Turbulent transport regimes and the SOL heat flux width

J. R. Myra, D. A. D'Ippolito and D. A. Russell, Lodestar Research Corporation, Boulder CO

Presented at the 2014 US TTF Workshop, April 22-25, 2014, San Antonio, Texas.

Work supported by US DOE grant DE-FG02-97ER54392.

Introduction

- Need to understand the responsible mechanisms and resulting scaling of the SOL heat flux width λ_q .
 - Critical for viable operation of future machines, e.g. λ_q in ITER
- Simulation and theory using reduced edge/SOL turbulence models¹⁻⁵ show some agreement (λ_q magnitude and scaling) with experiment.
- The heuristic drift model⁶ (associated with neoclassical effects⁷) has also been very successful in explaining experimental observations.
 - Here we also speculate on the relationship between the SOL turbulence and drift-based mechanisms.

[1] D.A. Russell et al., Phys. Plasmas **19**, 082311 (2012); and this meeting.

[2] J.R. Myra et al., Phys. Plasmas 18, 012305 (2011).

- [3] F. D. Halpern et al., Nucl. Fusion 53, 122001 (2013).
- [4] F. Militello et al., Plasma Phys. Control. Fusion 55, 074010 (2013).
- [5] J. W. Connor et al., Nucl. Fusion 39, 169 (1999).
- [6] R.J. Goldston, Nucl. Fusion **52**, 013009 (2012).
- [7] C.S. Chang et al., FY-2010 JRT and follow-on work (unpublished)

Turbulence provides a mechanism for sustaining the SOL width λ_q

- Heat flux balance in the SOL
 - $\nabla_{\parallel} q_{\parallel} \!=\! \nabla_{\perp} \!\cdot q_{\perp}$
 - $q_{\perp} \sim D_{\text{turb}} p / \lambda_p \text{ where } D_{\text{turb}} \sim \gamma \left\langle \tilde{v}_x^2 \right\rangle / |\omega|^2$
 - perpendicular scale length of pressure is λ_p
 - $1/\lambda_p$ drives the turbulence
 - parallel heat flux $q_{\parallel} = g nTc_s$
 - g is regime-dependent factor
 - parallel scale is $L_{\parallel} = qR$
- Instabilities of interest
 - curvature driven (ideal, resistive, resistive X-pt = RX)
 - Kelvin-Helmholtz (**KH**)
 - collisional drift-wave (**DW**)
 - others?

Fluctuation amplitude $\widetilde{\mathbf{v}}_{x}$ is determined by saturation: several regimes are possible

- Wave-breaking $\frac{k_x \tilde{v}_{Ex}}{\omega} \sim 1$
 - equivalent to equating the perturbed and equilibrium pressure gradients (pressure-convective saturation)
- Shear flow generation from **Reynolds** stress

$$\gamma = v'_{Ey} \equiv \frac{v_{Ey}}{\lambda_E} = \frac{k_x k_y}{\nu} \frac{\left\langle \widetilde{\Phi}^2 \right\rangle}{\lambda_E^2}$$

- here λ_E = scale length of the radial electric field
- and v = zonal flow dissipation rate
- beats wave-breaking when $k_x k_y \lambda_E^2 v < \gamma$ or for global modes when $v < \gamma$
- **Mean flow** suppression (not really a saturation mechanism)
 - an important case is H-mode where we estimate that $E \times B$ and diamagnetic flows balance , $c_s \rho_s$

$$\gamma = v'_{di} \equiv \frac{c_s \rho_s}{\lambda_p^2}$$

Relevant wave-number estimates depend on the regime and type of instability

•

Quasi-local limit $k_y \lambda_p >> 1$ - Conventional resistive modes typically require a high $k_y \sim k_\eta \equiv \left(\frac{\Omega_e}{\nu_e}\right)^{1/2} \frac{\lambda_p^{1/4}}{qR^{3/4}\rho_s^{1/2}}$

