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We study the propagation of lower-hybrid type resonance cones in a tenuous 

magnetized plasma, and in particular their interaction with, and reflection from, the 

plasma sheath near a conducting wall.  The sheath is modeled as a vacuum gap of width 

∆ given by the Child-Langmuir law.  The application of interest is when the resonance 

cones are launched (parasitically) by an ion-cyclotron radio frequency antenna.  For 

typical rf-heated tokamak fusion experiments, the rf voltage carried by the resonance 

cones is large enough to create self-consistent rf sheaths with ∆ much larger than the 

Debye length.  We calculate the fraction of launched voltage in the resonance cones that 

is transmitted to the sheath, and show that it has a sensitive threshold-like turn-on when a 

critical parameter reaches order unity.  Above threshold, the fractional voltage 

transmitted to the sheath is order unity, leading to strong and potentially deleterious rf-

wall interactions in tokamak rf heating experiments. Below threshold, these interactions 

can be avoided.  
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Fascinating wave propagation phenomena can occur in media which have an 

anisotropic dielectric tensor especially when its principle components have differing 

signs.  In the latter case, considering waves of fixed frequency ω, the spatial wave 

propagation operator becomes hyperbolic instead of elliptical leading to the formation of 

resonance cones (RCs).  In three dimensions, waves launched from a point source will 

propagate in trajectories that lie on the surface of a cone with the source located at the 

point of the cone.  These localized structures are in sharp contrast to the usual situation 

where a point source leads to wave-fronts that spreads due to diffraction and dispersion. 

RCs have been known for many decades.  They were first measured by Fisher and 

Gould [1] and subsequently studied by many authors (see e.g. Refs. [2−4]).  In 

magnetized plasmas, the necessary conditions on the dielectric occur naturally in several 

wave-propagation regimes, including upper and lower hybrid RCs and Alfven RCs. An 

excellent overview is given by Bellan [5] and additional background may be found in 

Stix.[6] In addition to plasma applications, RCs have also been investigated in meta-

materials [7] where there may be interesting practical applications. 

In the present letter, our main interest is in application of RC phenomena to high 

power heating experiments in fusion-relevant plasmas – in particular ion cyclotron range 

of frequencies (ICRF) and lower-hybrid (LH) heating experiments in tokamaks.  

Waveguides or antennas launch the rf waves in the tenuous edge plasma.  Wave 

propagation is dominantly inwards, towards the core region, where the waves are usually 

employed for heating and/or driving currents.  Strong, and potentially deleterious 

interactions of the launched waves sometimes occur in the tenuous edge region, sapping 

the launched wave of power and causing unwanted impurity sputtering and out-gassing 

from the vessel “walls” or plasma-limiting surfaces. [8]  We will show that RCs provide 

a plausible mechanism for transporting strong localized rf voltages to rf sheaths at the 

wall. 
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For ICRF heating, the antenna is designed to primarily launch the fast Alfven 

wave.  However, due to the rotational transform in the tokamak, which causes a field line 

tilt at the antenna relative to the toroidal direction, fast wave antennas in practice always 

couple to the slow wave as well.  Other geometrical and electromagnetic effects enhance 

this unwanted coupling [9], which may launch RCs in the tenuous plasma of the far 

scrape-off-layer, e.g. between antenna limiters, or from slots that are frequently found in 

the sides of the antenna. 

To describe the slow wave propagation, we define a tenuous plasma by the 

condition that the local plasma density be small compared with the lower-hybrid density, 

defined by 2
i

2
pi

2 Ω+ω=ω  where ωpi and Ωi are the ion plasma and ion cyclotron 

frequencies respectively.  In the tenuous plasma limit, treated herein, the plasma 

dielectric tensor is given by 

 ||)I( ε+−=ε bbbb
tt

 (1) 

where 22
pe

22
pe|| //1 ωω−≈ωω−=ε  and b = ez is the direction of the background 

magnetic field. For simplicity we consider here the 2D (line source) problem with y 

ignorable.  The RC source is taken to be a localized Gaussian in z and we follow 

propagation in the direction of increasing x. 

The electrostatic dispersion relation takes the form 

 zpex k)/(k ωω−= . (2) 

where the choice of signs insures outgoing wave energy propagation for this backward 

propagating mode (vphvg < 0).  The 2D resonance cone solution is given by  Φ = f(ξ±z) 

where ξ = (ωpe/ω)x and f is an arbitrary localized (e.g. delta) function. 

In the electromagnetic case, the slow wave dispersion relation is 

 )1n(n 2
z||

2
x −ε−=  (3) 
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where n = kc/ω, and RC behavior occurs for nz > 1.  In the opposite limit, the waves are 

evanescent on the scale δe = c/ωpe.  An example of RC propagation is shown in Fig. 1. 

