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Abstract

It is well known that the pure drift-Alfvén wave (DW) (i.e. in the adsence of
curvature and toroidal couping effeds) is dabili zed by magnetic shea in circular flux
surface geometry when the drift frequency is constant radialy, [P.N. Guzdar, L. Chen,
P.K. Kaw and C. Oberman, Phys. Rev. Lett 40, 1566 (1978] as is implicit in a locd
balloonng analysis. In the elge plasma nea a magnetic separatrix, X-point geometry is
important and the drcular flux surfacemodel does nat apply. Using several numericd
codes and analyticd models, we find that the DW is robustly unstable in this case.
Physicdly, instability is driven by wave refledion from the stegp profile of ki nea the X-
points, due to magnetic shea and the locd minimum of the poloidal magnetic field. Itis
concluded that a complete set of dimensionless parameters describing edge turbulence
must include DW parameters that embody the physics of X-point effeds and dasma
shaping.

PACS: 52.35Kt, 52.35Bj, 52.55Fa



l. Introdu ction

The drift-wave darader of edge turbulence has long been o interest for
magneticaly confined, fusion-relevant plasmas, including the tokamak. Moreover, drift
effeds may be of spedal interest in low asped ratio tokamaks and sphericd tori, as a
result of the low outboard magnetic field, relatively large Larmor radii, and large drift
frequencies in the outboard edge plasma.

A grea ded of work on dift waves has been reported in the literature, only a
small fradion o which is cited in the following.1-16 Much eff ort was direaed towards an
understanding of the “universal” drift instability in sheaed systems, first in slab (or
cylindricd) geometry and then in toroidal geometry. Becaise our present interest isin
edge physics and the stegp density gradient pedestal region, the papers which are most
relevant employ a drift-Alfvén (drift-magnetohydrodynamic) model, where the drift
frequency wrcan be cmmparable to the Alfvén frequency w, = kjva: Generally, the model
must include disspative (resistive) or eledroninertia effedsto oltain instability. Inthis
paper, we ansider the drift-Alfvén wave dass of instabiliti es, heredter referred to as
drift-wave (DW) instabiliti es for brevity.

Early work employing locd theory in shealess ystems identified the basic DW
instability drive medhanisms.1-4 A body of literature deding with the subtleties of drift
instabiliti es in sheaed dlab (or equivalently a sheaed cylinder or infinite asped ratio
torus) ultimately showed that the resistive drift-Alfvén mode was dable unless ether
toroidal curvature dfeds (entering at finite asped ratio) or a wr profile with a maximum
was considered.>6 The physics of shea damping and the role of toroidal effeds on dift
waves were explored in a series of papers.”-9 The latter of these® even considered X-
point effeds, bu nat in the ontext of a drift-Alfvén model where the physics we ae
highlighting in the present paper could emerge. The drift-Alfvén equations remained a
useful paradigm for plasma elge turbulence enabling studies of turbulent cascades, and
turbulence-induced dffusionin bah sheales<10 and sheaed!1-14 models of interest for
both tokamaks and stellarators.1> The possble role of the drift-Alfvén mode in the
physics of the low-to-high confinement (L-H) transition hes also been explored.16 In a
recent paper along these lines,l’ an equilibrium X-paint effed was invoked in
conjunction with drift-wave physics, however, the drift wave itself was treaed in a
shealess $ab.



The full drift-resistive magnetohydrodynamic (DRMHD) modd in an
axisymmetric torus contains bath the drift-Alfvén instabiliti es which we @nsider here,
and the arvature-driven (ided and resistive balloonng) modes on which we have
focused in ealier papers.l819 The aurvature-driven modes are relatively well
understood, at least at a wnceptual level. Typicdly ideal magnetohydrodynamic (MHD)
instability sets in when a parameter a ~ yzmhd/wg exceals an ader unity threshold.
Here the airrvature drive is charaderized by yﬁqhd ~ cg /(RL,,) where g is the sound
spedad, R the major radius of the torus and L, the density (or presaure) gradient scae
length. In the resistive magnetohydrodynamic model (RMHD), there is generaly
instability at sufficiently high mode numbers even when a is below the aiticd value for
ided instability. When ion finite Larmor radius and dift effeds are retained, as in the
full DRMHD model, resistive modes are suppressed when the parameter a4 ~ wrj / Ymnd
exceals a value of order unity. Here the relevant wavenumber ki to be enployed in wy;
is determined from balancing the resistive and ided termsin the ball ooning equation (viz.
WnYmhd ~ wg). The relevance of the dimensionlessparameters o and o4 can be deduced
from simple linea physics considerations,20 although it appeas that they also pay a
fundamental role in the norlinea evolution d turbulence?l and in the subsequent
generation o sheaed flows.22

While the ncepts described in the precaling paragraph are most easily
understood in the geometry of alarge asped ratio torus with circular flux surfaces, they
are dso relevant with some modificaion to the arvature-driven instabiliti es in dvertor
geometry nea a magnetic separatrix. In previous work,1819 we showed that X-point
geometry and resistive dfeds were synergistic for a dassof curvature-driven modes, the
resistive X-paint (RX) modes. The strong magnetic shea and deg locd minimum of the
poloidal magnetic field nea an X-point give rise to short scaes lengths (high locd k)
for resistive ballooning modes, enhancing the dfed of X-paint resistivity. This has the
effed of making resistive physics (and hence curvature-driven instability) important at
much lower mode numbers than would atherwise be possble.

