains non-zero, but is numerically small. 

Finally, note that in the electrostatic approximation, a solution of the dispersion relation 

remains a solution when k is multiplied by a constant. Since yw is directly proportional to the 

magnitude of k, this means that j in Fig. 3(c) also scales with the magnitude of k. At small k, 

and hence small j we might expect more of the domain to be in the intermediate |j| ~ 1 or 

quasi-conducting |j| < 1 limits. These points and the role of electromagnetic effects, important at 

small k, are addressed in Sec VII. 
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IV. Variation of |A| with parameters 
 Following the method outlined in Sec. III, for given parameters the dispersion relation 

may be used to obtain kx for the incoming and outgoing waves (distinguished by the sign of Im 

kx and vgx).  This allows the calculation of 1, 2 and finally A, the relative amplitude of the 

outgoing wave. In this section we discuss the variation of |A| with density, magnetic field angle 

with respect to the surface, wave-vector, frequency and magnetic field strength. Attention is 

restricted to a fixed value of RF wave amplitude,  = 20 unless otherwise noted because high 

voltage RF sheaths are the main ones of practical interest. However, it should be kept in mind 

that while the fixed  analysis presented here can be useful for intuition, it is not the whole story: 

where the amplification factor |A| is large,  will increase, and this can change zs, hence  and A 

itself. Nonlinear feedback of this sort can be important near the sheath-plasma resonance. This 

point is discussed in Sec. V when we compare results with the rfSOL code; it has also been 

treated in a separate more detailed investigation.28 

A. Variation with density and magnetic field angle 

Figure 4 shows an example of the variation of |A| in the (ne,) plane. Other parameters 

are given in the caption. In the low density regime, ne < neLH where the SW is propagating, 

contours are labeled by the power absorption percentage fp defined by Eq. (27). Near neLH most 

of the incoming power is absorbed by the sheath while at lower densities the power absorption 

fraction gradually declines. In the model investigated here, there is a modest dependence on the 

magnetic field angle over the range considered, some of which arises from the sheath impedance 

zs and some from kx through the wave propagation properties. In the high density regime ne > 

neLH where the SW is evanescent, contours in Fig. 4 are labelled by |A|. Substantial 

amplification occurs near neLH particularly for grazing incidence magnetic field lines (small ).  

At high densities |A| gradually falls off to near unity values.  These features are also seen in Fig. 

5 which shows a cut along  = 0.15 radians to illustrate the structure of |A| near the LH 

resonance and over a larger range of densities. 

The reason for the strong variation across the LH resonance is the same as given in Sec. 

III. The quantities j are proportional to ywj and ywj depends sensitively on density directly 

through  and indirectly through k||j and the dispersion relation. The fact that  |j| is typically 

large for the illustrated wavenumbers, and the reduction of |j| as LH resonance is approached 

means that there is always some density near the LH resonant density such that  |j| ~ 1. The 

variation is strongest at glancing oblique angles because of the properties of zs: the electron 

sheath admittance is reduced at glancing angles because of the smaller geometrical projection of 

electron parallel current normal to the wall.22 This tends to make the total sheath impedance less 

resistive and more capacitive allowing for a strong sheath-plasma resonance, 2 ~ 1, near neLH. 
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B. Variation with ky  

For the base case parameters B = 2 Ti, Te = 15 eV, kz = 1.6/cm,  = 20, the 

variation of fp and |A| for vs. ky is shown in Fig. 6.  Instead of showing multiple contour plots of 

the form of Fig. 4, here we show the maximum (solid line) and average (dashed line) values of fp 

and |A| over the range ne = 1010 to 1012.5 cm3 and  over the range 0.1 to /2. The density and 

angle at which the maximum values occur are given in the lower panels and remain within the 

scanned ranges. In particular, as expected for these parameters, the maximizing density is near 

neLH occurring ever closer as ky increases in order to compensate for the explicit k dependence 

of ywj and allow 2 ~ 1.  The angle for maximum power absorption does show variation with ky, 

but the maximum is rather broad in  (see Fig. 4) so not much significance should be placed on 

this. (Because the "ridge" or maximum contour of fp is nearly independent of over a range, the 

actual location of the maximum is not well defined.) The base case shown in Fig. 4 with ky = 

0.2 /cm is seen to be reasonably typical: over a large range of ky, we find fp as large as 80% and 

|A| exceeding 6 near neLH and at small . There is little change in any of the plots in Fig. 6 for ky 

< 0.05 /cm, which is effectively the ky 0 limit. Note that kz remains fixed at 1.6/cm for the 

scan. 