It is straightforward to construct an analytical solution for the interaction of the 

electrostatic RC with an ideal perfectly conducting or perfectly insulating boundary, 

using the method of images.  For the conducting case (boundary condition Φ  = 0 at z = 

0), if the incident wave is f(ξ+z) then the total solution is f(ξ+z) − f(ξ−z), so there is 

reflection with a phase shift.  In the insulating case, (boundary condition ∂Φ/∂z  = 0),  the 

solution is f(ξ−z) + f(ξ+z).  In the following, we first develop the method of images for 

the general electromagnetic case with sheath boundary conditions 

 0EE z||xx =ε∆∂σ−  (4) 

where the sheath is modeled as a thin vacuum layer of width ∆ adjacent to the metal 

surface, σ = s⋅ez and s is the unit surface normal pointing into the plasma. [10]  This 

model provides a zero-order description of the effects of sheaths on rf waves, because the 

main property of the sheaths is the exclusion of electrons from the sheath layer, and this 

effect is felt most dramatically through the local reduction in ε||. 

The slow wave polarization is given by Ex = GEz where G = nxnz/(nz
2−1).  

Because in general the dispersion relation and boundary conditions are not linear in kx 

and kz the method of images must be applied in Fourier space to each mode.  The 

solution arises from a superposition of a source S(kz) and an image source A(kz)S(−kz) 

which creates the reflection, where A is determined by the BC.  The desired solution 

takes the form (for the wall at z = 0, hence σ = 1) 
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where S(kz) is the Fourier transform of the source function S(z).  We now choose S(z) to 

describe a single leg of a left-going RC launched from a Gaussian source far from the 

wall (see Figs. 1 and 2) 

 
0x0z

22
z xikzik2/ak

z0z e)k(V)k(S +−−−Θ−=  (6) 

where Θ is the Heavyside step-function, a << z0 is the Gaussian width in z, and we 

choose the launch point x = x0, z = z0 such that the x0 and z0 terms in Eq. (6) cancel.  

(The image source is at x = x0, z = −z0.) Then the wall interaction occurs at x = z = 0. 

Near the source launch point, where only the S(kz) term need be retained in Eq. 

(5), the Fourier transform may be inverted to obtain the source fields in terms of error 

functions.  The voltage launched into the left-going RC is obtained as V(L)  = −∫dz )L(
zE (x 

= x0) = V0/2, i.e. the normalized Gaussian source provides a voltage drop of V0, half of 

which is carried away in each cone. 

Taking the electrostatic limit of Eq. (5), and using the dispersion relation, the 

Fourier transform may be inverted to yield 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Λ+
Λ−

+
π

−= −−−
∞
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where 

 a
||ε∆

−=Λ
 (8) 

and a/x)/(x̂ p ωω= , a/zẑ = .  Λ is the fundamental parameter governing RC sheath 

interactions.  The limit Λ = 0 (∞) corresponds to the conducting (insulating) limit. 

Figure 2 illustrates the wave patterns resulting from Eq. (7) for the case where the 

RC impacts the wall from the right.  Depending on Λ, there are differences in the details 
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of the solution, but lossless reflection which leaves the RC intact as a localized structure 

always occurs. 

The sheath and plasma voltage drops are readily calculated from Eq. (7).  The 

sheath voltage is defined as 

 )0z(EV z||sh =ε∆−=  (9) 

which is consistent with the integrated Ez across the vacuum layer of width ∆, taking into 

account that Ez in the sheath matches ε||Ez(z = 0) in the plasma.[10]  The sheath voltage 

Vsh at the location of the RC-wall interaction  (x = z = 0) is 

 )(f
ip1

edp
V
V 2/p

00

sh
2

Λ≡
Λ+π

Λ−
=

−∞

∫  (10) 

The plasma voltage drop at this x location is 

 )0x(EdzV z
0

p =−= ∫
∞

 (11) 

Using (1−ipΛ)/(1+ipΛ) = 1−2ipΛ/(1+ipΛ) in Eq. (7), it can be shown that 

 0shp V
2
1VV =+  (12) 

thus the launched voltage is split between the plasma and the sheath; however, we shall 

see that |Vsh| can exceed |V0/2|. 

The function f(Λ) is expressible in terms of error and gamma functions however 

in practice it is simplest to compute it numerically. It has the asymptotic forms 
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where C0 = −1/2 − i/(2π)(γE−ln 2) and γE is Euler’s constant.  In particular |f(Λ)| is 

monotonically increasing from zero at Λ = 0. 