In the present paper we show that X-point geometry has an equally important, and
more subtle, effed onthe drift-Alfvén classof instabiliti es. As noted previously, it isnow
well known that the pure DW (pure meaning in the &sence of curvature and toroidal
cougding effeds) is gabilized by magnetic shea in circular flux surfacegeometry when
the drift frequency is constant radially.>8 For the radially locdized ballooring modes
that we ansider in this paper, the radially constancy of wqjis implicit. Thus we shoud,
and do,find that our DRMHD model is dable in circular geometry when curvature dfeds



are suppressed. In contrast, the same model exhibits robustly unstable modes in dvertor
geometry.

One way of anticipating this result isto ndethat in aradial e genmode analysis of
DW instability in circular geometry the results tend to be sensitive to the physics nea the
rational surfacedefined by k” = (ng—m)/gR = 0. Nea aseparatrix, the locd safety fador
(determined by the locd field line pitch) gjoc = QoW 8) varies drongly aong a field
line, and consequently a well defined rational surface does not exist (or to be more
predse, the k) = 0 surfacedoes nat coincide with a flux surfacq. It is not surprising that
this fundamentall y changes the charader of the drift wave.

The goa of our paper is to explore the physics basis for DW instability, and to lay
the groundwvork for understanding new dimensionlessparameters for edge turbulence that
take the flux surfacegeometry as well as relevant DW plasma parameters into acourt.
Ultimately it is hoped that the results will provide adegoer understanding of the role of
DW physics on resistive X-point (RX) modes when bah curvature and DW drives are
present and competiti ve.

To explore the physics of these modes, we will draw upon severa numericd
codes and analyticd models, which are briefly summarized next. Our most complete
numericd model is the global threedimensional eledromagnetic turbulence mde BouT19
which follows the time evolution d the plasma instabiliti es through and keyond their
linear growth phese. We dso employ two linea eigenvalue cdes which invoke the
ballooring formalism. The BAL codel8 is a shoding code based onthe second ader (in
Uy DRMHD Alfvén balloonng mode equation. The MBAL code, discussed here, is a
matrix method eigenvalue solver that treas the more complete set of coupged Alfvén and
soundwaves. Our analyticd models, described in Sec 1V, describe speadal cases for the
dependence of k; along a field line, and include atwo-region model and a power law
model.

The plan o our paper is asfollows. In Secll we present the basic equations and
review the underlying physics of drift-Alfvén wave instability in a shealess $ab plasma.
In Sec Il we show from numericd solutions of the equations in X-point geometry that
DW instability persists. The cause of the instability is shown to be dueto X-paint effeds.
Sedion IV develops me simplified physics-based models which incorporate the main
geometricd effeds of the X-points and permit some insight into the driving medanism.
In Sec V therole of the soundwave is considered. Our conclusions are givenin Sec VI.



Several details of the two-region model and the power law model are given in the

Appendices.

Il. Reduced DRMHD model and drift-Alfvén instability

A. Basic DRMHD equations

We begin with a standard reduced four-field model for DRMHD given by the
eguations of vorticity, eledron continuity, Ohm’s and Amperes laws, and total parall el

momentum. The lineaized set of equations takes the foll owing form
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Other notations are standard, in particular K =kppg,ps =Cs/Qj, cg =Te/Mm;j, T =

TiTe V5 =B%/4mm;, w, =ngk&c? /4, wrp = ~(cTe/neBk bxOn,



W =(cTj/neBkgxOn, H= k%czlwge, Wge = (2cTo/eBk b xk,
Wy = (2CT| /eB)kD bxkK, and Wy = Wyt Wi, M| :1'92Vi2/Vii .

The MBAL code solves Egs. (1) — (4) in full, while the BAL code negleds u; to
obtain a second ader differential equation aong the field lines. Various further
approximations are shown to be useful in highlighting the underlying physics of the DW
instability in X-point geometry. Throughou this paper, we shal negled the aurvature
terms wy, W and wy; to highlight the role of drift-driven, as oppcsed to curvature-
driven, instabiliti es.

B. Drift-Alfvén instahility in a shearless $ab

The well known dispersion relation for the drift-Alfvén instability in a shealess
slab may be derived from Eq. (1) — (4). It isconvenient for later use to construct couded
equationsfor =@ and

2
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where
G=wl+H)+iw, ~wrp - wH (12

Wy = KVg 0 = kits @8 = 1+ Dws, G = wp(L-P), B=&5 /0] and the final form
for G in Eq. (12) is the allisionlesseledrostatic limit. Here we have negleded wy for
simplicity, sinceit does not play amajor conceptual role for thisinstability.