C. Variation with magnetic field strength and RF frequency 

In order to facilitate application to experiments and modeling, the scans in this paper are 

mostly shown in dimensional units.  However, one important dimensionless invariant parameter 

combination exists. If the magnetic field strength, B, is changed at constant i then the results 

remain invariant if density is scaled by B2.  More explicitly, if  is a scaling parameter, then the 

following is an invariant transformation:  B ne2ne,  kk, TeTe,Vrf  

 Vrf, . These fundamental transformation rules imply , ̂ ̂ ̂  ̂ , ẑ  

ẑ ,, yw 2ywzs ~d/pi ~ 1/ne zs/2,  ~ ywzs.  Thus  and therefore A are 

invariant under this transformation. Consequently, it will not be necessary to explore the 

dependence of A on the magnetic field strength at fixed i. 

We have seen that for our base case parameters  |j| > 1 pertains except near LH 

resonance. However, not all parameter choices lead to |j| > 1 even if kz is chosen to be relatively 

large, as it is for our base case. A high harmonic fast wave (HHFW) case is shown in Fig. 7. 

Parameters are the same as the base case except that  0 i and the line plot in Fig. 7 is for  

 = 0.4, ky = 0.2/cm. In this case because the dielectric tensor, hence ywj, scales inversely with 

2 in the HHFW limit, the resulting values of j are order unity or smaller.  Other cases that do 

not result in the quasi-insulating limit will be discussed in the section summary, Sec. IV D. 
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Similar to Fig. 6, Fig. 8 illustrates the maximum values of fp and |A| in the (ne,) plane 

for a given value of ky. Expect for ̂, parameters are the same as the base case parameters 

employed in Fig. 6. In addition to the results for the base case, and for the HHFW case just 

discussed, Fig. 8 shows results for a case just above cyclotron resonance ( ̂ = 1.05), and a case 

below cyclotron resonance ( ̂ = 0.5).  Qualitatively similar cases can occur in tokamak scenarios 

with multiple species, and/or on wall locations other than at the low field side.  In these cases |j 
tends to be large because both the dielectric tensor and k are large and either the LH resonance is 

outside the scanned range of ne ( ̂ = 1.05) or is not present at all ( ̂ = 0.5). Then impedance 

matching cannot occur. Consequently, fp drops to a small value, and  |A| is near unity: the wave 

reflects from the sheath with little absorption or amplification. 

D. Summary of dependence on parameters 

In this section we have seen that |A|, which is controlled by |jcan depart significantly 

from unity under some conditions, leading to large power absorption fractions (propagating wave 

case) or large surface wave amplification (evanescent wave case).  These situations occur, 

according to Eq. (7), when | j
For base case ICRF parameters and large k (to justify an electrostatic analysis) we find 

that for both incoming and outgoing waves (i.e. k1 and k2 resulting in 1 and 2) the impedance 

ratio is typically large (|1) for large sheath voltages ( >> 1) and densities not close to the 

LH resonant density.  Furthermore, for  just above but close to cyclotron resonance i, we find 

that || is large resulting in  |1. Also it is typical to have |1 for  < i at least if pi > 

i. On the other hand, since  scales with k, the cases |or  |1 occur when k is modest 

or small, (not explicitly considered in this section where electrostatics has been invoked for 

analytical tractability), when zs is small (e.g. for lower voltages), or when  is small, which can 

happen for the HHFW (>> pi)  case, and near LH resonance (= 0).  The variations of  and 

A that come about through the sheath voltage, and at small k including electromagnetic effects, 

are discussed in the following sections. 

V. Comparison with the rfSOL code 
The preceding sections of this paper have developed a theory of RF slow wave 

interaction with a sheath for the idealized case of an incident electrostatic plane wave on a flat 

surface and a specified RF voltage at the location of the sheath BC. Here in Sec. V, the results of 

this theory are compared with a much more comprehensive model, the rfSOL code which 

implements the same sheath BC, Eq. (3), and the same ẑ  as in the rest of this paper, but in the 

plasma volume employs: (i) a full wave description with an antenna source that launches a 

spectrum of modes, (ii) an electromagnetic treatment of both fast and slow RF waves, (iii) a 
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shaped wall on which the sheath BC is applied, and (iv) a self-consistent iteration of the sheath 

voltage with the resulting RF wave fields.  The rfSOL code and model geometry for this 

comparison are discussed in Sec. V A along with the predictions of the theoretical model. In 

Sec. V B, the rfSOL results are given and compared with the predictions. 

