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                                 Abstract 

Computer simulations of radio-frequency (RF) waves propagating across a 

two-dimensional (2D) magnetic field into a conducting boundary are described. The boundary 

condition for the RF fields at the metal surface leads to the formation of an RF sheath, which 

has previously been studied in one-dimensional models. In this 2D study, it is found that rapid 

variation of conditions along the sheath surface promote coupling of the incident RF branch 

(either fast or slow wave) to a short-scale-length sheath plasma wave (SPW). The SPW 

propagates along the sheath surface in a particular direction dictated by the orientation of the 

magnetic field with respect to the surface, and the wave energy in the SPW accumulates near 

places where the background magnetic field is tangent to the surface. 

PACS: 52.35.Mw, 52.40.Kh, 52.50.Qt, 52.55.Fa 
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I. INTRODUCTION 

Radio-frequency (RF) waves in the ion cyclotron range of frequencies (ICRF) are 

commonly used to heat the plasma and drive currents in tokamak experiments. While many 

successes have been achieved with the application of ICRF auxiliary power, it has been 

known for some time [1] that undesirable interactions of high power waves with the plasma 

boundary and material surfaces can sometimes occur. A prime candidate for explaining these 

interactions is the mechanism of RF-driven sheaths [1-8] which have been shown in 

experiments and modeling studies [9-31] to describe qualitatively, and sometimes 

quantitatively the observations of enhanced plasmas potentials, local surface heating, 

enhanced impurity sputtering and loss of RF power in the boundary. Both RF interactions 

with the launching structure and so-called far-field sheath interactions [32,33] with more 

distant surfaces are of interest. 

Early theoretical work and modeling calculated RF-driven sheath potentials and 

assessed their consequences assuming the RF wave fields were given. In practice, these fields 

were taken from wave-solvers which did not incorporate sheath physics, and in the case of 

antenna modeling, for wave solvers which used vacuum rather than plasma in the volume 

immediately surrounding the antenna structure. More recently, there has been an effort to 

calculate the RF fields self-consistently in the presence of RF sheaths. Because sheaths occur 
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on the scale of the Debye length, which is much smaller than domain sizes or RF wavelengths 

of interest for fusion applications, approximate RF sheath boundary condition approaches 

have been developed [34-38]. These approaches effectively treat the sheath as a thin vacuum 

layer, and thus capture the important effect of sheath capacitance on the boundary. In principle, 

this kind of approach should permit a wide variety of interesting RF-surface interactions to be 

modeled with greater realism than has been possible up until now. 

In the present paper, we take a step in that direction, building upon previous work [37] 

in which a new code, rfSOL [38], was employed to study aspects of self-consistent wave 

propagation and sheath interaction in a two-dimensional (2D) slab geometry. Various 

phenomena seen in simpler analytical models [34,39-42] such as multiple roots, hysteresis 

effects, and the presence and characteristics of the sheath-plasma waves [43-46], were studied 

numerically in the presence of spatially varying plasma density and background magnetic 

field. 

Like the previous work, the present study also employs 2D geometry in a rectangular 

domain. However, here, one seemingly innocuous new feature is introduced which turns out 

to have profound physical implications: we allow variation along the sheath surface such that 

the background magnetic field can be tangent to the surface at one or more points. These 

tangency or near-tangency interactions are the focus of our paper. We will show that they play 
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an important role in governing the distribution of wave energy and induced potentials along 

the sheath surface, and thus are of paramount importance for understanding the nature of RF 

wave interactions with surfaces in more realistic geometries. More generally, we will show 

that rapid variation of conditions (in particular, the background magnetic field to surface 

contact angle) along the sheath boundary promotes strong RF-sheath interactions. 

In passing, we note that the rapid variation of this contact angle at the main limiter 

was invoked to explain the experimental observation of large ( V 100> ) plasma potentials far 

from the antenna in Alcator C-Mod [47]. This conclusion was reached using a 

one-dimensional (1D) model [48]. The present 2D treatment of a conceptually-related 

problem is an important step forward towards realistic modeling. 

The plan of our paper is as follows. In Sec. II we briefly summarize the basic model 

for sheath-plasma interactions and provide references to underlying work. The numerical 

model is described in Sec. III, with results for evanescent slow wave (SW) interactions 

presented in Sec. III A and propagating fast wave (FW) sheath interactions presented in Sec. 