We naote that when the square bradcet on the left-hand-side of Eq. (11) vanishes, @
bewmmes sngular. Later when we consider the ball ooning equation generali zation o Eq.
(11) this sngularity will occur at isolated pants along the field line when wsis negleded
and w approaches the red axis.

The dispersionrelation for drift-Alfvén modesis

~ A2 2 ~2
w W (6V)
+K2-Pe W% _,_ O (13
(0V] wZHA)G wz

which isfourth order in w. The bradet on the |eft-hand-side together with the right-hand
side provides a low frequency soundwave, and the drift wave (or if w =0, the two



soundwaves), and the remaining fadors provide the two Alfvén waves (e.g. in the ided
MHD limit whereG - wandK, w - 0).

Figure 1 shows the dispersion dot correspondng to the alli sionlesseledrostatic
cold ionlimit of Eq. (13) for an ill ustrative set of edge parameters (B = 5 kG, Bg = 2 kG,
R=100cm, T, =120€V, ng = 3.5x 1012 cm3, L, = 0.75¢cm). Instability results from
the couping of the drift and Alfvén branches. Negleding w, the dispersion relation may
also be rewritten to highlight the drift and Alfvén wave mode aossng as

(w+ wK 2 —w[b)(wz —oog) = —ooz(ooH +ioy —ooKZ) ) (19

At mode adossng, when w, = wp/(1+ KZ) = W + 0w, ore can expand the &owve form
for small dw to show the destabili zing effeds of resistivity (wy,) and eledron inertia (H)
and the stabili zing effeds of pdarization dift [K or B = (mgm;) (K2/H)].1.2.16

Whil e the basic charader of this instability in shealess $ab geometry is modified
in an esential way by magnetic shea in the drcular flux surfacetokamak model, we will
seethat it again becmes relevant when X-point effeds are taken into acourt.

[ll. DW in X-point geometry

A. BOUT coderesults

BOUT code modeling of similar plasmas in circular flux surface ad X-point
geometry provides dramatic evidence of the role of the X-paint effeds. Results for the
time evolution d a simulation initiated a noise levels is shown for the two cases in
Fig. 2. For the drcular flux surfaceContinuous Current Tokamak (CCT)23 plasma (using
ill ustrative parameters at the top d the elge pedestal: T =T; = 47.2€V, ny = 4.93x1012
cm3, B =2.6 kG, R=148cm, a =36¢cm, q=3,s= 2, and pek gradientsL, =Lt = 3.0
cm at W = 98%) the simulation remains at noise levels. In contrast the divertor geometry
National Sphericad Torus Experiment (NSTX)24 plasma (using ill ustrative parameters at
the top d the edge pedestal: T, =T; =53.4€V, N, =4.58x1012cm 3, By = 2.6 kG at the
outboard midplane, R = 154 cm, a5 = 46 cm, gg5 = 3.2,and peek gradientsL, =Lt =2.5
cm at W = 98%) shows the exporential mode growth of astrong linea instability. In these
BOUT code runs, as in al results for this paper, curvature terms are suppressed to
highlight the drift wave physics.



B. BAL coderesults

To understand the BOUT code results and elucidate the DW physics, we have
performed a number of BAL code runs. The goal has been to isolate the aqucia physics
for DW instability, so that the role of geometry can be explored in the simplest possble
physicsmodel. The BAL code confirms robust instability only in dvertor geometry.

Sample runs for an NSTX doule null geometry (using the ill ustrative base cae
parameters given in Sec 1) compare the unstable spedra for three physics models in
Fig. 3: the full eledromagnetic model, the dedrostatic limit, and the dedromagnetic
model with the mllisionless &in term H artificially suppressed. Results how that
instability for these parameters (which imply w ~ w> vg) is driven mainly by the
collisionless &in term and the dedromagnetic charader of the mode is not criticd. The
red frequency of the mode (not shown in the figure) is of order w.

The low-n feaure of the spedrum seen in Fig. 3 may be related to the “coherent
mode” seen in some BOUT turbulence simulations?® for Alcator C-Mod26 and NSTX.
For the NSTX case that we have dhedked, the BOUT coherent mode and the low-n BAL
code fedure have similar perpendicular wavenumbers and coscill ation frequencies. A
series of BAL code runs indicae the dominant scading of this feaure with parameters.
Instability is drongest at low Tj, high To small L,, and high g. Stronger drive crrelates
with the spedrum pe&ing at lower n. The q scding is particularly strong, and is
illustrated in Fig. 4. Depending on parameters the mode can be wllisionless or
collisional, as for the dab dift-Alfvén instability. The cmpetition ketween the
destabilizing skin effed and the stabilizing polarization dift results in a pe&k at a
particular n.

