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Abstract. Both theory and experiment have suggested that parametric decay instability (PDI) is 
a possible edge power loss mechanism in ICRF (including HHFW and IBW) heating of tokamak 
plasmas. In this paper, we consider the extension of previous theoretical models to enable a 
quantitative evaluation of pump depletion and power loss due to PDI.  A set of nonlinear 
coupled equations for a long-wavelength “dipole” pump and short-wavelength daughter modes 
is derived.  The model recovers the standard PDI dispersion relation for fixed pump wave 
amplitude, and obeys an appropriate nonlinear energy conservation law.  When dissipation is 
present the model provides a description of energy flow from the pump to the daughter modes 
and the particles.  The equations are intended to describe parametric decay and pump depletion 
in inhomogeneous plasmas.  By writing the nonlinear coupling coefficients in terms of a spectral 
basis, a strategy for implementing the model in full-wave spectral codes is presented.  
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INTRODUCTION 

Parametric decay instability (PDI) represents one of several possible power loss 
channels for intense rf waves propagating through the tokamak edge plasma (from the 
antenna into the core). PDI has been observed on NSTX,1 C-MOD,2 ASDEX,3 
DIII-D,4 TEXTOR,5 and JT-60.6  It is particularly virulent for direct IBW launch 
(because of the slow group velocity and hence large amplitude of IBW waves), but has 
also been observed in conventional (fast wave) ICRF experiments, and has recently 
been suggested as a possible explanation for observed power loss and concomitant 
edge ion heating during HHFW experiments on NTSX.1 

Past theoretical work7 has clearly identified the possible PDI decay modes for 
ICRF heating of fusion plasmas, and established power thresholds for instability that 
are likely exceeded in some experiments.  Here, we build on previous studies to 
construct a model set of coupled nonlinear equations that can be used to describe 
pump depletion (lost power).  Strategies for implementation of this model in the full-
wave spectral code AORSA8 are discussed.  Our ultimate goal is a predictive 
numerical modeling capability for edge power loss due to PDI.  

PDI is an inherently nonlinear process resulting from the coupling of the launched 
(“pump”) wave into daughter modes. The usual frequency and wavenumber matching 
conditions for the three modes are described here by 
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 0321 =ω+ω+ω  (1) 
 0321 =++ kkk  (2) 
where the mode conventions employed are: 1 = pump; 2, 3 = daughters.  The 
nonlinear beat currents, ∝ ∗∗

mnEE act as a source which drives the electric field Ej 
where (j, n, m) are a permutation of (1, 2, 3).  In this paper, we consider the so-called 
“dipole” limit for the pump wave 
 321 ,kkk <<  (3) 
so that k3 ≈ −k2. 

Two types of decay processes can be considered: (i) resonant decay in which both 
daughter modes are propagating, i.e. the plasma dielectric ε2 ≡ ε(ω2, k2) = 0 = ε3; and 
(ii) quasi-mode decay in which only one daughter mode (the lower sideband) is 
propagating, here taken to be mode 2, i.e. ε2 = 0, while mode 3 (the lowest frequency 
decay product) is a quasi-mode, i.e. a wave-particle resonance, such as occurs near the 
ion cyclotron frequency ω3 ≈ Ωi or electron Landau resonance.  Here, although most 
results are general, we concentrate on the quasi-mode case, for which Eqs. (1) and (2) 
are more easily satisfied. 

DERIVATION OF THE MODEL EQUATIONS 

Equations for the daughter modes are derived using the usual oscillating frame 
approach. (See e.g. Refs. 1, 7 and refs. therein.)  The Vlasov equation can be written in 
terms of the velocity variable w = v – u(t) where u is the jitter velocity of particles in 
the spatially constant pump electric field.  Coupling between modes arises from the 
term u⋅∇f.  Here u is given by 
 11M au ⋅=  (4) 
where a1 = ZeE1/m and M1 is proportional to the cold-plasma dielectric tensor at the 
pump frequency ω1. Throughout the paper, subscripts denote mode frequency. 

This oscillating frame calculation yields the perturbed (daughter wave) plasma 
density responses, e.g.  213n EE∝∗ , 

∗∗∝ 312n EE .  To obtain the back-reaction of the 
daughter modes on the pump in the dipole limit, we consider the Vlasov equation 

 ∗∗∗∗ ∇⋅−∇⋅−=∇⋅×Ω+
∂
∂

2v33v21v
1 fff
t
f aabv  (5) 

Taking the velocity moment, the operator on the LHS will be recognized as the jitter 
operator from cold-fluid theory.  Thus, employing Eq. (4) we have 
 )nn(ZeM 233211 aaJ +⋅= ∗∗  (6) 
Thus, is only necessary to substitute in the results for n2 and n3 from the oscillating 
frame calculation to obtain the beat-current at the pump frequency.  

