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Abstract 

The properties of sheaths near conducting surfaces are studied for the case where both 

magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated 

primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) 

interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf 

sheath interactions in global ICRF codes.  Employing a previously developed model for oblique 

angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 

(2015)], an investigation of the four-dimensional parameter space governing these sheath is 

carried out.  By combining numerical and analytical results, a parametrization of the surface 

impedance and voltage rectification for rf sheaths in the entire four-dimensional space is 

obtained.  
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I. Introduction 

Ion cyclotron range of frequency (ICRF) waves are expected to play an increasingly 

important role as tokamak research progresses towards the reactor regime. While ICRF waves 

have been successfully used in many present day experiments for heating and current drive, there 

are some regimes in which excessive unwanted interactions with the antenna and/or boundary 

plasma are observed. It is important to understand, predict and control these interactions.   

It is believed that rf sheaths, which form on material surfaces, are responsible for 

enhanced impurity sputtering and self-sputtering, parasitic power dissipation, hot spots, and 

reduced heating efficiency of the core plasma. Learning how to model and quantitatively predict 

the magnitude of these rf sheath interactions for a given set of conditions is an important 

challenge facing the theory and numerical simulation communities. Reviews of experimental and 

theoretical work on ICRF edge and wall interactions are given in Refs. 1-2 and a short overview 

of the sheath physics can be found in Ref. 3. More recently, these issues have been the subject of 

experimental investigations on many tokamaks,4-11 and linear test stands12,13 and the topic given 

rise to a number of dedicated modeling efforts.14-21 

A promising technique for modeling sheath interactions is the use of an rf sheath 

boundary condition (BC)22 at the sheath-plasma interface. This approach prevents having to 

directly model disparate space scales in the same code: the tiny Debye-scale sheath and global rf 

wave propagation.  The earliest forms of a sheath BC22-24 invoked a capacitive limit25 in which 

the Debye-scale sheath, nearly devoid of current carrying electrons, was treated as a thin vacuum 

layer. This approximation often suffices in the high frequency limit  > pi, where  is the rf 

wave frequency and pi is the ion plasma frequency. In that limit the rf ion response is small (the 

so called “immobile ion” regime) and the main current across the sheath is the displacement 

current. More recently,26 the capacitive sheath BC was generalized to a sheath impedance BC 

with both real and imaginary parts. This complex sheath impedance additionally describes the 

effective sheath resistance at rf frequencies, important for modeling localized rf power 

deposition.  In that work,26 it was shown that the sheath impedance depends on four 

dimensionless input parameters: the degree of sheath magnetization, the magnetic field angle 

with the surface, a normalized rf field strength and the degree of ion mobility set by the wave 

frequency.  A nonlinear Debye-scale rf model was developed to calculate the effective sheath 

impedance at the rf frequency, and results were presented for selected parameters and scans. 

Other work generalizing the capacitive rf sheath model has been carried out in the plasma 

processing literature,27 although this field has almost always considered perpendicular 

(equivalently unmagnetized) sheaths. 
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For practical implementation of a sheath BC in global codes, a robust subroutine must be 

able to return the sheath impedance quickly and accurately, ideally for any set of input 

parameters.  With present day emphasis on massively parallel large scale computations, where a 

very large number of BC subroutine calls may be made in a computationally expensive 

simulation, the importance of robustness cannot be overemphasized.  While in principle the 

impedance can be calculated using the methods of Ref. 26 for almost any set of input parameters, 

in practice some tuning of numerical parameters (such as time and space resolution and 

numerical system size) is required for convergence and acceptable accuracy. Automating such 

tuning is not completely straightforward in a four-dimensional space. Furthermore, for some of 

the more extreme (but still experimentally interesting) combinations of input parameters, it may 

be difficult if not practically impossible to obtain converged solutions.  Fortunately, in these 

cases, analytic asymptotic analysis may be used. 

In this paper, by combining numerical and analytical results, a parametrization of the 

surface impedance for rf sheaths over the complete four-dimensional space is obtained.  The 

method is to first obtain analytic results in the asymptotic cases, and then combine these results 

using Padé and other analytic interpolations into smooth functional forms that apply everywhere. 