The @owe studies are useful in guiding us to the simplest physics model in which
DW instability exists. Using this reduced model will then permit an exploration d why
and howv the X-point geometry matters. A suitable reduced mode is the dedrostatic,
collisionlesslimit with T; = 0. In thismodel, the balloonng equation reduces to
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It is instructive to examine the structure, aong the field line, of an urstable
eigenmode of this equation. A typicd exampleis shown in Fig. 5where the X-points are
located at 8 = 0 and 4and 0< 6 < 4 corresponds to the outboard midplane of this doulde
null configuration. Here 0 is the usual extended bell ooning coordinate. Several feaures



are noteworthy. The height of the egenfunction in the outboard midplane regionis large
indicaing the instability drive regionis here, and that modeisflat in thisregionand hesa
standing-wave dharader. For large positive or negative 6, there is a dea outgoing wave
structure. The jaggedness of the mode results from successve interadions with the X-
points (and is not indicaive of the scde of the numericd resolution which exceeals
plotting acarracy).

By examining the variation d the quantity
A=1+K? -0/ (16)

along the field line (nat shown) it is foundthat Re(/\) changes sgn nea the X-paints,
being negative in the region 0< 6 <4 and aherwise pasitive. Re(AA) < 0 correspondsto a
“negative energy” drift wave, [heuristicdly, from Eq. (15), oW 0O /\|D”L|J|2] thus
confirming the locaion d the instability drive region. The paint A = 0isasingular point
of Eq. (15), which will be discussd in more detail in Sec V. For a robustly growing
mode, the singular point isfar off the Re(0) axis.

The precaling analysis is a guide to the minimal set of physicd equations that
describe DW instability, but it does not lend much insight into the role of geometry. Why
is the infinite asped ratio circular plasma stable while the X-point plasma is unstable?
Examining the terms of Eq. (15), the diff erences between the drcle and X-point geometry
cases can be cdegorized as: i) 6 variations of B and R (nat present in the infinite asped
ratio circular flux surfacelimit), ii) field line lingering nea the X-paint (i.e. 6 variation o
the Jacobian relating d/d6 and D”) and iii) X-paint effeds on the K(B) profile (i.e.
variations of magnetic shea and Bg). Point i), the 8 variations of B and R, is redly a
toroidal couging effed, which is well known to lead to drift-wave instability;7:8 thus we
concentrate on the other two X-point related effeds.

The runs siImmarized in Fig. 6 explore some atificial, bu instructive, numericd
tests. They indicate that instabiliti es result when either effed ii) or iii) is added to the
circular flux surface geometry model. Thus, the drcular model represents a
mathematicaly unique limit and avery speaal case for pure DW stability: stability results
can be sensitive to small changes from a pure drcular model.



IV. Simplified physics-based models

A. Two-region model with Born matching

The analysis of the DW eigenfunction shown in Fig. 5 suggests that avery simple
physics-based conceptual model might be useful in understanding more transparently how
X-point geometry suppats unstable modes. The physics is esentialy that of the
Hasegawa-Wakatani model4 extended to include dedron inertia and a simple geometric
model for X-point magnetic shea.

We mnsider two regions aong the field line 0 < 8 < o for an even parity mode.
Region orefor Eq. (15) isdefined by K << 1 andisthe drive regionfor instability. In this
regionwe let

1] :COSk”lZ, O<z<L 17

where z is distance dong the magnetic field. The locd uniform plasma dispersion
relationin region orerelates wto kg and ki

(ogl((o— Wrp) = Ho® (18

Similarly, regiontwo is defined by K — oo and corresponds to the outgoing wave region.
In thisregion we let

Y =Asexpikp(z-L)], L<z<e (19
with locd dispersionrelation
W2 = WK 2 [H = w2 (20)
In the @ove w, = kv, and we = Kjive Where v, and v, are the Alfvén and eledron thermal
velociti es.

The two regions are matched together by a jump condtion applied a z = L where
L isaparale scde length (typicdly of order R on field lines nea the separatrix). If we
were to negled the poe wntribution arising from A [see Eq. (16)] the jump condtion
from Eq. (15) isjust continuity of y and ;. More generally, we obtain

oyl =qu, (21)

where it is sown in Appendix A using a Born approximation () constant aaoss the
matching region) that
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oL =-g2Ht itk | (22
oL L C

where Lkl =K 1dK /dz and L; isthe length of the matching region. Here we have dso

defined & = wl/ve. For validity of the two-region model Ly/L << 1isrequired.

Combining Egs. (17) — (21) we obtain the following couped equations for the
global eigenvalue & 0 w

xtanx =-i& + QL (23
x2(E-&p)=KZe3 (24

where x =KL, & = wL/ivg = kppL, {n=wrel/ve=Kg/A, A =(m; /me)l/zLn /L and
Ko isthevaue of K inregion 1(correspondng to kgpg at the outboard midplane).