A. Geometry and code setup  

The rfSOL code is a finite element code that solves the electromagnetic cold fluid RF 

wave equations in flexible geometry.25  A sample domain and solution are illustrated in Fig. 9. 

The RF sheath boundary conditions described in Ref. 22 are implemented on the right hand 

boundary, which is a wall with a curved surface defined by a Gaussian-shaped “bump.” The 

boundary condition on the left, x = 0, is not relevant here because the waves decay to zero before 

reaching that boundary. Periodic boundary conditions are invoked at the two ends of the 

illustrated domain in y. The dark black line at x = 2.26 m is an RF antenna which for the chosen 

parameters emits evanescent waves in both directions in x (both fast and slow waves, but the fast 

wave is strongly evanescent for the chosen parameters); the right-going (dominantly slow wave) 

branch interacts with the wall sheath.  In this simulation, the parameters are: ne = 11018 m-3, 

B0x = 4 T, B0y = B0z = 0, kz = 40 m-1,2 = 80 MHz, Te = 15 eV and the maximum antenna 

current is Kmax = 12 kA/m. This relatively high density case results in the evanescent SW 

illustrated in the figure.  Note that for these parameters, the lower hybrid resonant density is neLH  

= 2.481017 m-3  which is well below the density employed. 

The predictions of the electrostatic analysis for , while not fully justified for these 

parameters, prove useful for understanding, and are shown in Fig. 10 as a function of the 

dimensionless RF voltage parameter  for three values of kz. The two sets of lines for each case 

are for the incoming and outgoing branches. For all cases, real and imaginary parts start out with 

magnitudes less than one and increase in magnitude monotonically as  is increased.  Note that  

j is roughly proportional to kz as expected from the proportionality of ywj with kj.  The values 

of  where Re 2  1 are of significance for strong wave amplification, i.e. sheath-plasma wave 

resonance; see Eq. (7).  This occurs at  ~ 8 for  kz = 160/m,  ~ 16 for  kz = 80/m and   ~ 32 for   

kz = 40/m.  Note also that for the kz = 40/m case, at Re 2we find Im2 < Re 2, whereas 

the real and imaginary parts are similar at Re 2for kz = 160 /m. These points will be 

important in interpreting the rfSOL results that follow. 

B. Results from rfSOL  

Because the rfSOL results reported here were obtained for a constant density and 

magnetic field throughout the domain, the waves in the plasma volume are described by the 

usual cold plasma dispersion relation. In the electrostatic limit, this is just Eq. (14). Our previous 
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published work25 has verified the rfSOL solutions for various constant density cases.  The main 

point of interest here is in understanding the interaction of the waves with the sheath boundary 

condition in rfSOL using the wave-sheath impedance model as exemplified in Fig. 10. It is 

shown that the rfSOL results can be qualitatively understood by examining the value of , i.e. the 

ratio of the sheath and wave impedances. 

The plasma-sheath interaction for the same parameters used in Figs. 9 and 10 is shown 

for the two kz values, 160 m-1 and 40 m-1  in the left and right panels respectively of Fig. 11.  As 

the antenna current  Kmax is increased for a given kz, it drives proportional amounts of plasma 

current, thus Dn/Kmax is roughly independent of Kmax (lowest panels).  From the sheath BC this 

means that Vrf/Kmax is roughly proportional to zs for fixed kz (upper and middle panels).  Note 

also that since Dn ~ s  E ~ bn and the surface function bn and   are not varied in this Kmax 

scan, E||/Kmax will also be roughly independent of Kmax (verified but not shown). 

At low voltages (either low peak voltage or at spatial locations away from the large RF 

fields) |Vrf|/Kmax is independent of Kmax (upper panels) indicating a linear sheath response. At 

high voltages the sheath is nonlinear. 