Order unity coefficients are introduced into the interpolations and the value of these coefficients 

are determined by best fits to numerical results in the intermediate regimes.  The end result is a 

fast, robust and easily implemented analytic expression for the sheath impedance that is 

applicable for any set of input parameters.  The obtained functional fits are also continuously 

differentiable. This property can be important for some numerical implementations: the input 

parameters to the sheath model vary along the sheath surface, and high order numerical methods 

may require similar high-order smoothness in the BC. Another benefit of the analytical 

asymptotic approach is that physical insights into the final results are sometimes more apparent. 

Our paper extends results that were briefly summarized in one section of an earlier 

conference report.28 In Sec. II the basic sheath model of Ref. 26 is recapitulated. Voltage 

rectification and properties of a static biased sheath are also discussed and fitting functions are 

presented. Section III presents the derivation of the fitting functions for the electron, 

displacement and ion admittance (the inverse of the impedance).  The numerical procedure for 

determining best-fit coefficients for all of these functions is presented in Sec. IV. Finally Sec. V 

gives a summary and conclusions. 

II. The magnetized rf sheath model 

In this paper all results will be presented in dimensionless variables where time is 

normalized to a reference upstream inverse ion plasma frequency 1/pi0 and spatial dimensions 
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are normalized to a reference electron Debye length de0.  The density is normalized to the 

upstream density ni0 where the plasma is quasi-neutral, and rf voltages are normalized to Te/e 

where Te is the electron temperature, assumed to be constant. These units are natural ones for 

sheath dynamics, and result in velocities normalized to the ion sound speed cs = depi. The 

corresponding dimensional equations and sheath impedance are given in Ref. 26. 

The geometry under consideration is shown in Fig. 1.  The fundamental equations of the 

sheath model are Poisson’s equation for the electrostatic potential , the Maxwell-Boltzmann 

relation for electron density ne, the continuity equation for ion density ni, and the three 

components of the ion equation of motion under the Lorentz force: 
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Here 0(t) is an upstream boundary condition on the potential (applied at the center of the 

domain in Fig. 1) that will be discussed shortly, u is the ion velocity, with components (see 

Fig. 1) ux = exu, up = ubex, and u|| = ub where b = B/B is the direction of the magnetic field. 

Note that bex is not a unit vector in general. Also bx = ex b and  is the ion magnetization 

parameter.  In dimensional units  = i/pi = de/s where s = cs/i is the ion sound radius.  

The size of the non-neutral Debye sheath relative to the quasi-neutral magnetic presheath is 

determined by  for rf sheaths, as it is for the more commonly studied case of static oblique 

angle magnetized sheaths.29-32 

The model is driven by out-of-phase oscillating voltages at each plate 
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where Vpp is the peak-to-peak amplitude,  is the zero-to peak amplitude and t is the wave 

phase. The current continuity equation at the plates is 
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and for the symmetric double plate sheath model Jx2 is obtained by the symmetry relation 
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Fig. 1.   Symmetric dual plate rf sheath model. A particle source  is  located at x = L where  the 
imposed ion parallel flow velocity towards the plates is taken to be greater than or equal to the 
sound speed. 

 

As a consequence of Eqs. (9) and (10) together with symmetry, no time-averaged current may 

leave either plate, and hence there is no dc current flow from one plate to the other. The present 
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model implies complete voltage rectification of the applied rf field. The possibility of 

asymmetric sheaths which admit a dc current flow through the plasma that is completed in an 

external circuit is a very interesting one,33,34 but beyond the scope of the present study.  The 

condition for vanishing dc current at x1, may be written as 

 0)Vexp(bu 01x0x   (12) 

where <…>  implies a time-average over an rf cycle, use has been made of the time-averaged ion 

continuity equation, <niux> = constant = ux0; the normalized upstream density is unity and ux0 is 

an upstream boundary condition on the ion flow.   