Anayticd solutions of this eigenvalue eguation are possble in many limiting
cases. Detalls are given in Appendix B. One important limit that qualitatively
reproduces the results of the BAL code is as follows. We negled Q, expand the tan
function for & << 1 and consider Ky << AY2 to oltain Re & ~ Ky/A and Im & ~ Kg#/A2,
Thus in dmensiona variables the mode has a red frequency of order w-,and a growth
ratey << wrp. Themodeisflat between X-points because § << 1limpliesx = kjyL <<1.

The pde ontribution adds a damping term propartiona to itk in Eq. (22) that
generally reduces the growth rates. If the two-region model is taken to model X-point
geometry, then Li/L isasmall parameter because, in the X-point region where the paeis
to be evaluated, the strong magnetic shea makes Lk very short. We speaulate from this
qualitative agument that the larger order unity size of Lg/L in circular flux surface
geometry may heuristicdly explain the stability of the DW in that limit. This point will
be discus=d further in conredionwith Fig. 7.

The two region model permits an evaluation d the ratio of transmitted (outgoing)
wave to the standing wave anplitude, viz.  at the transition boundry z = L. Thisratio
isjust sec¢ . The net growth of the drift wave is determined by balancing the instability
drive with the outgoing wave energy loss The anourt of refledion at the X-paoint (here
the z = L boundxry) determines this balance

11



B. Power law model

Whil e the two-region model is conceptually useful, it does not permit a rigorous
conredion between X-point and circular geometry to be made. To acomplish this we
consider apower law model for the K(0) profile.

Our starting point for this model is the wllisionless eledrostatic @genmode
equation written in dmensionlessvariables

2
(1+K2—ED/E)Z?L5+K2EZQJ:O. 25)

Here, & = wwy, &= W/ we= Kg/A where in analogy to the notation of the two-region
model A = L/(qRpgY?), He = MM; and we = V/QR. For this model, we wnsider the
family of K profiles given by

K2 =K3[1+(s8)"] (26)

so that v = 2 corresponds to the standard circular flux surfacemodel, and larger v yields
stegoer profiles which can mock up X-point effeds. A comparison d K(0) profilesfor an
NSTX douHle dull case and Eq. (26) isgiven in Fig. 7a. Note that the power law model
gives a goodfit in the drive and transition regions. The power law model is not corred
asymptoticdly for large K when v # 2, bu thisis of little consequence @ the egenmode
equation is independent of K in this asymptotic regime. Figure 7b compares the inverse
ratio of scaes lengths L/Ly that appeas in Eq. (22) and controls the strength of damping
from the pole mntribution. The value of L/Lk is only important at the pole, A = 0. In
divertor geometry, the system can find an eigenvalue such that the pde is locaed where
L/Lk islarge (giving week damping) while in circular geometry L/L is evidently never
large enough to permit instability.

When v is varied and the egenvalue problem given by Eq. (25) is lved, we @n
continuowly tradk the growth rates from zero at v = 2 to the asymptotic limit of the two-
regionmodel whenv - oo, ResultsareshowninFig. 8. Therelation between thev - o
limit and the two-region model is given in Appendix C.

Again, the results ow that the drcular plasma cae is peda. The wllisionless
eledrostatic model in circular geometry is marginaly stable, and thus susceptible to
instability or over-stability by the aldition o small effeds. For example, we have shown
that the ollisional eledromagnetic model in circular geometry is over-stable (not shown).
However, for v greaer than a aiticd value, robust instability generally results. We

12



interpret the instability as resulting from refledions of the outgoing wave by the steg
gradientsin the K(0) profile.

V. Role of the sound wave

So far, we have not considered the role of the soundwave in detail. In this sdion
we show that explicitly including the sound wave in the model does not change our
conclusionthat the DW is gable in circular geometry but unstable in X-point geometry.

As dluded to in the precaling discusson, the singular point given by A =0 in
Egs. (15) and (16) physicdly represents damping due to amode @mnversion d the Alfvén
wave to a sound wave. Treding the singular point as a pole (as occurs when w is
negleded in the model) retains the physics of soundwave damping, bu canna describe
the sound wave propagation. To retain sound wave propagation, we employ the MBAL
code which solves Egs. (1) — (4) by matrix methods.

The MBAL code discretizes the paralel derivatives by employing a spedral
deampasition. This results in a standard eigenvalue problem for a large, full, non
symmetric complex matrix which is lved by a ommercialy available package. The
use of a nonuniform grid enables resolution d the fine structure of the soundwave nea
the mode-conversion pant.

