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Abstract 

In the Boussinesq approximation, spatial variations in the plasma density are ignored 

in the convection of vorticity, leading to an equation of evolution for n2 rather than 

(n), where n and  are the density and potential. In the blob-dominated 

turbulence of the near edge and SOL, density and potential fluctuation scales are 

similar, making this approximation hard to justify.  The shortcomings of the 

approximation have been shown in studies of isolated blob motion [1], while recent 

studies of SOL turbulence suggest a relatively weak effect [2].  The numerical 

hardships and physical advantages of relaxing the approximation in the SOLT model 

[3] are discussed. On the algorithmic side, a Poisson solve for the potential becomes 

n2+n+=0, to be solved for  at each time step, given the evolved turbulent 

fields n and .  We present multi-grid relaxation and direct (sparse matrix) methods for 

doing so.  Eliminating the approximation allows us to add physics to the SOLT model 

that could not otherwise be included, such as self-consistent ion diamagnetic drift 

evolution. 

[1] G. Yu et al., Phys. Plasmas 13, 042508 (2006). 

[2] K. Bodi et al., 38th EPS Conf. Plasma Phys. (2011). 

[3] D.A. Russell et al., Phys. Plasmas 16, 122304 (2009). 
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I.   Model Equations 

• the Boussinesq approximation 

 

II.  Numerical Method 

• Multigrid (MG) 

 

III. Blob dynamics 

• Boussinesq blobs are fragile 

• MG: the agony and the ecstasy 

 

IV. Ion pressure effects 

• Enhanced blob polarization 

• A blob’s radial E-field (mean flow) 

• At the edge 

 

V.  Summary 

3 Outline 
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Widely used 
Difficult to justify 

All fields are turbulent: n = n(x,y,t), etc. 
We do not expand about ambient profiles. 
Self-consistent O(1) fluctuations are supported. 
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See J.R. Myra et al., Phys. Plasmas 18, 012305 (2011) 

for details of J// and q//. 

SOLT model equations 
(continues) 
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Numerical Method 
The Problem 
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Boussinesq Poisson:

P / n 0

This suggests a  for the general case
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It's simple - a straightforward application of the Poisso

ct  from
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 solver.

But, it's  where the mean flow lives!

And

slow to converge at long scales

instabilit, there is an  lurking at long scales for smooth density profiy les.

2

n

von Neumann multiplier

n k 1
ξ(k) ~

n k L k

 


…a result that assumes n is “sufficiently smooth.”   
But this is not the case in edge turbulence: dn and d have 
comparable and broadly distributed scales,  
and instability may not be observed in realistic  test cases. 

An exact linear solve 
grows prohibitive on 
larger grids. 

This looks like a job for Multigrid. 
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Numerical Method 
Multigrid (MG) 
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(0)  Relax , from an initial guess, 0 times on the simulation grid (Nx, Ny): 
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where (n , ) P(n, ), n and  projected onto the coarse grid.
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With relaxation, the error is reduced by numerical diffusion (~kp) so long scale-
length errors persist.  The defect (D) drives the error: 

2ε n ε / n ρ / n D      

Solve this, correct        , and we’re done.  But it’s the same problem again, and we want to 
reduce the error at long scales, in particular.  To do so efficiently,  
project the defect onto a 4x coarser grid, ½ (Nx, Ny), and  

0( )


(1)  Relax the error there:  

Short-cycle Poisson relaxation on nested coarse grids 
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Multi-Grid (MG) 
(continues) 

Don’t stop yet!  There are errors in the error, especially at long scales… 
 

Project the defect onto a 4x coarser grid, ¼ (Nx, Ny), and  

2 (m) (m 1) (0)

2 2 2 2 2 2 1 2 2

2 2 1 1

ε n ε /n ρ /n P(D ) ; ε = 0 ; m = 1,...,

where (n , ) P(n , ), the projection of the fields onto a still coarser grid.
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A pattern emerges!   
Continue projection/relaxation down through NC coarse grids until 
the problem is exactly solved, easily, on the                           grid.  
 
Return to the original, finest grid through the coarse grids by 
   (a) Interpolating  the error to the next finer grid, and correcting the relaxed error there and 
   (b) Relaxing the corrected error (or ) to remove high-k errors from the interpolation. 
Continue “up” until  is corrected on the simulation (finest) grid. 

CN

X Y(N , N ) / 2

This basic MG algorithm is the V-cycle.  

Reference: W. L. Briggs, V. E. Henson and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM (2000) . 

8 



V-cycle 

4 coarse grids 

Multi-Grid (MG) 
(continues) 

R : relax  times

P :  project

E :  exact solve

I  :  interpolate
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Pure Relaxation (R) on the fine grid vs. the MG V-cycle (NC = 3,  = 2) 

Method of Manufactured Solutions (MMS) 

(1)  Target 0 : high-k blob, no mean field, n = 1.05  tanh(xLx/2) 

R 

R 

MG 

red : max | D | 
blue : max |  | 

(2) Target 0 : blob string + linear(x) mean field, n : rippled tanh 

R 
MG 

Pure relaxation is unstable at long scales.  Relaxation alone cannot achieve MG accuracy. 

The error 
persists at 
long scales 
for pure 
relaxation. 

