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A post-processing method to simulate the generalized RF 
sheath boundary condition 

J. R. Myra1,* and H. Kohno2  

1 Lodestar Research Corporation, Boulder, Colorado, 80301, USA 
2 Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan 

Abstract. For applications of ICRF power in fusion devices, control of RF sheath interactions is of great 
importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface 
impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux 
and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot 
easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an 
approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting 
wall, boundary conditions.  The basic approximation is that the modifications resulting from the 
generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. 
The method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to 
work very well. 

1 Introduction  

For applications of ion cyclotron range of frequencies 
(ICRF) power in fusion devices, control of RF specific 
interactions with the scrape-off layer plasma and 
material surfaces is of great importance. Near these 
surfaces, sheaths on the scale of the Debye length form. 
For typical parameters of interest, i.e. RF sheath voltages 
much larger than the local temperature, these sheaths are 
strongly dominated by the presence of RF waves.  The 
sheaths impact the wave fields and the local wave fields 
impact the sheaths. The rectification of rf voltages across 
the sheath is believed to contribute to power losses [1]  
and enhanced sputtering, the latter motivating the 
investigation of new antenna designs [2, 3]. 

Because of the scale separation between the sheath 
and global wave physics, and strong sheath 
nonlinearities, it is not practical to directly simulate RF 
sheaths in global ICRF waves codes. Instead, sheath 
boundary conditions (SBCs) and related methods have 
been developed [4 - 7] and implemented in global codes 
[8]. A recent general formulation [9] of the SBC 
provides an effective surface impedance for the 
interaction of the RF sheath with the waves. 
Furthermore, it enables quantities of interest for material 
interactions, such as the surface power flux and rectified 
potential energy available for sputtering, to be 
calculated.   

Unfortunately, many legacy ICRF codes do not 
implement the SBC. For them it would be desirable to 
have an approximate method to simulate sheath 
boundary conditions by post-processing results obtained 
using other, e.g. conducting wall, boundary conditions.  

This paper describes such a method, expected to be 
useful when the conducting wall code can accommodate 
boundaries which are not restricted to coincide with a 
flux surface. Furthermore, in codes with an SBC, 
iteration is required for a converged self-consistent 
solution since the SBC is nonlinearly dependent on the 
RF wave amplitude. The method may also be useful in 
speeding up convergence in these cases. 

The basic approximation enabling the method is that 
the modifications resulting from the generalized SBC are 
driven by a fixed incoming wave which could be either a 
fast wave or a slow wave. Code data is first post-
processed to obtain the amplitude of the incoming 
waves. Then holding this amplitude fixed, the wave 
equations are solved again, approximately, in the vicinity 
of the wall sheath, using the SBC.  The resulting solution 
contains modified RF fields in the vicinity of the wall as 
well as a modification of any reflected (outgoing) waves.  

A general description of the method and algorithm is 
presented in Sec. 2.  In Sec. 3 the post-processing 
method is applied to a sample problem in slab geometry, 
and the results are compared with a numerical solution 
using the rfSOL code [8, 10], a finite element RF wave 
code which now implements the full generalized SBC.  
Finally a discussion and conclusions are given in Sec. 4 

2 Description of the method  

The generalized sheath BC may be written in the form.  

 )zJ( shntt E   (1) 

where Jn is the rf current normal to the wall, Et is the 
projection of E tangential to the wall surface, t is the 
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tangential gradient operator, and zsh is the sheath 
impedance. The rf sheath voltage is  

 shnsh zJ   (2) 

and the sheath BC simply matches the Et of the wave at 
the entrance to the sheath to that of the sheath itself. 
Inside the sheath hence Et decays to zero on the 
surface of the conducting wall. 

Although the method is quite general, for the sake of 
clarity we will describe the method for the case where 
the original code result was obtained using a conducting 
wall BC, Et = 0.  This corresponds to an original solution 
using zsh = 0 in Eq. (1). For our post-processing method, 
the data required from the original code result consists of 
Jn and the tangential RF magnetic field Bt for all points 
on the boundary. 

In the vicinity of the wall four scalar equations 
describe the four possible modes in a cold plasma, two 
each describing different propagation directions for the 
fast wave (FW) and slow wave (SW). We will label 
these modes as m = 1, 2, 3, 4. For each patch of wall 
region, taking the local conductivity tensor  to be 
constant in this near-wall region, using the local eikonal 
approximation, and choosing a local coordinate system 
with the x-direction normal to the wall, we have 
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Eq. (3) is the definition of the normal current in 
terms of the conductivity tensor while Eqs. (4) and (5) 
are the two components of the SBC. Eq. (6) is one 
component of the Maxwell equation nE = B where n = 
kc/.  Instead of By the equation for Bz could be 
employed.  (Since the code results satisfy the wave 
equation in plasma, By , Bz and Jx  nyBznzBy are not 
linearly independent). 