We have anployed the MBAL code to study the dfed of retaining the parall el
velocity up. In general u; haslittl e dfed onthe growth rates in either the drcular plasma
or X-paint cases. The qudlitative dfed on the agenfunction is most dramatic in the
circular plasma cae, where the growth rate theoreticaly tends to zero and the singular
point A = 0 occurs on the red 6 axis. In pradice this limit is excealingly difficult
numericdly. Small refledions from the numericd box boundhries at large 0 give rise to
small but finite growth rates in the drcular plasma limit. An exampleis iownin Fig. 9
where the patential ¢, is $rown with the soundwave suppressed and with it retained. The
singularity in ¢, is evident in Fig. 9a). When w (hence the soundwave) is retained in
Fig. 9 b the singularity is resolved and the sound wave propagation and damping is
evident. For these caes the growth rate is the same to within numericd errors, and the
red frequency differs by abou 20%.
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VI. Conclusions

We have shown that the pure drift-Alfvén wave (in the @sence of curvature and
toroidal couging effeds) isrobustly unstable in X-point geometry even thowghit is dable
in circular flux surfacegeometry. Physicdly, instability is enabled by refledions of the
waves from the X-paint regions as they propagate dong the field lines. The refledions
are caused by the stegp k(0) profil e that arises due to bah strong X-point magnetic shea
and the locd zero of Bg. When these refledions occur at both upper and lower X-points
(e.g. in adoulde null configuration) a partial standing wave forms between X-points on
the outboard edge, and is susceptible to drift-Alfvén instabiliti es that have the same basic
charader as in a shealess $ab configuration. Depending on parameters, the familiar
colli sionless (eledron inertia driven) and collisional (resistivity driven) versions of the
instability occur. Growth rates are generally wedker in redistic divertor geometry than
for an equivaent shealess $ab becaise the redistic geometry alows for partia
transmisson d wave energy through the X-paint region where it becomes outgoing
energy flux that damps the mode.

The present work can be thought of as building most diredly on Ref. 5 since we
investigate the stability of the drift-Alfvén modes in a similar physics model. (We
extended it only dlightly to include dedron inertia giving rise to the mllisionless &in
terms.) Instead of studying the radial profile dfeds of w(r) from aradial eigenvalue
analysis, or examining toroidal cougding and curvature dfeds, we mnsidered the dfed of
X-paint geometry in a balooning analysis along the field lines, implicitly taking o(r)
constant. Sincewe find that this model is sufficient to giveriseto drift-Alfvén instability,
it is tempting to speaulate that any pdoidal moduation o B or shea can alow instability
in a drift wave system whether it is due to toroidal effeds or poloida geometry (shaping
or X-points). However, na surprisingly as we have seen, the dfed of X-poaints is
particularly pronourced.

As a result, divertor geometry introduces a new drive for drift-wave instability
that can contribute to edge turbulence together with the airvature drive that has been
previously investigated for resistive X-point modes. A charaderization d the relevant
dimensionlessdrift parameters will be a important topic for future work; however, it is
clea from the present paper that they must embody the physics of reflecion die to X-
points and flux surfaceshaping, and must vanish in the g/lindricd plasmalimit.
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Appendix A: Pole contributions in the two-region model

In this appendix, we @nsider a rigorous derivation d the matching condtion
between the two regions of the model considered in Sec. IV A. In particular, we present
the derivation d Egs. (23) and (24) with the pale contribution QL given by Eq. (22).

In general, the jump condtion ketween the two regionsis given by integrating Eq.
(15) aaossthe transition between regions one and two, viz.

+

m_ 0 dz Hw W
Owg =-[— Al
B ”l“%. I (0+ K 2 - wrp)V2 A9

where dz is the increment of field line length measured parallel to B. Concentrating on
the pae @ntributions, we negled the variation o v,, B and Y so that they may be pull ed
through the integral (the Born approximation). Thisyields the result

ol =u, (A2)
with
w? WK 2 w? w-wp
=——_(dz =——_(dz4a - A3
° ng c;)+ooK2—ooDa ng % w+ooK2—ooEbE (A3)

The first term in the final form for Q givesriseto the L term in Eq. (22), where L;
is the length of the transition region. In the remaining term, the limits of integration may
be extended to +o because the rapid growth of K2 all ows the mntour to be dosed in the
lower half of the cmplex z plane when Im w> 0. Theresidueis evaluated by expanding

abou thepolez =z,

K(z)=Kp+(z—zp)K’p, (A4)

to oktain
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I dz _ Tl (A5)

wroKZ-wp  KpKplo|

Equation (22) is recovered upon @fining the parallel scae of K asLy = Ky/K'y,
where K, isK evaluated at thelocation d the pde. [Here, we employ the definition o
the pae, w—wp =-wK S , to elimi nate the numerator in the secondterm of Q in Eq.
(A3)]

The global dispersionrelation for the drift-Alfvén mode in this geometry is given
by matching Eq. (17) for Y inregion oreto Eq. (19) for s in region two, using the jump
condtionfor [y given by Egs. (21) and (22). The matching condtionsat z=L are

A, = coskygl, (A6)
iA 2k||2 + k||1sin k”j_L =QA5. (A7)

On eliminating A, and employing x = kjuL and & = kjpL Eq. (23) is immediately
obtained. Equation (24) results from rewriting Eq. (18) in terms of x and €.

Appendix B: Analytic limits of the two-region model

The two region model is amenable to analytic solutions in many interesting limits.
We shall consider a few cases here, initially negleding the Q term. Its effed will be
discussed subsequently.

