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Slow Wave Propagation and Sheath Interaction 
for ICRF Waves in the Tokamak SOL 

J. R. Myra and D. A. D’Ippolito 

Lodestar Research Corporation, 2400 Central Ave., P-5, Boulder, Colorado, USA 80301 

Abstract. In previous work we studied the propagation of slow-wave resonance cones launched 
parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the 
previous calculation to “dense” scrape-off-layer (SOL) plasmas where the usual slow wave is 
evanescent.  Using the sheath boundary condition, it is shown that for sufficiently close limiters, 
the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially 
propagating.  A self-consistent calculation of the rf-sheath width yields the resulting sheath 
voltage in terms of the amplitude of the launched SW, plasma parameters and connection length. 

Keywords: fusion, rf-heating, sheaths, slow wave, scrape-off-layer. 
PACS: 52.35.Mw, 52.40.Kh, 52.50.Qt, 52.55.Fa  

INTRODUCTION 

It is well known that ICRF sheath interactions with walls and limiters can be 
responsible for sputtering, impurity generation, and parasitic power loss, as reviewed 
in Refs. 1 and 2.  RF sheaths are generated primarily by the E|| component (parallel to 
the background magnetic field B) and, in ICRF heating, are therefore associated with 
the slow wave (SW).  The SW can arise near material boundaries by several 
mechanisms.  In some situations the fast wave (FW) can access the wall, e.g. due to 
scrape-off-layer (SOL) propagation [3] or poor central absorption. It was shown [4,5] 
that when flux surfaces do not match the wall shape, the boundary conditions (BCs) 
require generation of the SW.  

In the present paper, we consider the case where the SW is generated at the plasma-
facing surface of the antenna and is free to propagate (or evanesce) into the SOL, 
dominantly along field lines, as suggested by several experiments. [6-8]  Since our 
purpose is to gain conceptual insight into the underlying physics, we restrict our 
attention here to simple rectangular geometries with a constant density SOL.  We 
model the localized SW source as a small aperture which emits waves into a box (the 
SOL), and study their spreading, evanescence and propagation. A numerical solution 
of wave propagation and sheath interaction with the SOL and plasma boundaries in 
more realistic geometry is also in progress. [9]   

In previous work [10] we studied the propagation of SW resonance cones into a 
tenuous magnetized plasma, ω>ωlh. The resonance cones interact with, and reflect 
from, the plasma sheath near a conducting wall.  The fraction of launched voltage in 
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the resonance cones that is transmitted to the sheath has a sensitive threshold-like turn-
on, which controls the onset of strong and potentially deleterious rf-wall interactions 
in a tokamak.  Here, we extend the work to “dense” SOL plasmas, ω<ωlh, where the 
usual slow wave is evanescent, but due to sheath interaction we will see the SW can 
still propagate. 

SLOW WAVE EIGENFUNCTIONS 

For simplicity we consider SW modes even in E||(z) about z = 0 where z is parallel 
to B.  The local SW dispersion relation in the plasma is 
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and we invoke the sheath BC at the walls z = ± L, so that at z = L we have [4, 11] 
 z||xx EikE ε∆−=  (2) 

where x is radial (increasing towards the plasma core, x = 0 is the antenna SW source) 
and y is ignorable.  Here k = kxex+kzez is the wavenumber, ∆ is the width of the rf-
sheath, (modeled as a thin vacuum layer) and 22

pe|| /1 ωω−=ε is the parallel plasma 
dielectric.  Eqs. (1), (2) and the polarization Ex/Ez determine a global dispersion rela-
tion which gives the SW eigenfunctions of the box, accounting for sheath BCs, viz. 
 Λ+η=ηη )b(tan 22  (3) 

where η = kzL, 2
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Typical behavior of the roots of Eq. (3) is shown in Fig. 1.  For the metal wall limit 
Λ = 0 the roots are at ηm = mπ (m = 0, 1, 2, …) so that Ex vanishes at the wall.  In the 

opposite (insulating wall) limit Λ = ∞ the 
roots are at ηm = mπ/2 (m = 1, 3, 5 …).  For 
intermediate Λ the roots transition between 
these cases, but there is also a new root with 
pure imaginary η.  This root is the sheath-
plasma wave (SPW). [5, 12]  Eigen-functions 
of the SPW are localized in z to the sheaths 
for Λ << 1 (since from Fig. 1, Im η>>1), and 
have the character of surface waves that exist 
because of the plasma-vacuum interface at the 
plasma boundary.  They become global 
modes for Λ ~ 1. 