The maximum values of normalized sheath voltage max for a Kmax scan are summarized 

in Fig. 12 for kz = 40, 80 and 160 m-1.  From Fig. 10 we see that as  increases, || also 

increases, passing through || ~ 1 for some value of    (kz) that increases as kz decreases. For 

 ~  a sheath-plasma wave (SPW) resonance is possible, according to Eq. (7), if Re   1 and 

Im   Re .  This occurs most dramatically for the kz = 40 m-1 case where || ~ 1 is also 

maintained for a larger range of  than in the larger kz cases. This accounts for the rapid growth 

in Fig. 12 of |Vrf| between Kmax = 4 and 5 kA/m for kz = 40 m-1:  as |Vrf| increases, |zs| also 

increases. When it increases enough to make  || ~ 1 then A becomes large, and hence the self-

consistent value of |Vrf| is also large. For very large , || >> 1 eventually pertains and the 

max(Kmax) curves  pass through resonance and again have smaller slopes. 

The arrows in Fig. 12 indicate the approximate location of the steepest slope parts of each 

curve; these conditions may be identified with the SPW resonance.  For larger values of kz, the 

SPW resonance shifts to smaller  in qualitative agreement with Fig. 10, and the resonant 

behavior in Fig. 12 is eventually almost lost for kz = 160 m-1 where Fig. 10 indicates a 

substantial Im  when Re   1.   

While the theoretical model captures some important qualitative features of these rfSOL 

code runs, there are some quantitative differences. In the rfSOL code, the sheath-plasma 

resonance is also observed for kz = 80 m-1, but not for kz = 160 m-1 even though  Im 2 is similar 

to Re 2 for those cases, according to Fig. 10. Also the theoretical approach predicts strong wave 

amplification at   8, 16, and 32 for kz = 160, 80, and 40 m-1, respectively, while the rfSOL 

code gives the largest slopes at   8, 27, 44 for the same respective kz values. The additional 
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physics in the rfSOL code beyond that in the theoretical mode, as discussed at the beginning of 

Sec. V, are likely reasons for these quantitative differences. 

These rfSOL results depend on (i) employing a nonlinear zs model that properly accounts 

for the changes in zs with sheath voltage, and (ii) a self-consistent solution of the wave properties 

in the plasma including the nonlinear zs model.  A detailed survey of sheath interactions under 

the generalized sheath BC for oblique angle sheaths is presented in Ref. 28. 

VI. Electromagnetic effects 
As shown in Sec. II, the behavior of the RF sheath boundary condition changes from 

quasi-conducting for | << 1 to quasi-insulating for | >> 1 with sheath-plasma wave resonance 

possible in the intermediate case where 2 1. Also, as mentioned previously, in the electrostatic 

model, yw and hence  are proportional to the wave-vector k. Thus as k is varied from small to 

large, a full range of regimes is encountered. In practical applications, note that k is determined 

both by the spectrum launched by the antenna and by the scale of surface objects that the waves 

encounter at the boundary. 

However, the situation described in the previous paragraph is not entirely correct because 

the electrostatic model is not valid at small k: the typical electrostatic validity condition for the 

SW is n2 > ||.  To test the qualitative accuracy of the present electrostatic theory in low k 

situations, electrostatic and electromagnetic results are compared in this section. 

Unfortunately a semi-analytic electromagnetic theory analogous to the electrostatic 

theory of Sec. II does not appear to be tractable.  Not only does the scalar electrostatic 

impedance generalize to a 22 impedance matrix, coupling fast and slow waves, but also the 

general fourth order dispersion relation for obliquely propagating fast and slow waves is not 

analytically soluble. Such a 22 impedance matrix would be closely related to the calculation of 

connection coefficients for fast and slow waves.16 Here we adopt a more modest goal: 

comparison of electrostatic and electromagnetic results for the slow wave alone. For the 

preceding reasons, a fully numerical approach is taken here. The method is summarized in 

Appendix D.  

Electrostatic and electromagnetic results are compared in Fig. 13 for a range of values of 

kt. Other parameters are: B = 2 T,  = 20,  = 2 i, ne = 1010 cm3,  = /2 and the plasma ions 

are deuterium. The usually quoted condition for validity of the electrostatic approximation for 

the slow wave is ||/n2 << 1. For these parameters, this implies the condition k = (ky
2+kz

2)1/2 

>> 0.19 /cm.  When kz = 1.6 cm-1, as for most of the examples in this paper, the electrostatic and 

electromagnetic results are, not surprisingly, essentially indistinguishable.  As kz is reduced 

noticeable differences are seen. However, although the electrostatic model is not strictly valid for 

kt  0, it captures the qualitative trends for all kt, even those with magnitudes comparable to and 
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below 0.19/cm. In particular, for small kt the sheath becomes conducting (A  1) while for 

large kt it is quasi-insulating  (A  1) in both the electrostatic and fully electromagnetic models. 