In the small & limit, the tan x function can be expanded and x2 can then be
eliminated from Eq. (24) to oldain aquadratic equationfor ¢

§-gn=iK§E? (B1)

If & <<1 we can further expand abou ¢ = & (correspondng to w= wrp) to oltain
E=Eq+iK G /N2, (B2)
This lution corresponds to those obtained numericdly by the BAL code in
several important ways: i) Re wis nea wpandy << wry, ii) since x <<1, the mode is

flat in region ore (the region ketween the X-paints). The solutionisinadequate in that Eq.
(B2) does nat permit the determination d afastest growing mode over K for fixed A.

To remedy this, we consider the large & limit with the maximal ordering A ~ K2
<<1. In this limit, Eq. (23) can be solved to oltain x = Xg + Xq where X = 12 and x4 =
—ixg/€. From this we obtain the dispersionrelation
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2¢3 sy 2¢2
g= g e 0t 2D (83)
X0 X0

where the last term is snall when A ~ K2 but is required for instability in the sub-
ordering limit A << Ko << AV2, Here we mncentrate on the regime A << 1, which is
usually the relevant one for experiments. Considering the sub-ordering first yields

K3 L2KE
X%A3 X%AZ

§=¢pt (B4)
This results in a growing mode very similar to that of Eg. (B2). Together, the two
solutions cover the range 0 < Ko << AV2, For larger K, the aubic term in & balances
Ko/A toyield

/3
B H
& (BS)
H )\KOH

which has a growing root with Re > 0. Detailed analysis of the full cubic equation,
Eq. (B3), shows that the maximum growth rate, Im & ~ A-1/2, is achieved for Ko ~ 2A1/2
but for slightly smaller K ~ 0.8 AY2 the growth rate drops rapidly to match orto Eq. (B4)
where Im § ~ 1. The maximum growing mode has Re w ~ y U wp ~
(mi/mg)Y4cyd(LL )V2 and is nat flute-like in the central region since x ~ T2 where x =
kipL. Thislimit is not seen in the BAL code, posshbly becaise when the mode departs
significantly from being flat in region ore, the Born approximation is susped. It is nat
surprising that the two-region model overestimates the growth rates that are obtained
when the K profile is a smoath function d z or 8. This point is further expanded uponin
Sec IV B andinFig. 8.

The @owve solutions are nat dramaticdly affeded by retaining the QL pode
contributions.  Treding L /L and Li/L as order unity parameters, we note that Eq. (22)
gives QL ~ &2 which is therefore negligible in the small & solution o Eq. (B2). In the
large ¢ limit, the leading order solution d Eq. (23) for x remains X = xg = 12, hovever
the wrredion term x4 now contains the new effedsin QL. Thus the solution procedures
for the large & solutions of Egs. (B4) and (B5) are nat modified in any esential way. The
result is that Eq. (B5) is not modified to the order given and in Eq. (B4) the soundwave
damping term arising from the pole residue now reduces the growth rate by competing
with the drive term in Eq. (B4).
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Appendix C: v - o limit of the power law model

Inthev — o limit, the power law model for K given by Eq. (26) yields K = K
for sB <1landK - oo for s8> 1. Thus, the solution d Eq. (25) inthetwo regionsis

[£osko, PB<1
U :% (C1)
HA, expli(s9-1E/s], 9>1

where

k = Kod (C2)
VI+KE -84/
Matching Y and dp/d6 at O = 1 yields
ktank/s) = —i§ (C3)

If welet X=k/s, E=&/s, K :KO/\/1+ K3 ,and X =1+ K3 \s, then Egs. (C2) and
(C3) become

XtanX = —i¢ (C4)

<2 _E _ 22373
X %7 XE K 2% (C5)

Equations (C4) and (C5) are predsely thaose of the two-region model.
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Figure captions

1. Re andIm parts of w (rad/s) vs. toroidal mode number n for the slab model dispersion
relationship, showing the unstable cuging of the drift and Alfvén branches, and the
low frequency soundwave. Plasma parameters are given in the text, k= /R and ky
= nB/RBg. The frequency of the soundwave has been artificialy increased by a
fador of 20to make it visible onthis plot.

2. BOUT comparisons of drift-wave instability ina) CCT and b NSTX for similar
plasma parameters. Shown are surfaceplots of dn,¢/Ng Vvs. radial coordinate x and
timet. TheDW is gablein the drcular flux surfacegeometry of CCT, whileit is
unstable in the divertor geometry of NSTX. Note the differencein scdesonthe
verticd axis. In a) the plasma fluctuations remain at the small noise level where they
were initi ali zed.

3. Unstable spedrum, Im w =y (108 rad/s) vs. toroidal mode number n for a sample
NSTX case ill ustrating DW instability in X-pt geometry. Curvesare EM (solid), ES
(blue) and EM with H = 0 (long-dashed and labeled “no Skin"). For these parameters
(seetext) the instability is driven mainly by the alli sionlesseledron skin terms
(eledroninertia) and persistsin the @ld ionlimit shown here.