In the dual plate model, a particle source is located at x = L where the imposed ion 

parallel flow velocity is taken to be great than or equal to the sound speed, u||0  1. In this work 

we take 

 0||x0x ubu   (13) 

It was shown in Ref. 26 and is clear from the model, that apart from the standard Bohm sheath 

boundary conditions on u0 all results of the model will depend at most on the four parameters 

  ,b,, x   

A. Voltage rectification 

In the present model, the upstream potential 0(t) is determined by Eqs. (9), (10) and the 

symmetry relation )(J)(J 1x2x  . The time-averaged quantity <0> is the dc or 

“rectified” potential of the plasma with respect to the wall (i.e. the plate). Note that <0> 

contains the contribution of the usual thermal sheath, even in the absence of any rf driving 

voltage. 

An analytic result for  <0> is possible in the low frequency limit where the 

displacement current in Eq. (10) is negligible. In this case the equation for 0 is 
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where the symmetry relation ()= (+) has been used.26  In the low frequency limit, the 

time derivative in the ion continuity equation may be neglected, resulting in the approximation 

ni1ux1 = ux0 which is independent of time. Using Eq. (13) and estimating u||0  inside the 

logarithm, the approximate result is 

  )coscosh(ln0  ,  (15) 
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From this waveform, <0> can be calculated numerically for given  and  by performing the 

periodic average over  It can be shown that the small and large  limits are 
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In the opposite, high frequency limit  >> 1, the displacement current cannot be 

neglected, and the waveform given in Eq. (15) is no longer valid; however, the time-averaged 

total current constraint of Eq. (12) still applies.  Numerical results26  indicate that the waveform 

in this regime is approximately of the form t2cos0200  . The second harmonic 

amplitude, like <0> is proportional to  but with a smaller coefficient.  A very rough 

approximation for  <0> may be obtained by neglecting 02, which yields <0> = ln[ ] 
where I0 is a Bessel function. This result has similar asymptotic forms to Eq. (16) but with a 

different coefficient of  in the largelimit
Motivated by these limiting cases, a candidate analytic form for the rectified potential is 

taken as 
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and 

 )tanh(cc)(g 10   (19) 

The coefficients c0 and c1 will be determined by best fits to numerical data in Sec. IV. This form 

insures correct results for , and with proper choice of coefficients, can match >> 1 results 

in both low and high frequency regimes.  For convenient and fast numerical implementation, a 

Padé approximation to the integral in Eq. (18) is given in Appendix A. 

B. Static biased sheath properties 

Voltage rectification results in an rf sheath structure that shares some important 

properties with those of a similarly biased static sheath. This fact is anticipated from the 

capacitive sheath models,22-25 where the effective sheath capacitance is determined by the time-

averaged sheath width as calculated from the time-averaged dc sheath potential drop.   In this 
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section, static biased sheath properties are summarized.  The results obtained here will be very 

useful in characterizing the rf properties discussed in Sec. III. 

A comprehensive treatment of static strongly biased oblique-angle magnetized sheaths in 

asymptotic regimes satisfying >> 1 and  << 1 has been given by Ahedo.35  In that work ne, 

being exponentially small in the non-neutral sheath, was neglected and  was regarded as an 

applied bias, so the BC on the net current is not applicable. Using the remaining equations of the 

model, three asymptotic regimes were identified: 2
x

4 b , 1b 42
x   and  41 . 

The corresponding non-neutral sheath width  was obtained by rigorous asymptotic analysis in 

each regime.   

Here we are primarily interested in the scaling dependencies of various sheath quantities 

with the fundamental parameters of the static model, , bx, . In each regime, appropriate 

simplifications may be made to the static version of Eqs. (1) and (3)From these, the scaling 

of  as well as ion density at the wall niw and the components of u at the wall may easily be 

deduced. Results are summarized in Table 1 where we have set ux0 ~ bx.  In all regimes ux = 

bx/ni and is therefore not explicitly listed in the table. These estimates agree with Ref. 35, in as 

much as they are explicitly given there, if proper account is take of differences in normalizations. 

(In particular Ref. 35 adopts a presheath density normalization which differs by a factor of bx 

from that employed here.) 