Finally, it should be noted that the electrostatic approximation not only introduces  

quantitative changes in the slow wave interaction with the sheath, it also eliminates the 

possibility of slow-to-fast wave mode conversion.  This effect is included in calculating the 

electromagnetic results for Fig. 13, and appears not to be qualitatively important, at least for the 

illustrated parameters.  (The process of fast-to-slow wave mode conversion by sheath interaction 

is another matter, and is often quite important,10,16,19,27 but is outside the scope of this paper.) 

VII. Summary and conclusions 
In this paper we have studied the interaction of electrostatic RF slow waves with an RF 

sheath that is described by an effective surface impedance implemented as a sheath boundary 

condition.  The interaction is controlled by the ratio of wave impedance to sheath impedance, 

defined by Eq. (8) through the quantity j.  Limiting asymptotic cases of small and large |j| 

correspond to quasi-conducting and quasi-insulating sheaths.  

In general, an incident or incoming wave is both reflected and absorbed by the sheath. 

The amplitude A of the reflected wave is given in terms of j  (j = 1,2), by Eq. (7), which 

depends on the incident and reflected wave impedances.  Once A has been calculated the fraction 

of incident power absorbed in the sheath can be calculated for propagating waves using Eq. (27).  

For evanescent waves, which occur for densities above the lower hybrid resonant density, i.e. 

when  > 0, the amplitude |A| can be larger than unity, indicating amplification of the 

evanescent reflected (outgoing) wave. Depending on plasma and wave parameters, the condition 

2  1 may be approximately met, in which case |A| >> 1 occurs, a result which indicates a 

sheath-plasma wave resonance. 

The variations of A with plasma density, magnetic field angle, RF wave-vector and 

frequency, have been explored: the main findings are summarized in Sec. IV. D. A case resulting 

in sheath-plasma wave resonance was presented in Sec. V, where the predictions of the semi-

analytical theory of the previous sections were compared with and used to understand results 

from the rfSOL code. Finally it was shown that the electrostatic theory of this paper captures the 

qualitative trends of a fully electromagnetic treatment at least for a low density, perpendicular 

(|bn| = 1) sheath. 

Several potentially useful generalizations of the present work are apparent.  As already 

discussed, a fully electromagnetic treatment accounting directly for the fast wave and possible 

sheath-mediated mode-conversions between fast and slow waves would be ideal. In this respect, 

it would be most useful to have a semi-analytical approach, along the lines of the present paper, 
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in order to gain insight and enable a priori estimation and understanding of different sheath 

interaction regimes. 

Another useful generalization would be to consider multiple ion species, since more than 

one species is often present in ICRF scenarios, deliberately and additionally through unwanted 

edge impurities. The theoretical development of this paper remains valid in this case; one would 

only have to employ multi-ion species forms of the dielectric tensor and the sheath impedance. 

While the former is easily done, a multi-ion species generalization of the sheath impedance 

parametrization, i.e. ),b,ˆ,ˆ(ẑ n   is not presently available. 

Simulations that self-consistently solve for the RF fields driven by an antenna in the 

presence of surface sheaths are needed to provide a complete description of RF interactions at 

the plasma-material interface.  The magnitude of the resulting sheath potential and surface power 

deposition depend on the regime of RF-sheath interaction. The identification of an appropriate 

wave impedance, and a corresponding dimensionless parameter controlling these interactions is 

the main contribution of the present paper.  It is hoped that the regime and parameter analysis 

provided herein may be beneficial in understanding the results emerging from ongoing RF 

simulations and experiments on RF boundary plasma interactions. 
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Appendix A:  Incident and reflected wave admittance 
This appendix establishes the relationship between yw1 and yw2 where indices 1 and 2 

enumerate the two roots of the SW dispersion relation. In general yw is defined by Eqs. (9) or 

(13) repeated here 

 ]ikb)(k[
44

y x||x||xxw kbeke 







   (A1) 

We will first show that 0)(Re 21x  kke , i.e. that Re yw1 = Re yw2. It is assumed 

throughout this appendix that k is pure real, i.e. the modes are freely propagating. This is the 
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only situation in which the final result Eq. (A10) is needed, for use in the main text in Eq. (25), 

i.e. for propagating, not evanescent modes.  