The procedure is as follows: 

(i)  Post-process the original code result (with 
conducting wall BC) to obtain Jx and By on the 
surface 

(ii) Solve Eqs. (3) – (6) with zsh = 0 using Jx and By 
as inputs to obtain the amplitudes of the four 
modes, E(m), m = 1, 2, 3, 4. Note that the 
polarization vectors of the modes are known 
from the eikonal solution so only the 
amplitudes are unknown and there are four 
equations for these four unknowns. 

(iii) Solve Eqs. (3) – (6) with zsh specified as the 
desired sheath impedance, using as inputs the 

amplitudes of the two incoming modes from 
step (ii) (in general, one FW and one SW) . 
Solve for new values of Jx and By as well as 
new amplitudes of the two outgoing modes. 

Finally for a self-consistent sheath impedance, the 
dependence zsh(|sh|) on sh must be taken into account, 
i.e. the equation 

 )(zJ shshnsh    (7) 

must also be satisfied at each point on the surface. A 
root-finder for Eq. (7) may additionally be imposed on 
the procedure.  In some cases, iteration may be 
sufficient, in which case we may add a final step 

(iv)  Calculate the new sheath potential from Eq. (7), 
and using the updated value of zsh for this 
sheath potential, repeat steps (iii) and (iv) until 
convergence. 

Note that the ky in Eq. (4) assumes that the spatial 
variation of the envelope |sh| in Eq. (7) is slow 
compared with that of the phase; this could be improved 
by employing Fourier transforms in y on the whole term 
as discussed subsequently. Note that in some cases Eq. 
(7) [e.g. coupled to Eq. (18)] may have multiple roots so 
that a single solution with metallic BCs may result in 
more than one solution with sheath BCs. Further 
discussion of multiple roots is beyond the scope of this 
paper; the issues are independent of the post-processing 
method. 

3 Sample application  

As an example application of this procedure, intended 
mainly as a first proof-of-principle test of the procedure, 
we now consider the case of a perpendicular sheath (i.e. 
one for which the magnetic field is perpendicular to the 
surface) in a slab geometry with constant plasma 
parameters. The geometry is illustrated in Fig. 1 and is 
the same as described in Ref. [10] for the 2D slab 
version of the rfSOL code. 
 

 

Fig. 1. Geometry of the sample application. 

A sheet current antenna launches waves that 
propagate (or are evanescent) both to the left and right of 
it.  The right propagating branch interacts with the sheath 
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boundary condition of surface impedance zsh at x = Lx. 
In general there is reflection from the surface; this left 
going branch together with the one launched directly by 
the antenna are absorbed before they reach the left 
domain boundary at x = 0 creating an outgoing/ 
evanescent wave condition in this direction. The 
simulations are periodic in y and for the perpendicular 
incidence problem considered here the background 
magnetic field is B0 = exB0x. With walls normal to B0 
the FW does not contribute to RF sheath excitation and a 
SW analysis will suffice. 

The rfSOL code was first run with conducting wall 
boundary conditions at  x = Lx equivalent to zsh = 0. 
From this solution we extract the incoming wave 
amplitude (i.e. the wave incident on the Lx boundary) as 
follows. The general solution for the RF wave in the 
electrostatic limit (to be generalized subsequently) is  
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where (1) and (2) are the amplitudes of the 
electrostatic potential for the incoming and outgoing 
waves respectively. By convention ksw,x  is taken as the 
root with ksw,x > 0. The total potential at the wall is 

 )2()1(    (9) 

which must be zero for the conducting wall (cw) case.  
Therefore at the wall 
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The total Ex and Dx iJx/at the wall are related by 

 xx||0 DE 
  (11) 

where 0 is the vacuum dielectric constant and || is the 
parallel (diagonal) component of the cold plasma 
dielectric tensor. Thus we have  

 x,sw||0

cw,x)1(

k2

iD
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  (12) 

Although it is not necessary for the method, here for 
simplicity we make the assumption that the waves near 
the boundary can be treated in the local approximation kz 
> ky where ky  k is a typical wavenumber in the y-
direction. (In general for ky ~ kz each Fourier mode in y 
would be treated independently and summed up). The 
SW dispersion relation gives 
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  (13) 

completing the determination of  (1). 
Next we turn to the solution for a specified value of 

zsh. The basic assumption is that (1) remains unchanged 
from the value in Eq. (12). Thus we solve the system 

 xx||0 DE    (14) 

 shxsh
)2()1( zDi    (15) 

now regarding (1) as known and (2) and Dx as the 
unknowns.  Ex  in Eq. (14) is expressed in terms of  (1) 
and (2) from the expansion given in Eq. (8). After a 
small amount of algebra, the result is 
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The RF sheath voltage sh = (1) + (2) is therefore 
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If zsh is very small then it is clear that the conducting 
wall solution is recovered. In the opposite limit of large 
zsh (the quasi-insulating limit) the current Jx into the 
wall, proportional to Dx, goes to zero and the sheath 
voltage is  sh = iDx,cw/0||ksw,x. In intermediate cases, 
if zsh and ksw,x are nearly pure imaginary (possible in the 
capacitive sheath limit with evanescent SWs), sheath-
plasma resonance occurs and can result in large values of 
sh. 