In reality, Λ cannot be specified a priori, because the sheath width ∆ depends on 

the strength of the rf fields, through the Child-Langmuir law.  In the high-voltage limit 

the rf voltage across the sheath entrance Vsh and sheath width are related by 

 
4/3

sh
de T

eVα
λ=∆  (14) 

where α is a numerical factor of order unity, and we assume |eVsh/Te| >> 1. [9]  Thus the 

self-consistent value of Λ must satisfy 

 )(f
3/4

0
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where Λ0 is a reference value defined by 

 
4/3

0||de
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eV
a

αελ
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Solving Eq. (15) in the small and large argument limits and computing the resulting self-

consistent sheath voltage yields 
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The general result is illustrated in Fig. 3. 

There is practically no voltage across the sheath for Λ0 < 1.  This is evident both 

from Fig. 3, and also from the analytical result that |Vsh/V0| ~ 0.025 Λ0
4  which is small 

due to both the high power of Λ0 and the small coefficient. On the other hand, for  Λ0  > 

4 or so, an order unity fraction of the launched voltage appears across the sheath.  Thus, 

roughly speaking, Λ0 ~ 4 is a threshold value demarcating a region where the RC voltage 
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launched from the antenna ends up being transmitted efficiently to the sheath.  Since the 

launched RC voltage is expected to be large (V0 >>Te/e) for high-power antennas, this is 

equivalent to saying that Λ0 ~ 4 demarcates the region of strong antenna-wall coupling. 

Physically, a strong interaction arises when a large E|| is present at the plasma boundary 

because ∆ depends nonlinearly on Vsh through the Child-Langmuir law, Eq. (14). 

For application to experiments, we assume that the RC voltage is comparable to 

the voltage on antenna sheaths, or the voltage induced along field lines near the antenna 

structure, viz. typically a few hundred volts.  For illustrative parameters (e.g. for the far 

SOL of Alcator C-Mod, Te = 10 eV, α = 0.6, B = 5.3 T, ω/2π = 80 MHz, V0 = 200 V, n = 

1 ×1011 cm-3) we find from Eq. (16) that Λ0 > 4 occurs when structures are launched with 

parallel scale a < 15 cm, i.e. E|| > 13 V/cm.  Since the RC propagates nearly parallel to B  

( 1/~z/x pe <<ωω∆∆ ) this mechanism could plausibly explain rf interaction with vessel 

surfaces in Alcator C-Mod. [11]  For larger V0 and/or smaller a the voltage appearing on 

the wall sheaths will be of order V0.  Conversely, reducing V0 or increasing a should 

result in a dramatic reduction in deleterious rf interactions with the wall, since below the 

threshold, the RCs do not transmit the antenna voltage V0 to the wall. 

In principle, other nonlinear effects may coexist with sheath formation.  For the 

parameters of our example, it can be shown that  k||ve/ω, k||ξe|| <<1 where ξe|| is the 

characteristic electron jitter excursion distance, thus neither Landau interactions or 

stochastic electron heating should be important.  For the ions, k⊥ρi, k⊥ξi⊥ << 1 so ion 

trapping is not expected, unless a cyclotron resonance (ω ≈ nΩi), is present.12   Finally, 

ψp/T < 1 where ψp is the ponderomotive potential.  This excludes strong ponderomotive 

expulsion for these parameters; however, at lower frequencies or stronger rf fields, it 

could be significant, possibly allowing the RCs to dig a low density channel for their own 

propagation. 
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Figure captions 

1. Resonance cone propagation from a localized source at x = −3, z = 1 in the plane z/L 

and x/δe with walls at z = 0, 2.   Inset shows the launch region. Energy propagates to 

increasing x. Dotted region is the domain of the analytical calculation.. 

2. Resonance cone interaction with a sheath at x = z = 0 for Λ = 3. Bottom:  |Ez(z)| at x 

= 0 for the cases Λ = 0 (blue solid), 3 (black dashed) and 100 (magenta dotted). 

3. Self-consistent sheath voltage on a log scale and (inset) linear scale for Λ0 < 10.  The 

solid blue line is the numerical result and the magenta dots are the asymptotic results. 

Note the different scales for both axes in the inset. 
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Fig. 1  Resonance cone propagation from a localized source at x 
= −3, z = 1 in the plane z/L and x/δe with walls at z = 0, 2.   Inset 
shows the launch region. Energy propagates to increasing x. 
Dotted region is the domain of the analytical calculation. 
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Fig. 2  Resonance cone interaction with a sheath at x = z = 0 for 
Λ = 3. Bottom:  |Ez(z)| at x = 0 for the cases Λ = 0 (blue solid), 3 
(black dashed) and 100 (magenta dotted). 
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Fig. 3  Self-consistent sheath voltage on a log scale and (inset) 
linear scale for Λ0 < 10.  The solid blue line is the numerical 
result and the magenta dots are the asymptotic results. Note the 
different scales for both axes in the inset. 
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