 )kk(b)()kk()(Re 2||,1||,x||2x1x21x  kke  (A2) 

Substituting for k|| = bxkx+btkt  for k||,1 and k||,2 where t represents the tangential (y and z) 

components which are identical for k1 and k2 one obtains 
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The dispersion relation, Eq. (14) may be written as 0k)(k 2
||||
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Expanding, collecting powers of kx and dividing through to make the coefficient of kx
2 unity 

yields 
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But we also know, by definition, that the roots of this equation are kx1 and kx2 hence 
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Comparing coefficients of the powers of kx in Eqs. (A5) and (A6) we have 
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The result for kx1 +  kx2 is exactly what is needed in Eq. (A3) and yields 

 0)(Re 21x  kke  (A8) 

On the other hand, the imaginary parts of yw are trivially related 

 txxxIm kbekbeke    (A9) 
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This relationship is independent of kx and hence the same for k1 and k2. Thus we have from 

Eq. (A8), Re yw2 = Re yw1, and from Eq. (A9), Im yw2 = Im yw1 or equivalently 

  1w2w yy  (A10) 

Appendix B:  Power balance 
In this Appendix, we prove the equivalence of Eqs. (25) and (26), i.e. that  

 2
s

2
1w A1)yRe()A1)(y(Re   (B1) 

The proof is straightforward using Eqs. (7) , (8) and (A10) 
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An explicit result for yw1 is not needed.  It is sufficient to employ 

 
sisrs

i1wr1w1w

yiyy

yiyy


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 (B3) 

Substituting Eq. (B3) into the final form for A in Eq. (B2), it follows, after straightforward 

algebraic manipulations, that the left and right hand sides of Eq. (B1) are indeed equal. 

Appendix C:  Poynting flux and power transfer of overlapping evanescent 
modes 

It is well known that a single evanescent mode cannot carry any net Poynting flux. 

However, it is possible for two overlapping evanescent modes to transfer energy between them.  

In the evanescent slow wave examples of this paper the mode which decays towards the sheath 

in Fig. 1 can transfer energy to the evanescent mode that maximizes on the sheath surface and 

decays into the plasma volume.  In fact, this is the mechanism that enables RF power loss to the 

sheath and also enables amplification of the latter mode by the sheath-plasma resonance.  

A simple example of energy transfer between evanescent modes is illustrated in the 

present appendix. We consider perpendicular incidence (= /2), ky = 0, kt = kzez and hence Ey 

= 0 in the electrostatic limit. From the dispersion relation for slow waves we find that k2x = k1x 

 kx and hence 2
1k  = 2

2k   k2. These assumptions greatly simplify the algebra. 

At the location of the sheath, from Eq. (5), 

 zzxx )A1(ik)A1(ik eeE   (C1) 
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From Eq. (20), for a single plane wave ~ exp(ikxx+ikzz), 

 )DnDn(
n

1
B zxxz2y1   (C2) 

where in the present geometry with b = ex we have for the incoming wave given by the first term 

in Eq. (2): Dx = ex  E i||kx and Dz = ez  E ikz. The Dx term dominates because of 

the || factor.  When multiple waves are present care must be taken because the incoming and 

outgoing waves have opposite signs of kx. This accounts for the change in the sign of the A term 

in the x-component of Eq. (C1). Thus taking into account both waves and dropping the Dz term 

 )A1(
k

kk

c

i
B ||2

zx
y1 


  (C3) 

Using )A1(ikE zz
   and substituting it and Eq. (C3) into the definition of the 

Poynting flux given by Eq. (19) yields 

 cck)A1)(A1(
16

S ||xx 



   (C4) 

where we approximate k2  2k = kz
2 using the slow wave ordering . In the following we will use 

the identity 

 i
2 iA2A1)A1)(A1(    (C5) 

where Ai = Im A.  