Pure relaxation is stable but slow.  Relaxation may never achieve MG accuracy on time scales of interest. 
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V-cycle accuracy and timing vs. # coarse grids (NC) 
(MMS case 2 above) 

E : 

exact solution on the fine grid 

(bi-conjugate gradient method*) 

 

S : 

2 relaxations of the initial guess 

on the fine grid only 

 

V : 

V-cycle 

V improves S 

(just making sure) E 

V 

S: 0.15 sec 
How much error can we tolerate? 

Are 2 or 3 coarse grids good enough? 

Do MMS results extrapolate to turbulence? 

S 

V 

E 
red : max | D | 
blue : max |  | 

error 
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*W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 
Numerical Recipes in Fortran 77, 2nd ed., Cambridge University 
Press, (1992), pg. 77. 



Blob Dynamics 
Boussinesq (B) v. non-Boussinesq (E) 

0n(t 0) n Gaussian,   (t 0) 0     

i.c. 

E 

E : Exact solution  
of the general case 

0n 0.01

B B 

E 

Compared to the general case, Boussinesq blobs are unstable* 
and liable to under-estimate turbulent transport in simulations. 

*Related: G.Q. Yu, S.I. Krasheninnikov and P.N. Guzdar, Phys. Plasmas 13, 042508 (2006). 
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1,T 1,T 0,no sheath, no drift waves

                

   

0n 0.05



Blob Dynamics : MG Triumph 
Boussinesq (B) v. non-Boussinesq (E) v. MG (NC = 1,2,3) 

E: exact solution of the general case on the simulation grid (256x128), 
B: Boussinesq approximation,    and    MG V-cycle(=2), with NC = 1, 2, 3 coarse grids 

0n 0.05 case (previous slide)

B 

B 

E, 1, 2, 3 
E, 1, 2, 3 

The Ecstasy 
MG achieves exact solution 
accuracy in 1/10 the time,  

in some test cases. 

• Boussinesq is fast but inaccurate. 
• All 3 MGs follow the exact 

solution very well. 
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cpu sec/step 
E : 0.7 

1 : 0.23 
2 : 0.084 
3 : 0.068 
B : 0.03  



No bombs if 
 
 

is small enough.   

Ñn / n

Blob Dynamics : MG Collapse 
Boussinesq (B) v. non-Boussinesq (E) v. MG (NC = 1,2,3) 

The 2- and 3-coarse-grid cases bomb due to a numerical instability lurking in the relaxation 
scheme at long scales: The instability is apparent in the divergence of the mean field y . 

2

n k
multiplier ~

nk

 

von Neumann 

E: exact solution of the general case on the simulation grid (256x128), 
B: Boussinesq approximation,    and    MG V-cycle(=2), with NC = 1, 2, 3 coarse grids 

No bombs if 
 
 

is small enough.   

Ñn / n
The Agony 

But how small is that, à priori? 
No clue: this is turbulence. 

 
 

B 

E, 1, 2, 3 

B 

E, 1, 2, 3   

B E, 1, 2, 3 

0n 0.01case (slide 12)

 
 
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Ion Pressure Effects 

Ion pressure enhances curvature drive and blob instability. 

n0  0.05, Te = 1,  = 1 

c) Ti = 1.0  b) Ti = 0.5  a) Ti = 0.1  

MG(3) 

B B B 

MG(3) MG(3) 

The disintegration of the blob under the Boussinesq approximation 
may be mistaken for a transport barrier.  See “blob trails,” next slide. 
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The blob’s ion pressure drives a  
mean poloidal flow or radial (x) E field. 

  2

i

y y

x x x iy y y y

n P 0

d
~ P 0

dt

E vy ~ P / n

       

    

     

In all cases (previous slide) the blobs move 
upward (y) as they travel outward, initially. 
 

The blob rotates in its mean flow. 
i.e. 

The radial dipole  exerts a torque on the 
poloidal (y) dipole d . 

*See J. R. Myra, Edge Sheared Flows and Blob Dynamics, Invited Talk YI3.00002, Friday 10:00, this 

meeting: analysis of blob trails from NSTX and CMOD, and comparison with SOLT simulations. 
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MG(3) 

a) b) c) 

* 

16 Ion Pressure Effects 
Blob Mean Flow 



Ion Pressure Effects 
Edge Crumble, or Not 
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Boussinesq (B) over-estimates the ion pressure-driven flow shear 
and may stifle the instability artificially. 

E B 

E 

B 

E 

B 

E: exact 
 and MG(3) solution 



Summary 18 

• We eliminated the Boussinesq approximation (B) from the SOLT model 
  and added ion pressure dynamics. 
 
• We solved the generalized vorticity equation using a  
  multigrid (MG) method 
  and found accuracies of the “exact” solution  
  requiring 1/10 the cpu time. 
 
In comparisons with the exact (or MG) solution we 
 
• Demonstrated inaccuracies of the B approximation in  

 
o isolated blob dynamics  
 (blobs are too fragile, turbulent flux may be under-estimated) and 
 
o ion pressure profile driven mean flow  
 (flow shear rate is exaggerated, raising the instability threshold artificially)   

 
 Future work: L-H transition physics. 