These eigenmodes form a complete set for 
the box that satisfy the sheath BCs in z and 
are chosen to be outgoing/evanescent waves 
in x.  
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FIGURE 1. Roots of the global dispersion 
relation vs. sheath parameter Λ for the 
case b = 0.1. Real (solid), Im (dashed). 
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PROPAGATION OF A LOCALIZED SW SOURCE 

We project a Gaussian source of width a (~exp[−z2/2a2]) onto the basis set to 
determine its propagation characteristics in x.  It can be easily shown from Eq. (1) that 
for b >> 1, all the basis set functions evanesce on the scale of the electron skin depth 
δe = c/ωpe and that a localized source does not spread much in z before it decays in x.  
Consequently for b >> 1 the SW fields do not reach the wall, and there is no sheath 
interaction.  However, for b < 1, which typically requires L < δi ≡ c/ωpi there is 
spreading in z, evanescence in x, and importantly, coupling to a mode which 
propagates in x, the SPW.  
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FIGURE 2.  Field pattern and emergence of the SPW for specified Λ.  Left: |Ez(x, z)| for b = 0.1 and Λ 
= 3. The scale in z is normalized to L and the scale in x = (0, 0.3) is normalized to δe.  Right: Re Ez(x, 
z) for the same case, but with x shown over the range x = (0, 30) to show the propagating SPW. 

 
The short scales in z spread in z but evanesce rapidity in x, on a scale x ~ 

(me/mi)1/2L. Long scale structures in z act on the x ~ δe scale and behave differently.  
In particular there is coupling to the SPW eigenfunction.  

For b << 1, and Λ > 1, Eq. (3) yields the imaginary root as η = ib[Λ/(Λ−1)]1/2 
which is associated with the Alfvén mode in the limit Λ→ ∞, i.e. 2

a
2
z vk = 

])/(1/[ 2
i

2 Ωω−ω .  Normally, Alfvén resonance occurs for real kz and ω < Ωi.  Here, 
ω > Ωi but imaginary kz is allowed because of the finite domain and the sheath BCs. 

Solutions for specified Λ are not generally self-consistent because the sheath width 
∆ must be determined from the Child-Langmuir law and the fields at the sheath 
entrance.  Self-consistency is achieved when 
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where the latter comes from matching ε||Ez across the sheath-plasma interface.  Here α 
and αth  are order unity factors (nominally α ~ 0.6, αth ~ 1 to 3) which describe 
respectively the rectification of rf to dc voltages, and the thermal (Bohm) sheath. 
Solving Eqs. (5) for ∆ or Λ, one can determine the sheath voltage for given b and 
reference value Λ0 = −(λdeε||/L)(αeV0/T)3/4 which effectively specifies the rf 
amplitude of the source voltage V0.  Results are shown in Fig. 3.  Strong amplification 
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of V0 is possible for b << 1 near SPW resonance at Λ ~ 1, analogous to effects seen in 
Ref. 5.  As b increases to order unity, Vsh decreases and the resonant structure and 
multiple roots disappear.  Analogous to the resonance cone case [10] there is a critical 
Λ0 at which the sheath goes from thermal to rf dominated. 

 

FIGURE 3.  Self-consistent sheath voltage at large x from the SPW.  The voltage appearing across the 
sheath Vsh is normalized to V0 and the normalized thermal (Bohm) sheath voltage is Vth/V0 ≡ 
αthT/(αeV0)= 0.1. 

CONCLUSIONS 

SW fields emitted by a localized source (antenna) propagate and evanesce into the 
SOL.  SW interaction with wall sheaths is possible in some parameter regimes: 
tenuous plasmas [10] and dense plasmas with nearby limiters, typically L|| < δi.  The 
coupling mechanism involves the sheath-plasma wave which can carry fields and 
sheath voltages radially into the plasma along metal surfaces. 
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