 
Table I.  Scaling of static biased sheath quantities. 
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The results given in Table 1 acquire a more uniform appearance when expressed in terms 

of the combination 4/1 .  It is not difficult to come up with approximate Padé rational 

expressions that uniformly describe all the regimes.  In fact, once a Padé rational has been 
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determined for niw all the other quantities of interest may be obtained from it. Simple Padé 

rationals that give the correct asymptotic scalings are 
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These approximate expressions are also appropriate to describe the totally magnetized case 

 which is technically not covered by the asymptotic analysis in Ref. 35. Note from 

Eq. (21) that the usual Child-Langmuir law is obtained for perpendicular sheaths (bx = 1) and 

that  is of order unity or larger because of the thermal sheath which has  ~ 3. 

It is important to note that the density and velocity estimates are made at the wall and that 

 is the potential drop across the non-neutral sheath.  If a neutral magnetic presheath is present, 

that presheath potential drop must be subtracted off before applying these results. 

For more quantitatively accurate fits to the numerical results in Sec. IV, the preceding are 

generalized to  
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where d0, d1, d2 and 1 are constants to be fit and d4 is chosen to make ni = 1/ in the limit bx  

0 and    0. In this limit the non-neutral sheath vanishes, hence d = 0 and also ne = 1/ and 

ps = ln (See following.)  Here,  from Eqs. (20) – (24) is now explicitly replaced by d, the 

potential drop across the non-neutral Debye sheath, and ps is the potential drop across the 

magnetic pre-sheath. The latter quantity is approximately given by 
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valid for valid for bx  0.041. Here 0 < d3 < 1 is a constant to be determined by fitting. 

The ln bx factor is readily understood from the drop in density associated with the acceleration of 

ux from ux0 = O(bx) to order unity across the magnetic pre-sheath. Using niux = constant, and the 

Boltzmann relation connecting (quasi-neutral) density and potential results in the ln bx factor. 

The denominator describes the fact that for  >> 1, there is no magnetic presheath. 

Other quantities of interest may be obtained from niw with additional multiplicative fit 

factors: 
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While the form of Eqs. (30) – (32) can be deduced from the original differential equations by 

replaced d/dx with 1/, the same procedure does not work well for up because each equation 

with up has terms which can cancel in some regimes (making subtraction of approximate forms 

inaccurate).  For up we consider a separate numerical fit to the form 
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where f0, f1, and 2 are fit parameters. Equations (30) – (33) are given for completeness in 

characterizing the static biased sheath, but are not used directly in the following; on the other 

hand Eqs. (25) – (29) are important for subsequent analysis. 

III. Contributions to the rf sheath admittance 

At sufficiently large distances from the Debye sheath, the electric field Ex = x 

usually vanishes and the voltage drop across the sheath is well defined. (An exception occurs in a 

few cases where the sheath launches propagating waves; this situation will be discussed in Sec. 

IV.) The plasma responds to the sheath voltage drop with an rf current across the sheath. The 

total current (electron, displacement and ion) must have zero divergence from Maxwell’s 

equations, and therefore can be evaluated at any convenient point: here we choose the wall. The 

(normalized) sheath admittance y is defined as the ratio of rf current density to the rf potential 

across the sheath at frequency , and its inverse is the (normalized) sheath impedance z. The 

following Fourier projection operation extracts the desired result26 

 
22 V
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where J is the total current, V = dV/dt and all quantities are evaluated at the wall x = x1. Thus the 

total admittance can be written as the sum of electron, displacement and ion admittances 

 ide yyyy   (35) 

Each of these will be evaluated separately in the following  

A. Electron admittance 

Because the electrons are assumed to obey the Maxwell-Boltzmann relation, their 

contribution to the admittance may be evaluated almost completely analytically. The electron 

current at the plate is given by 

 0cos
x1e ebJ   (36) 

Thus the electron admittance is 
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The imaginary part of ye vanishes because 0 and hence Je1 is an even function of . The 

remaining real part is 

 0cosx
e ecos

b2
y 




  (38) 