After considerable algebra, we obtain the following coupled nonlinear equations for 
the case of a dipole electromagnetic pump, and electrostatic daughters 

 32231
2

313
2

21211 :CETETL EEEE =⋅⎟
⎠
⎞⎜

⎝
⎛ ++⋅ ∗∗∗∗∗ ttt

 (7) 

 ∗∗∗=⋅⎟
⎠
⎞⎜

⎝
⎛ + 31132

2
122 :CETL EEE

tt
 (8) 
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 ∗∗∗=⋅⎟
⎠
⎞⎜

⎝
⎛ + 21123

2
133 :CETL EEE

tt
 (9) 

where L
t

 is the usual wave operator jjj
2
j

2
jj /cL EEE ⋅ε+×∇×∇ω−=⋅

tt
. 

The coupling coefficients are given in terms of the quantities 112 /z ω⋅= uk , M1, 
and the linear species susceptibilities 32 ,χχ

tt .  For example 

 3223
1

123223 :)(
m
ZeM:C EEkEE χ−χ
ω

⋅= ∑ ttt
 (10) 

where the sum is over species, and )()( 3j2jj kk −χ=χ=χ
ttt . 

MODEL PROPERTIES AND NUMERICAL STRATEGY  

If we hold the pump fixed [i.e. ignore Eq. (7)] and consider the stability of 
infinitesimal daughters from Eqs. (8) and (9), we obtain the PDI dispersion relation 

 β
βα

αβα
∗ ∑ −−=εε YY|zz|

2
1

,

2
32  (11) 

which agrees with previous results.7  Here Υ = ∗χ−χ 32  and α, β are species indices.  
More generally, allowing all three modes to interact, we can derive an energy 
conservation law for dW/dt where W = W1 + W2 + W3 is the total energy in all the 
modes.  In the absence of dissipation, i.e. Im χαj = 0 for all α and j = 1, 2, 3, it can be 
shown that dW/dt = 0.  In this limit, the expected symmetries of the coupling 
coefficients are obeyed and the nonlinear equations describe reversible energy 
exchange among the modes.11 

The higher order coupling terms Tj, while relatively unimportant for resonant 3-
wave PDI, are crucial for dissipative quasi-mode PDI.  Considering for simplicity the 
case where the jitter velocity of one species is dominant, |z| ≡ |zα| >> |zβ| for some α, 
and letting mode 3 be the quasi-mode, it can be shown that  

 2
2

3 W
dt

dW
ω
ω

γ−=  (12) 

where W2/|ω2| is the number of “quanta” in the sideband daughter mode, we assume 
the only damping is on the quasi-mode, and γ is the PDI growth rate, 

 
ei

ei2

2

2 Imz
Υ+Υ

ΥΥ
=

ω∂
ε∂

γ  (13) 

The energy in the pump wave decays at a faster rate (since |ω1| > |ω3|) given by 

 2
2

11 W
dt

dW
ω
ω

γ−=  (14) 

with the difference residing in W2, the energy contained in the propagating sideband. 
To obtain quantitative information for analysis and prediction of experiments, the 

nonlinear equations must be solved numerically in a full-wave model.  The full-wave 
spectral code, AORSA,8 may be modified for this purpose.  We consider the spatial 
problem with the ωj fixed.  Then the nonlinear beat current terms Jnl in Eqs. (7) – (9) 
act like a volume source term, or internal “antenna” driving field equations which are 
iterated to convergence.  At the rth iteration step, we have heuristically 
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 )(i4L )r(
nl

)1r( EJE
ω
π

−=+  (15) 

In practice, the PDI must also be “seeded” with a noise current source. 
We must also accommodate plasma inhomogeneity and the Fourier spectral 

representation of modes employed in AORSA, viz. 
 ∑=

k

ikx
ke)x( EE ;          ∑ ⋅σ=

k

ikx
ke)x,k()x( EJ  (16) 

In an inhomogeneous plasma, the strict dipole limit is relaxed by treating the pump’s 
spatial variation E1(x) and that of the coupling coefficients analogously to that of the x 
dependence of the linear conductivity σ.  For example, in Eq. (10) the dielectric 
tensors χ(k) are generalized in terms of the so-called W-matrix, W(k, k′) employed 
previously for the calculations of local wave energy deposition9 and driven flows.10 
Similarly, the coefficients C12 and C13 become  

 
kkk

)x;k,k(C
x

i)x;k,k(C)x;k(C
=′′∂

′∂
∂
∂

−→  (17) 

It is expected that this procedure will maintain energy conservation and allow a 
quantitative full-wave numerical description of the PDI-driven decay of the pump as it 
propagates through the edge plasma.  Important inhomogeneous effects for the case of 
HHFW → IBW + IQM decay include the drop of the pump amplitude away from the 
antenna, detuning of the ion-cyclotron quasi-mode (IQM) resonance [since ω3 ≠ Ωi(x) 
everywhere], and the spatial variation of Υe ~ Im χ3e ~ ω3/k||vte(x) in the edge plasma.  
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