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Introduction

• Need to understand the responsible mechanisms and resulting scaling of the 
SOL heat flux width q.
– Critical for viable operation of future machines, e.g. q in ITER

• Simulation and theory using reduced edge/SOL turbulence models1-5 show 
some agreement (q magnitude and scaling) with experiment.

– Overarching qualitative conceptual understanding of regimes and results is still 
lacking  the main goal of this work

• The heuristic drift model6 (associated with neoclassical effects7) has also 
been very successful in explaining experimental observations.
– Here we also speculate on the relationship between the SOL turbulence and 

drift-based mechanisms.
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Turbulence provides a mechanism for sustaining 
the SOL width q

• Heat flux balance in the SOL
–  || q|| =     q
– q ~ Dturb p/p where Dturb ~
– perpendicular scale length of pressure is p

• 1/p drives the turbulence

– parallel heat flux q|| = g nTcs
• g is regime-dependent factor

– parallel scale is L|| = qR
• Instabilities of interest

– curvature driven (ideal, resistive, resistive X-pt = RX)
– Kelvin-Helmholtz (KH)
– collisional drift-wave (DW)
– others?
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Fluctuation amplitude vx is determined by saturation: 
several regimes are possible

• Wave-breaking

– equivalent to equating the perturbed and equilibrium pressure gradients 
(pressure-convective saturation)

• Shear flow generation from Reynolds stress 

– here E = scale length of the radial electric field
– and zonal flow dissipation rate
– beats wave-breaking when                      or for global modes when  < 

• Mean flow suppression (not really a saturation mechanism)
– an important case is H-mode where we estimate that E×B and diamagnetic 

flows balance
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Relevant wave-number estimates depend on the regime and 
type of instability

• Quasi-local limit kyp >> 1
– Conventional resistive modes typically require a high ky ~

– FLR-mitigated ballooning mode spectrum can peak where
– For quasi-local modes, estimate

• obtained from parabolic expansion of a generic eigenmode equation about the point 
of maximum growth.

• Non-local (global) modes kp ~ 1
– For these modes the radial eigenfunction overlaps the bulk of the driving 

gradient
– Estimate

• Barrier limited non-local modes 
– Rapid changes in geometry or plasma profiles near the separatrix can radially 

confine low ky modes to a smaller scale than they would otherwise have.
– e.g.: electron adiabaticity barrier limits extent of interchange modes; sheaths 

may do the same: RX modes are limited by the width of the X-pt shear layer
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The instability drive may, or may not, be local to the SOL 

• “Compact” modes
– When the driving gradients are in the SOL we estimate

p ~ q
– This is frequently the case for quasi-local instabilities

• “Distributed” modes
– When the driving gradients are in the edge pedestal but large scale convective 

motions cause this turbulence to govern the SOL width1,2 then p and q are 
independent parameters. 

– Here we regard  p = driving gradient = an input
• later we discuss a rough estimate for p in an H-mode.

– q = responding gradient = an output
– Note that this distributed mode paradigm connects the pedestal properties to the 

SOL heat flux width.
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Combining these leads to many possible scalings for q
• 3+ types of instabilities

– curvature-driven ideal or RX (a low k version of resistive), resistive, FLR
– DW
– KH

• 3 different eigenfunction regimes
– Q = quasi-local
– N = non-local
– B = barrier-limited non-local

• 3 different saturation/mitigation regimes
– W = wave-breaking
– R = Reynold’s driven flows
– M = mean flows

• 2 types of transport
– C = compact (normally associated with Q)
– D = distributed (normally associated with N or B)

• Some combinations are more physically interesting: concentrate on what 
we have seen in past and ongoing SOLT simulations.
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An example: ideal curvature modes in the BWD case

• BWD = barrier-limited, wave-breaking, distributed
• same estimates apply for RX8 modes 
• Starting from q on p. 3, 

– first use
– then  use
– to get

– for compact modes we would set p = q and solve for q

8Lodestar

 /Lk/1/v~ xxx
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Turbulent suppression in H-mode

• This case is QMC in our keyed notation

– It is the condition for mean flows to stabilize interchange-like modes
– It provides a rough limit on the pressure gradient in an H-mode assuming vE = 

vdi i.e. that net fluid flows are small.
– It is order of magnitude correct for NSTX

• Even when this condition is satisfied, there can still be instabilities:
– near the maximum logarithmic pressure gradient the E×B shear is zero 

(assuming vE = vdi)
– low k non-local distributed modes (N or B and D type) can grow centered at 

this location and still control the SOL width
– also curvature enhanced KH modes
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Summary table of some interesting cases
simplified for  q = g = 5 (e.g. sheath transmission) to highlight R and s scalings
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SOLT simulations1 for NSTX H-mode
suggest BRD, BWD scaling 

• linear increase with  in R 
regime; 

• plateau in W regime

• inverse scaling with p
consistent with pre-Li and post-
Li [Russell talk]
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Sample SOL width diagram
(with speculative connection to HD density limit)

• a connection of heuristic drift (HD) model to density limit was proposed in 
[Goldston and Eich, 24th IAEA FEC, San Diego, October 8 - 13, 2012, paper IAEA-CN-197/TH/P4-19]
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Notes on the diagram

• This is not a regime diagram for the L-H transition; it is mean to show how the 
predictions for q change in the different regimes.

• L-mode scale lengths p are long, and below the threshold for mean flow suppression. 
Compact modes are possible.

• The R1/32/3 boundary only applies to the L-mode side (compact). It gives a 
relatively wide SOL.

• In H-mode, not only is p shorter, but q is at a different location (distributed) so the 
resulting SOL width is much narrower than in L-mode, since p > q.

• Quoted estimates for q are wave-breaking limit; Reynolds estimates will be smaller.
• When turbulence SOL widths exceed Goldston HD, could get a two-scale SOL; when 

Goldston HD width is larger, turbulence may be irrelevant.
• Approaching the mhd boundary in H-mode  increased transport, broadened SOL 

which moves one up and along the curve to the L-mode regime.
• Strong perpendicular transport at the mhd boundary is consistent with parallel 

disconnection from the sheaths.
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Order-of-magnitude estimates

• ad-hoc transition of parameters from NSTX (x = 0) to ITER-like (x = 1)
• wave-breaking estimate illustrated; Reynolds estimates will be smaller.
• turbulence results scale better than HD in going to ITER
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Conclusions

• Simple hand-waving considerations for turbulent transport fluxes in various 
regimes can qualitatively explain some of the SOL width results seen in 
SOLT simulations: both scaling and order of magnitude.

• Detailed comparison with experiments remains, but present results do not 
seem unreasonable.

• The turbulent SOL heat flux width in L-mode and H-mode may depend on 
different transport mechanisms, i.e. separation of driving gradients 
(pedestal) and responding gradients (SOL) (i.e. compact vs. distributed) 

• A speculative relationship is suggested between the turbulence and the 
heuristic drift mechanism for the SOL width, which may also relate to the 
density limit.

• Turbulence mechanisms tend to give q a positive scaling with R. These 
are more favorable for large machines (like ITER) than the HD model 
which just depends on s.
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