It is not difficult to show that in the electromagnetic 
(EM) case the SW dispersion relation, Eq. (13) is 
replaced by 

 ||||
2

x,sw
2 nn     (13) 

and the final results in Eqs. (16) – (18) only require the 
replacement of ksw,x with qsw,x given by 
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where n = kc/. 
For a test to compare with rfSOL we considered an 

evanescent EM SW case. The excitation of the FW can 
be neglected. The main parameters of interest here are 
B0x = 1 T, density ne = 21018 m-3, Te = 15 eV, RF 
wave frequency f = 80 MHz, antenna-sheath 
distance = 0.2 m, and the specified wavenumber kz = 
160 m-1.  The dominant mode launched by the antenna is 
ky = 120 m-1 and is taken as an input parameter here.  
The antenna current is 1.1 kA/m which results in a 
maximum (in y) sheath voltage of about 130 V. Other 
parameters, of less interest for present purposes, are 
given in Ref. [10]; see Fig. 11(a).  

For these parameters, pi = 0.38 resulting in a 
complex impedance with significant real part, and  
| ||

2 /n  | = 0.57 implying important EM effects. 
Furthermore, it turns out that zsh is not so large as to put 
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the final result in the quasi-insulating limit; thus, the 
results are still sensitive to the value of zsh.  This case 
therefore provides a robust test of the method.  Iteration, 
updating the nonlinear dependence [9] of zsh(|sh|), was 
carried out using the same fits as in rfSOL [10] to obtain 
a self-consistent solution at each value of y.  Starting 
from an initial constant value of either essentially infinite 
zsh or from zsh = 0 the solution converges rapidly. 

As can be seen from Fig. 2, the comparison between 
the post-processing solution and the rfSOL result is quite 
good.  The main differences are likely the result of 
employing local theory for the post-processing, which 
begins to lose accuracy when only the dominant 
harmonic in ky is retained, as done here. As explained 
previously, local theory is not essential to the method, 
but is convenient for the present test. 

 

Fig. 2. Comparison of the post-processing solution (black) with 
the numerical solution obtained from rfSOL (red) for the 
electromagnetic test case: (a) the magnitude of the rf sheath 
voltage; (b) real (solid) and imaginary (dashed) parts of Dx. 

4 Discussion and conclusions  

The main assumption of the method is that the amplitude 
of the incoming waves is not changed by the BC. In the 
example this is assured by the fact that the SW is 
evanescent on a scale shorter than the distance between 
the walls and (in general if necessary) the absorbing 
layer. In addition, the present analysis has also assumed 
locally constant plasma parameters which enable a local 
solution for kx given specified values of ky and kz.  Here 
ky and kz may be obtained from the Fourier transform of 
the normal current ~ Dx on the surface.  For 2D codes kz 
may be calculated from the mode number in the toroidal 
direction.  If there is no dominant ky, then the procedure 
may be applied to each ky in the spectrum.  The value of 
kx for each mode i.e. propagation direction of SW and 

FW (m = 1,2,3,4) is given from the local dispersion 
relation for the chosen ky and kz.  In the illustration of 
the method in Eqs. (3) – (6), the tangential k is assumed 
to be equal for FW and SW, but this could be 
generalized. The use of local wavenumbers kx, ky and kz 
to describe the fields near the surface is expected to be 
rigorous when the surface is locally flat on the scale of 
the waves and the plasma parameters are constant on that 
scale.  Note that in the case of FWSW conversion due 
to wall shape (e.g. a wall “bump”) [8] the conducting 
wall solution for Dx will contain ky values characteristic 
of the bump scale. 

We have shown that a sheath post-processing method 
can be used to transform a solution obtained with a 
conducting wall BC to one with a general impedance 
sheath BC.  Used in this way, the method allows legacy 
rf codes (with conducting wall BCs) to obtain 
approximate rf sheath properties by post-processing. In 
fact, the same procedure can be used to transform 
between any two different cases of an impedance 
boundary condition (for example from an insulating 
sheath solution where zsh to a finite zsh solution). 

In the case of a locally curved surface, or if the 
density or magnetic field vary significantly with respect 
to the SW wavelength near the wall, then the eikonal 
ansatz could introduce significant approximations.  
Further work will be required to assess the accuracy of 
the method for practical applications in such cases. 

 
This material is based upon work supported by the U.S. 
Department of Energy Office of Science, Office of Fusion 
Energy Sciences under Award Numbers DE-FG02-97ER54392 
and DE-FC02-05ER54823. The digital data for this paper can 
be found at https://doi.org/10.5281/zenodo.579548. 
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