To proceed further it is necessary to know 0(t). This fact emphasizes the sensitivity of 

the electron impedance to the voltage rectification model and harmonic generation, and hence to 

the complete global circuit.  For the symmetric dual plate model, using 0 in the low frequency 

limit from Eq. (15) gives 
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This result is rigorous when the time-dependent ion and displacement currents can be neglected 

in the evaluation of 0. This is the limit in which the electron admittance is dominant and is 

therefore of most interest. For power absorption considerations, however, ye may also be of 

interest in the large  (capacitive) limit where ye does not dominate y but it does dominate the 

power absorption. In general, ye should be linear in bx, weakly dependent on , and independent 

of . It can be shown that He defined implicitly by Eq. (39) has the following asymptotic limits 
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The fitting function for the electron admittance is taken to be 

 )(Hbhy ex0e   (41) 

where the constant h0 will be determined by best fits to numerical data in Sec. IV.  For 

convenient and fast numerical implementation, a Padé approximation to He() is given in 

Appendix A. 

B. Displacement admittance 

The form of the displacement admittance is the same as in the capacitive sheath model  
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except now the time-averaged sheath width  must be computed for general parameters. Here s0 

is a fitting coefficient to be determined. The time-averaged non-neutral sheath width is primarily 
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set by the dc potential drop across the sheath, thus the scaling of  should be identical to that of a 

similarly biased static sheath, as given by Eq. (30).  A slight improvement in the fits to be 

discussed in Sec. IV was obtained by allowing for a small frequency dependence in niw, which in 

Eq. (25) is given for the static case. The modified form is given by  

 ),b,(n),b,,(n xiwxiw   (43) 

where 

 
)k(kk
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010s
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k0 and k1 are fitting coefficients and <0> is given by Eq. (17). Then the effective sheath width 

is computed from 

 

2/1
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and yd is given by Eq. (42). Equations (43) – (45) generalize Eq. (25), obtained for static sheaths, 

to allow for a weak frequency dependence in the rf-cycle-averaged ion density at the wall. 

C. Ion admittance 

The ion admittance is the most complicated to characterize because the ion dynamics is 

influenced by both the electric and magnetic parts of the Lorentz force for oblique magnetic field 

lines. Some insight into the ion dynamics can be gained by first examining the case bx = 1 where 

the magnetic field is perpendicular to the surface and hence there is no magnetic force on the 

ions.  Fits for the ion admittance in this case, accurate to a few percent, were given in Ref. 36 and 

properties of the global wave solutions for perpendicular incidence are discussed there and in 

Ref. 28.  Figure 2 illustrates the dependence of yi on the frequency.  

From Fig. 2, it will be seen that near  ~ 1 a broad resonance feature exists where the real 

part of yi maximizes and the imaginary part changes sign.  Near the resonance, the ions traverse 

the Debye sheath in a time of order unity that is comparable to the wave period.  There are very 

few charge-neutralizing electrons in the Debye sheath, therefore the electrostatic ion plasma 

resonance is exposed. (Recall that  ~ 1 corresponds to  ~ pi in dimensional units.) At large rf 

voltages, and hence large rectified voltages, the ion density in the sheath is reduced, according to 

Eq. (25) or (43); this reduces the effective value of pi in the sheath and hence reduces the 

resonant frequency as seen in the figure.  The reduced ion density also implies a reduced ion 

current to the plate, and hence a reduced peak amplitude of |yi|. 
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Fig. 2.  The dependence of the ion admittance yi on frequency and rf voltage for perpendicular 
incidence, using  the  fits  given  in Ref. 36. Re(y)  is  shown with  solid  lines  and  and  Im(y) with 
dashed lines. V = 2 is the normalized peak‐to‐peak rf voltage. 

 

 For the general oblique magnetized case, additional insight may be obtained by 

exploring the limiting cases of low and high frequency. The high frequency case >> 1 is 

considered first. In the high frequency regime the “immobile” ions have only a small rf response, 

and  background flows can be neglected (t >> uxx) in the fundamental equations. As a result 

the dynamics are linear and the governing equations are 
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Note that for ICRF applications, g  1 frequently applies since the  term usually dominates in 

both the numerator and denominator, particularly in the low-field-side edge plasma. In the high 

frequency regime one has, xxii u/u~n/n~  where we estimate x ~ 1/ and use the fact that ux 

<< .  As a result the ion current and the ion impedance are 

 xii u~nJ
~   (52) 
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The scaling and sign of yi in the high frequency regime is given by noting that  /1
~

/
~

x , 

thus a scaling estimate is given by 
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Here ni should be calculated using the dc sheath model with the appropriate dc bias potential.   