4. Unstable spedrum, Im w =y (103 rad/s) vs. nfor the base cae, and a cae with q
doubed.

5. DW eigenfunction ) vs. extended bell ooning angle 6 for the wlli sionless
eledrostatic model. X-pointsarelocaed at 8 =0, 4. Note the flat charader of the
mode between the X-points on the outboard side (0 < 0 < 4) and the outgoing wave
fedure that isevident at large |8]. Base cae plasma parameters are enployed and the

mode shown isfor n = 32 and kell ooning parameter 65 = 2.
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6. Unstable spedrum, y=1m w (103 rad/s) vs. nfor the X-point geometry case (X-pt),
circular flux surface cae (circle), circle cae with X-pt K(8) profile (Ky), and circle
case with X-pt Jacobian (J,). Only the arcle caeis gable.

7. &) Comparison d K(6) profilesfor an NSTX doule null case (solid) and two power
law forms: circular geometry: s=2,v = 2 (long dashed), and best fit to NSTX: s=
0.6,v = 20 (short dashed). b) L/Ly comparisons for the same caes. The damping
from the pole ontributionis propartional to the inverse quantity Li/L. When the
poeisnea the X-paintsat 6 = 0, 4 the damping is gredly reduced compared to the
circular geometry case.

8. Dimensionlessgrowth rate Im & vs. profile stegonessv for the cae K, =0.4,A = 0.3
ands=0.3. Notethat v = 2is gable (circular limit) andthat v - o asymptotesto the
two-region model shown by the dashed line.

9. Eigenfunctions @(8) from the MBAL code for anealy stable cae withou the sound
wave (@) and with the soundwave (b). Retention d soundwave propagation resolves
the singularity and leads to ougoing soundwave propagation bu the growth rateis

not changed significantly.
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Fig. 1. Re and Im parts of w (rad/s) vs. toroidal mode number n for the slab model
dispersion relationship, showing the unstable aupling of the drift and Alfvén branches,
and the low frequency sound wave. Plasma parameters are given in the text, k” = 1R
and k= nB/RBg. The frequency of the sound wave has been artificialy increased by a
fador of 20 to make it visible on this plot.



Fig. 2. BOUT comparisons of drift-wave instability in @) CCT and b) NSTX for similar
plasma parameters. Shown are surface plots of dn,,,d/Ng vs. radial coordinate x and
timet. The DW is dable in the drcular flux surface geometry of CCT, while it is
unstable in the divertor geometry of NSTX. Note the difference in scades on the
verticd axis. In a) the plasma fluctuations remain at the small noise level where they
were initialized.
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Fig. 3. Unstable spedrum, Im w = y (103 rad/s) vs. toroidal mode number n for a
sample NSTX case illustrating DW instability in X-pt geometry. Curves are EM
(solid), ES (blue) and EM with H = 0 (long-dashed and labeled “no Skin”). For these
parameters (see text) the instability is driven mainly by the llisionless eledron skin
terms (eledron inertia) and persistsin the cld ion limit shown here.
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Fig. 4. Unstable spedrum, Im w =y (103 rad/s) vs. n for the base cae, and a case with
g doubled.
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Fig. 5. DW eigenfunction ) vs. extended ballooning angle 6 for the ollisionless
eledrostatic model. X-points are locaed at 6 = 0, 4. Note the flat charader of the
mode between the X-points on the outboard side (0 < 8 < 4) and the outgoing wave
fedaure that is evident at large [8]. Base cae plasma parameters are enployed and the
mode shown is for n = 32 and ballooning parameter 6 = 2.
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Fig. 6. Unstable spedrum, y = Im w (103 rad/s) vs. n for the X-point geometry case
(X-pt), circular flux surface cae (circle), circle cae with X-pt K(0) profile (K,), and
circle cae with X-pt Jacobian (J,). Only the drcle case is gable.



Fig. 7. @ Comparison of K(0) profiles for an NSTX double null case (solid) and two
power law forms. circular geometry: s=2, v = 2 (long dashed), and best fit to NSTX:
s$=0.6, v = 20 (short dashed). b) L/Lk comparisons for the same caes. The damping
from the pole ntribution is proportional to the inverse quantity Lk/L. When the pole
is nea the X-pointsat 6 = 0, 4 the damping is gredly reduced compared to the drcular
geometry case.
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Fig. 8. Dimensionlessgrowth rate Im & vs. profile stegpnessv for the cae K, = 0.4, A
=0.3and s=0.3. Notethat v = 2is gable (circular limit) and that v — co asymptotes
to the two-region model shown by the dashed line.
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Fig. 9. Eigenfunctions @(0) from the MBAL code for a nealy stable cae without the
sound wave (@) and with the sound wave (b). Retention of sound wave propagation
resolves the singularity and leads to outgoing sound wave propagation but the growth
rate is not changed significantly.