from
$$\omega_{\eta} \gamma_{mhd} \sim \omega_a^2$$

- FLR-mitigated ballooning mode spectrum can peak where $\gamma \sim \omega_{*i} = k_y c_s \rho_s / \lambda_p$
- For quasi-local modes, estimate $k_x^2 \sim k_y \lambda_p$
 - obtained from parabolic expansion of a generic eigenmode equation about the point of maximum growth.
- Non-local (global) modes $k\lambda_p \sim 1$
 - For these modes the radial eigenfunction overlaps the bulk of the driving gradient
 - Estimate $k_x \sim k_y \sim 1/\lambda_p$
- **Barrier limited** non-local modes $k_x \sim \pi/L_x$ •
 - Rapid changes in geometry or plasma profiles near the separatrix can radially _ confine low k_v modes to a smaller scale than they would otherwise have.
 - e.g.: electron adiabaticity barrier limits extent of interchange modes; sheaths may do the same: RX modes are limited by the width of the X-pt shear layer

The instability drive may, or may not, be local to the SOL

- "Compact" modes
 - When the driving gradients are in the SOL we estimate

$$\lambda_p \sim \lambda_0$$

- This is frequently the case for quasi-local instabilities
- "Distributed" modes
 - When the driving gradients are in the edge pedestal but large scale convective motions cause this turbulence to govern the SOL width^{1,2} then λ_p and λ_q are independent parameters.
 - Here we regard λ_p = driving gradient = an *input*
 - later we discuss a rough estimate for λ_p in an H-mode.
 - $-\lambda_q$ = responding gradient = an *output*
 - Note that this distributed mode paradigm connects the pedestal properties to the SOL heat flux width.

Combining these leads to many possible scalings for $\lambda_{\textbf{q}}$

- 3+ types of instabilities
 - curvature-driven ideal or RX (a low k version of resistive), resistive, FLR
 - DW
 - KH
- 3 different eigenfunction regimes
 - Q = quasi-local
 - N = non-local
 - B = barrier-limited non-local
- 3 different saturation/mitigation regimes
 - W = wave-breaking
 - R = Reynold's driven flows
 - M = mean flows
- 2 types of transport
 - C = compact (normally associated with Q)
 - D = distributed (normally associated with N or B)
- Some combinations are more physically interesting: concentrate on what we have seen in past and ongoing SOLT simulations.

An example: ideal curvature modes in the BWD case

- BWD = barrier-limited, wave-breaking, distributed
- same estimates apply for RX⁸ modes
- Starting from λ_q on p. 3,
 - first use $\widetilde{v}_x / \omega = 1 / k_x = L_x / \pi$
 - then use $\gamma = c_s / (R\lambda_p)^{1/2}$
 - to get

$$\lambda_q = \frac{q}{g} \frac{R^{1/2} L_x^2}{\pi^2 \lambda_p^{3/2}}$$

- for compact modes we would set $\lambda_p = \lambda_q$ and solve for λ_q

[8] RX mode are moderate k_y << k_η ideal modes in the OM but become resistive (disconnecting from good curvature) near the X-pts due to strong magnetic shear. The growth rate is of order of ideal MHD
[J.R. Myra et al., Phys. Plasmas 7, 4622 (2000)]

Turbulent suppression in H-mode

• This case is QMC in our keyed notation

$$\frac{c_s}{(R\lambda_p)^{1/2}} = \gamma \le v'_{di} \equiv \frac{c_s \rho_s}{\lambda_p^2}$$
$$\Rightarrow \qquad \lambda_p \le R^{1/3} \rho_s^{2/3}$$

- It is the condition for mean flows to stabilize interchange-like modes
- It provides a rough limit on the pressure gradient in an H-mode assuming $v_E = -v_{di}$ i.e. that net fluid flows are small.
- It is order of magnitude correct for NSTX
- Even when this condition is satisfied, there can still be instabilities:
 - near the maximum logarithmic pressure gradient the E×B shear is zero (assuming $v_E = -v_{di}$)
 - low k non-local distributed modes (N or B and D type) can grow centered at this location and still control the SOL width
 - also curvature enhanced KH modes