The other limit that can be estimated from analytical analysis is the low frequency limit 

. In the low frequency regime, at each point in the time cycle of the rf, the ions respond as 

if the applied voltage were static. The leading  dependence of the ion admittance comes from 

the explicit  in the continuity equation 

 ii
0

i n~in~dxiJ
~ 


 (55) 

where we define impedance at the fundamental rf frequency, but retain nonlinearities in the 

evaluations. Specifically, the super-tilde here indicates the  Fourier component, but 

linearization is not implied. It remains to determine the phase relationship and scaling of ni with 

respect to  in order to obtain yi = ~/J
~

i . This is immediately obtained from the static biased 

sheath results in Sec. II B, in particular Eq. (21).  Combining with Eqs. (55) and (56)   
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It also possible to make a rough estimate of the amplitude of yi at resonance.  At 

resonance the ion travel time across the non-neutral sheath is comparable to the wave period, 

thus one expects t and uxx to be comparable in Eqs. (3)  (6). The width of the resonance in 

frequency space should be of order  ~ ux/.  Furthermore, at resonance the difference  t  uxx 
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may be estimated of order Thus a rough estimate of the amplitude of yi at resonance is 

obtained from Eq. (54) by replacing i with  and estimating g ~ 1. 
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where ux = bx/ni has been used. 

The preceding scalings of the ion impedance are smoothly captured by the expression 
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and p0, p1, p2, p3 are order unity constant coefficients to be determined by fits to numerical data; 

niw is given by Eq. (43) and <> by Eq. (17).  The case of ion cyclotron resonance,  = , 

where g  may require further study; however, even in this case Eq. (58) remains well posed. 

The ion plasma resonance, where the denominator is pure imaginary, is at   g1/2.  For g ~ 1, 

this gives  2/1
iwn where 2/1

iwn  is the dimensionless ion plasma frequency in the non-neutral 

sheath. Other limits are also sensible.  For example in the strongly magnetized regime    

one obtains g1/2 = bx from Eq. (51). In this case the resonance condition is  ~ bx
2/1

iwn  ; here, bx
2/1

iwn   is the normalized ion plasma frequency obtained by employing an effective ion mass 
2
xii b/mm  .  The effective mass treatment of strongly magnetized particles in the sheath has 

been noted previously.37 

IV. Numerical fits and accuracy testing 

In Sec. III physics-based functional forms were obtained for the electron, displacement 

and ion contributions to the admittance. In this section, numerical data is employed to determine 

best fits to the free coefficients in these expressions. Because the physics based functional forms 

make explicit the most important parametric dependencies and the corresponding parameter 
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ranges where admittance variations are expected, the free coefficients can be determined from 

judicious parameter scans without having to sample the entire four-dimensional parameter space. 

The database chosen for the fits presented here was obtained from 497 numerical 

evaluations of ye, yd, yi and their sum y using the method described in Ref. 26. The numerical 

inaccuracy of these evaluations is estimated at no more than 5%  in most cases, limited by 

resolution of the space-time grid.  In some cases, particularly at small bx, the sheath can launch 

waves which propagate upstream and create additional numerical accuracy issues; these and 

other caveats are discussed in Sec. V.  The database sampled 23 different values of ranging 

from 0.001 to 9; 17 different values of ranging from 0.001 to 1 (large  behavior was already 

evident for ); 4 different values of bx ranging from 0.1 to 1; and 21 different values of 

ranging from 0.001 to 10. 

For each function, <0>, niwye, yd, yi and y, the free coefficients were determined by 

least-squares fits to the entire database. In the case of niw, best fits for the coefficients  in niw 

were first determined from a separate database for static sheaths, and then the remaining 

coefficients in niw were determined by an additional fit. Figures 3 – 8 illustrate the resulting 

quality of fits.  In each case the solid blue line through the data points represents a perfect fit. 