For propagating waves the k vector is pure real and Eq. (C4) becomes 

 ||x
2

x k)A1(
8

S 



  (C6) 

The wave admittance for the geometry considered here is, from Eq. (13), 

 ||xw k
4

y 



  (C7) 

which is pure real, thus we recover Eq. (25) of the main text 

 w
2

x yRe)A1(
2

1
S   (C8) 

On the other hand, for evanescent waves kx is pure imaginary, and we take 

  ikx  (C9) 



   
 

 22 

where  > 0 gives the correct branch for the incoming wave. In this case the surviving term 

comes from 2iAi, which physically represents the cross term or power transfer between incoming 

and outgoing branches. Thus the power per unit area transferred between the evanescent waves is 

 wi||ixn yImAA
4

SA/P 



  (C10) 

This can be considered as a type of evanescent tunneling. Of course, if just the incoming wave 

were present, i.e. A  0, then Sx = 0 as expected. 

Power balance may also be proved in this case. For evanescent waves in this example, we 

have, from Eqs. (7) and (8), noting that 2 = 1, 

 
swi

swi

yiy

yiy
A




  (C11) 

The sheath power dissipation is still given by Eq. (26). We expect that the power transferred 

from the incoming wave is dissipated in the sheath. This occurs if 

 

 2
sriwi A1y

2

1
Ay   (C12) 

where the definitions in Eq. (B3) are used here also.  After some straightforward algebra which 

does not require explicit results for ywi or ys it may be shown that Eq. (C12) holds. 

Appendix D:  Electromagnetic model 
In this appendix details of the electromagnetic model employed in Sec. VI are presented. 

The first step is the numerical solution of Maxwell’s equations in the homogenous plasma 

volume 

 0)(  EEnn  (D1) 

where n = kc/ and  ky and kz are specifiedThus the unknowns are the generalized 

eigenvalues kx and the associated eigenvectors E. (Equation (D1) may be rewritten in the form 

of a generalized eigenvalue problem for kx by splitting it up into the two constituent Maxwell 

equations for E and B.  In this appendix, E and B will always refer to the RF fields.) The 

solution provides four normal modes, k(m) and their associated electric field polarization unit 

vectors e(m), m = 1,4. The four modes are the fast and slow waves, each with two directions of 

propagation (or evanescence). Thus the total electric field is expressed as 



   
 

 23 

 
m

)m()m(E eE  (D2) 

with as yet undetermined complex amplitudes E(m). 

In analogy to the electrostatic procedure, the next step is to specify the incoming wave as 

a slow wave and solve a set of equations for the outgoing slow and fast waves. The relevant 

equations are the definitions of the normal components of the current Jn and the RF magnetic 

field Bn at the sheath interface on the plasma side, and the two tangential components of the 

sheath BC, Eq. (3): 

 n
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)m()m( J
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 ee  (D6) 

Here, recall that s is the unit normal pointing from the surface into the plasma so that Jn = Js. 

(We do not use n for the unit normal to avoid confusion with the index of refraction, but retain 

the notations n and t as subscripts denoting normal and tangential.) Equation (D4) is obtained 

from nE = B by dotting with s, multiplying by kn and using knBn = ktBt. This manipulation is 

employed for numerical reasons but also possess an aesthetically pleasing symmetry: Jn  

sktBt is one “source” term, while the complementary quantity  ktBt is the other. 

Suppose we label the incoming fast and slow waves as E(1) and E(2) respectively, where 

in the present application E(1) = 0 and E(2) = 1.  Then Eqs. (D3) (D5) are solved for Jn¸ ktBt, 

E(3) and E(4) where E(3) and E(4) are the outgoing fast and slow waves, respectively.  The 

electromagnetic result plotted in Fig. 13 is obtained as 
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z
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analogous to the ratio of outgoing to incoming electrostatic potentials for the slow wave defined 

by the amplitude A in Eq. (2). 
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Figures 
 

 
Fig. 1.  Geometry of the model showing an incident (right-propagating) wave (subscript 

1) and a reflected  (left-propagating) wave (subscript 2) on a semi-infinite domain.  The 

sheath boundary condition is imposed at the right side of the domain and the magnetic 

field is at an oblique angle to the sheath. The model is periodic in the y and z directions. 

In this paper the magnetic field B is in the x-y plane. 