Summary table of some interesting cases

Instability	Key	Scaling for λ_q	Remarks
resistive (k _η)	QWC	$2.5 \left(\frac{\nu_e}{\Omega_e}\right)^{2/7} R^{5/7} \rho_s^{2/7}$	Halpern ³
ideal or RX (ω_{*i})	QWC	$(R\rho_s)^{1/2}$	larger for low k: NWC $\lambda_q \rightarrow R$!
ideal or RX	BWC	$R^{1/5} \left(\frac{L_x}{\pi}\right)^{4/5}$	L mode?
drift	QWC	$R^{1/3}\rho_s^{2/3}$	maximal estimate
ideal or RX	_MC	$R^{1/3}\rho_s^{2/3}$	H-mode; mean flow suppression
ideal or RX	NWD	$(\lambda_p R)^{1/2}$	large! even larger if compact; low-k ideal modes destroy SOL
ideal, RX or KH	BRD	$\frac{\nu}{\Omega_{i}} \frac{RL_{x}^{2}}{\pi^{2}\lambda_{p}\rho_{s}}$	~ ν/λ_p like SOLT; independent of γ
ideal or RX	BWD	$\frac{\frac{R^{1/2}L_x^2}{\pi^2\lambda_p^{3/2}}$	upper limit (BRD < BWD) SOLT with flow damping?
КН	BWD	$0.2 \frac{L_x^2}{\pi^2} \frac{R\rho_s}{\lambda_p^3}$	
Heuristic Drift		qp _s	Goldston model ⁶ ; not instability-based $(q\rho_s \text{ is a simplified order of mag. version})$

SOLT simulations¹ for NSTX H-mode suggest BRD, BWD scaling

•

• linear increase with v in R regime; $\lambda_{q} = \frac{q}{g} \frac{v}{\Omega_{i}} \frac{RL_{x}^{2}}{\lambda_{p}\rho_{s}}$

$$\lambda_q = f \, \frac{q}{g} \frac{R^{1/2} L_x^2}{\lambda_p^{3/2}}$$

 inverse scaling with λ_p consistent with pre-Li and post-Li [Russell talk]

Sample SOL width diagram

(with speculative connection to HD density limit)

• a connection of heuristic drift (HD) model to density limit was proposed in [Goldston and Eich, 24th IAEA FEC, San Diego, October 8 - 13, 2012, paper IAEA-CN-197/TH/P4-19]

Notes on the diagram

- This is <u>not</u> a regime diagram for the L-H transition; it is mean to show how the predictions for λ_q change in the different regimes.
- L-mode scale lengths λ_p are long, and below the threshold for mean flow suppression. Compact modes are possible.
- The $R^{1/3}\rho^{2/3}$ boundary only applies to the L-mode side (compact). It gives a relatively wide SOL.
- In H-mode, not only is λ_p shorter, but λ_q is at a different location (distributed) so the resulting SOL width is much narrower than in L-mode, since $\lambda_p > \lambda_q$.
- Quoted estimates for λ_q are wave-breaking limit; Reynolds estimates will be smaller.
- When turbulence SOL widths exceed Goldston HD, could get a two-scale SOL; when Goldston HD width is larger, turbulence may be irrelevant.
- Approaching the α_{mhd} boundary in H-mode \Rightarrow increased transport, broadened SOL which moves one up and along the curve to the L-mode regime.
- Strong perpendicular transport at the α_{mhd} boundary is consistent with parallel disconnection from the sheaths.

Order-of-magnitude estimates

- ad-hoc transition of parameters from NSTX (x = 0) to ITER-like (x = 1)
- wave-breaking estimate illustrated; Reynolds estimates will be smaller.
- turbulence results scale better than HD in going to ITER

Conclusions

- Simple hand-waving considerations for turbulent transport fluxes in various regimes can qualitatively explain some of the SOL width results seen in SOLT simulations: both scaling and order of magnitude.
- Detailed comparison with experiments remains, but present results do not seem unreasonable.
- The turbulent SOL heat flux width in L-mode and H-mode may depend on different transport mechanisms, i.e. separation of driving gradients (pedestal) and responding gradients (SOL) (i.e. compact vs. distributed)
- A speculative relationship is suggested between the turbulence and the heuristic drift mechanism for the SOL width, which may also relate to the density limit.
- Turbulence mechanisms tend to give λ_q a positive scaling with R. These are more favorable for large machines (like ITER) than the HD model which just depends on ρ_s .