The rms absolute error for each fit, denoted Erms, is given in the corresponding figure caption 

and the best fit coefficients are given in Appendix A. Erms is to be compared with the scale of 

each plot. 

 

 

  
Fig. 3.  Quality of fit for the rectified potential <0>; Erms = 0.11. 
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Fig. 4.  Quality of fit for the ion density in the sheath niw; Erms = 0.016. 

 

 

While the fit for the rectified potential in Fig. 3 is quite good, the ion density in the 

sheath, shown in Fig. 4, has a few outliers. These outliers occur for some cases involving small 

values of bx = 0.1 or 0.2. In spite of the poor quality of the fits for those cases the effect on the 

displacement admittance, which depends on the square-root of this density, appears to minimal, 

as shown in Fig. 6. As might be expected, the complex resonance structure of the ion admittance 

is the most difficult to fit.  Results in Fig. 7 show that the major trends are captured. More 

significantly, note from the scale of the plot that yi is quite small compared with ye and yd. 

Consequently, the net fit for the total impedance shown in Fig. 8 is quite acceptable.  

 

   
Fig. 5.  Quality of fit for the electron admittance ye; Erms = 0.034. 
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Fig. 6.  Quality of fit for the displacement admittance yd; Erms = 0.033. 

 

 

  
 
 

   
Fig. 7.   Quality of fit for the real part of the  ion admittance Re yi (upper panel), Erms = 0.006 ; 
and for the imaginary part of the ion admittance Im yi (lower panel), Erms = 0.007. 
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Obtaining a good parameterization of the total impedance is the primary goal of this 

work. Figure 8 shows no more than a 20% discrepancy at the largest values of |y| and captures all 

the trends over order-of-magnitude or more variations in , bx, and Given the limitations of 

the underlying physics model, this accuracy is quite sufficient. It is also useful to note that that at 

the largest values of admittance, |y| >> 1, the precise value of y that is employed as a BC in a 

global code is unimportant: for |y| >> 1 the BC approaches the perfectly conducting limit and 

small deviations from perfectly conducting have little effect on the global wave solution. 

 

 

  
 

    
Fig. 8.  Quality of fit for the real part of the total admittance Re y (upper panel), Erms = 0.030.; 
and for the imaginary part of the total admittance Im y (lower panel), Erms = 0.043. 
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V. Summary and conclusions 

The primary results of this paper are to be found in Eqs. (17) – (19) for voltage 

rectification;  Eqs. (25) – (28), (43) and (44) for the average ion density at the wall; Eqs. (41) and 

(42) for the electron and displacement admittance respectively; Eqs. (58) – (61) for the ion 

admittance; and trivially Eq. (35) for the total admittance. The best fits for the coefficients in 

these equations are given in Appendix A together with Padé fits for the functions F() and He().  

The fidelity of the fits for the rectified potential and the total admittance is quite good as 

indicated in Figs. 3 and 8: a fit accuracy of better than 10% was achieved over all points tested; 

moreover, the parametrization method insures sensible results for any of combination of input 

parameters. The fits are smooth and continuously differentiable in all variables as required for 

implementation in high order discretization schemes.  Many asymptotic limits of the sheath 

model are captured exactly by the parametrization. Furthermore, it is straightforward to embed 

this parametrization in a computer subroutine that is robust and fast. Further improvements in the 

fits is likely not warranted given the limitations of the physics model, as discussed next.  

Although the present parametrization of the voltage rectification and sheath impedance 

(or admittance) is a significant improvement over the frequently employed and much simpler 

capacitive sheath model, the development of more sophisticated sheath impedance models is still 

needed.  The assumption of Maxwell-Boltzmann electrons, made here, is unlikely to be valid for 

all interesting parameter ranges, and should fail when bxvte/ where vte is the electron 

thermal velocity.  Also, as discussed in Sec. II, sheaths that are asymmetrical at opposite ends of 

the field line can easily occur. For these, the model should be extended to allow for net dc 

current flow through the plasma in a circuit that is completed in the hardware (e.g. the antenna or 

tokamak wall).  In this case, voltage rectification can be partly mitigated,33 and as a result ye, yd, 

and yi, which depend on <0>, would be modified. The primitive forms of ye, yd, and yi, before 

substituting for 0, should be useful for this purpose. Boundary conditions on the dc current and 

how one drives the system (with respect to second harmonic generation) will affect the results. 