 

 
Fig. 2.  Variation of the dimensionless sheath impedance with dimensionless wave 

frequency.  Other parameters are bx = 0.2, ̂  = 0.1,  = 10.  Some structure is seen at the 

ion plasma frequency ̂ = 1 and at the ion cyclotron frequency ̂ = ̂ = 0.1.  See Ref. 22 

for a detailed explanation. [Associated dataset available at 

https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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Fig. 3.  Properties of the electrostatic slow wave for the parameters 

i, ky = 0.2/cm, kz = 1.6/cm,  = 20.  Shown are: (a) the solution 

of the dispersion relation for kx, (b) the corresponding x-component of the group 

velocity, and (c) the sheath to wave impedance ratio defined by Eq. (8).  In these plots Re 

(Im) parts are shown as solid (dashed) lines and the color scheme is consistent across all 

the panels.  The incoming branch  is labeled and shown in red. [Associated dataset 

available at https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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Fig. 4.  Contours of |A| in the plane of density and magnetic field angle near the lower 

hybrid resonance density (log10 neLH/cm3 = 10.5) for the parameters B = 2 Ti, 

Te = 15 eV, ky = 0.2/cm, kz = 1.6/cm,  = 20. Small  corresponds to grazing incidence.  

For ne < neLH, contours are labeled by power absorption percentage fp; for ne > neLH 

contours are labelled by |A|. [Associated dataset available at 

https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 

 

 

 
Fig. 5.  Variation of |A| with density for = 0.15 radians, i.e. a cut of Fig. 4 over a larger 

range of densities. Other parameters are the same as in Fig. 4. The thin gray line indicates 

the lower hybrid resonant density where   = 0. [Associated dataset available at 

https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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Fig. 6.  Upper panels: maximum (solid line) and average (dashed line) values over 

density and angle of  fp and |A| vs. ky. Lower panels: the density in units of 1011 cm-3 

and angle at which the maxima occur for fp (black line) and |A| (red line). A thin gray line 

marks the LH resonant density. See the text for base case parameters and additional 

discussion. [Associated dataset available at https://doi.org/10.5281/zenodo.2533415] 

(Ref. 29) 

 

 
Fig. 7. Real (solid) and imaginary (dashed) parts of  for the case = 20 i with all other 

parameters at their base case values and  = 0.4, ky = 0.2. The two sets of lines are for the 

two branches, incoming and outgoing, with incoming shown in red. [Associated dataset 

available at https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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Fig. 8. Maximum values over density and angle of fp (upper panel) and |A| (lower panel) 

vs. ky for the four cases discussed in the text. Note that |A| is only shown for the cases 

that admit an evanescent SW solution. [Associated dataset available at 

https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 

 

 
Fig. 9. Sample rfSOL domain and solution showing Im E/Kmax for the parameters ne = 

11018 m-3, B0x = 4 T, kz = 40 /m, 2 = 80 MHz, Te = 15 eV and Kmax = 5 kA/m.  

The dark black line at x = 2.26 m is the RF antenna. The sheath boundary condition is 

applied on the wall with the bump at the right end of the domain. [Associated dataset 

available at https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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Fig. 10. Real (solid) and imaginary (dashed) parts of  for kz = 160/m (blue), 80/m 

(green) and 40/m (red). The sheath-plasma resonance occurs at = 1The two sets of 

lines for each case are for the incoming and outgoing branches. For each kz, the outgoing 

branch, j = 2 in the notation of Sec. II A, is the one with a positive real part leading to 

resonant behavior in Eq. (7). [Associated dataset available at 

https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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Fig. 11. Spatial structure along the sheath surface of various quantities: RF sheath voltage 

(upper), sheath impedance (middle) and normal displacement Dn proportional to sheath 

current density (lower) for kz = 40 m-1 (left) and 160 m-1 (right). Results are shown for a 

sequence of values of antenna driving current Kmax.  See Fig. 9 for the simulation 

geometry. [Associated dataset available at https://doi.org/10.5281/zenodo.2533415] (Ref. 

29). 
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Fig. 12. Maximum values of normalized sheath voltage max vs. antenna current Kmax for 

kz = 40, 80 and 160 m-1. The arrows indicate the approximate locations of the large slope 

regions of the curves, from which the corresponding values of max may be ascertained. 

[Associated dataset available at https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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Fig. 13. Electrostatic (solid) and electromagnetic (dashed) results for Re A, Im A and |A| 

for the cases kz = 160/m (red), 20/m (blue), 0/m (black).  Note that for small kt the sheath 

becomes conducting (A1) while for large kt it is quasi-insulating  (A 1). 

[Associated dataset available at https://doi.org/10.5281/zenodo.2533415] (Ref. 29). 
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