Another aspect of the model which may require further investigation is the launching of 

waves which propagate upstream from the sheath.  This phenomenon is sometimes observed for 

small values of bx and  ( = pi in dimensional variables) In the present one-dimensional 

model, these waves can create numerical difficulties and potentially add fine structure to the 

sheath impedance. The physical importance of these waves in more realistic higher dimensional 

models is unclear at present. For example tangency points where bx   0 are isolated (e.g. near a 

limiter tip) and plasma density may vary significantly along the curved surface, requiring a two-

dimensional treatment.  Some of the waves may be related to non-monotonic spatial oscillations 

that occur in the profiles of ni and ux for static biased sheaths in a cold ion model.35  Wave 
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oscillations in the quasi-neutral static presheath, likely of a different origin, were also pointed out 

by Chodura.30 Given these previous observations, it is not surprising that waves could be excited 

by an rf driven sheath. 

 Wave oscillations aside, the structure of sheaths (even dc sheaths let alone rf sheaths) for 

very shallow B-field angles, bx  0, is complex38-42 and still a subject of active investigation. 

This issue is important because near-tangency points are often where strong rf sheaths from (fast 

wave to slow wave) polarization conversion occur.43 Furthermore, the sheath BC can introduce 

rapid, difficult-to-resolve structure in the solutions near a tangency point,43  motivating a careful 

re-examination of the physical model. 

Thus, remaining topics left for future work are improvements in the modeling of electron 

dynamics, asymmetrical sheaths, global circuits, sheath-induced wave oscillations, and tangency 

interactions. Despite these open topics, the present model should provide a significant 

improvement in the modeling of ICRF waves in the SOL plasma near material surfaces, allowing 

for the first time a practical treatment of resistive and capacitive sheath impedance effects on 

wave-boundary interactions for general geometric, rf and plasma parameters.  This capability 

will permit an evaluation of global and local rf power dissipation through the sheath, as well as 

the rectified sheath voltage for calculation of ion impact energies for sputtering. 
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Appendix A:  Padé approximations and best fit coefficients 

The integral in Eq. (18) is approximately given by  
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where 

 a0 = 3.18553 a1 = 3.70285 a2 = 3.81991 

 a3 = 2b2/ b1 = 1.13352 b2 = 1.24171
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This approximation is asymptotically correct to leading order for both small and large  and the 

maximum relative error over the range 0 <  < 10 is 0.0016. 

The best-fit coefficients in Eq. (19) for the function g() are 

 c0 = 0.966463 c1= 0.141639 

Here and throughout  
The best-fit coefficients to the expressions in Eqs. (25) – (33) for the static sheath 

properties are 

 d0 = 0.794443 d1= 0.803531 d2 = 0.182378 

 d3 = 0.995721 d4 = 0. 0000901 1 = 1.455592 

 e0 = 0. 718981 e1 = 1. 10822 e2 = 1. 43336 

 f0 = 1. 47923 f1 = 0. 800775 2 = 1. 27038 

The function He() defined by Eq. (39) and used in calculating the electron admittance is 

approximately given by 
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where 

 h1 = 0.607405 h2 = 0.325497  

 g1 = 0.624392 g2 = 0.500595 g3 = h2/4 
This approximation is asymptotically correct to leading order for both small and large  and the 

maximum relative error over the range 0 <  < 10 is 0.002. 

The best-fit coefficients to the expressions in Eqs. (41), (42) and (44) for the electron and 

displacement admittance are 

 h0 = 1.161585 k0 = 3.7616 k1 = 0.22202 

 s0 = 1.12415 

The best-fit coefficients to the expressions in Eqs. (58) – (61) for the ion admittance are 

 p0 = 1.05554 p1 = 0.797659 p2 = 1.47405 

 p3 = 0.809615 
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