III B. Our conclusions are given in Sec. IV. Details of an analytical model for sheath-plasma 

wave (SPW) propagation along the surface are given in the Appendix. 
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II. MODEL FOR SHEATH-PLASMA INTERACTIONS 

In this section, we briefly summarize the equations that govern the behavior of plasma 

waves in the scrape-off layer (SOL) and the interaction between the ICRF waves and the 

sheaths on metal surfaces. Since the details are described in our previous papers [37,38], we 

will not repeat all of them here. In the following analysis, we assume that only deuterium is 

considered as an ion species; however, the formalism is easily generalized to different or 

multiple species by appropriate modifications to the dielectric tensor. 

The governing equation for plasma waves in the SOL is a combined form of 

Maxwell's equations described as 

,ext02
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where the electric field E  and the external current extJ  vary on the RF time scale. Here, w  

is the applied ICRF wave frequency, c  is the speed of light, and 0m  is the permeability in 

vacuum. The dielectric tensor ε  is given based on the cold plasma model [49]. At the metal 

wall, the sheath effect is taken into account by means of a sheath boundary condition (sheath 

BC), which is written as follows: 
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Here, shD  is the time-averaged sheath width, she  is the dielectric constant in the sheath (in 

this study we assume that 0sh ee = , where 0e  is the dielectric constant in vacuum), 
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( )Eεs ××= 0n eD  is the component of the electric displacement normal to the sheath (and s  is 

the unit normal vector pointing into the plasma), and the subscript t denotes the two 

components tangential to the boundary. We recall that the sheath BC depends on scale 

separation, i.e., the Debye length and the sheath width must be the smallest spatial scales in 

the problem. In particular, at very low densities where the sheath width becomes large, the 

boundary condition may no longer be valid. Also, the sheath BC tends to be significant only 

when 1>>||e ; otherwise, the right-hand side of Eq. (2) is negligible. In a manner consistent 

with the Child-Langmuir law [50,51], the sheath width is written as follows: 
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where e  is the electric charge, shC  is an order-unity constant relating the rectified and RF 

potentials (which is fixed at 0.6 in this study), eT  is the electron temperature, and Del  is the 

electron Debye length defined as ( ) 212
ee0De enTel =  with en  the equilibrium electron 

density. The first and second terms on the right hand side of Eq. (3) are the RF and thermal 

sheath contributions to the self-consistent sheath width, respectively. The coefficient thC  has 

different forms depending on whether the magnetic field angle is smaller (ion poor sheath) or 

larger (electron poor sheath) than a critical value. Using a polynomial fit to transition 

smoothly between the two limits, thC  is given by 
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where im  and em  are the ion mass and electron mass, respectively, and nb  is defined by 

0n0n BBb =  (a component of 00 BBb = ) where 0B  is the background magnetic field and 

n0B  is its component normal to the sheath. The coefficients 1a  and 2a  are determined so as 

to satisfy the continuity of thC  and nth bddC  at critn bb = , where ( ) 21
iecrit mmb » . The 

continuity in the derivative of thC  is especially important when the background magnetic 

field varies along the sheath surface and includes 0n0 =B  on the sheath; otherwise, the 

electric field component tangential to the sheath surface becomes discontinuous near the 

flux-surface tangency point(s) according to Eq. (2). In this study, as mentioned above, we 

assume a deuterium plasma and the value of critb  is fixed at 0.02. 

The combined form of Maxwell’s equations and the sheath BC are self-consistently 

solved with the rfSOL code, which is based on a finite element method as presented in Ref. 

[38]. The calculations are performed on the Hopper Cray XE6 computer system at the 

National Energy Research Scientific Computing Center (NERSC). 

 

 

III. NUMERICAL SIMULATION OF SHEATH-PLASMA INTERACTIONS 
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In our previous work, we have mainly analyzed 2D sheath-plasma interaction 

problems for spatially constant background magnetic fields [37,38]. In the present numerical 

analysis, we consider solutions of the sheath-plasma interactions for spatially varying 

background magnetic fields whose flux surfaces have tangency points at a boundary. This 

magnetic field configuration actually happens with limiter surfaces in a tokamak. 

Figure 1 shows the problem definition which corresponds to some extent to a 

simplified geometry of the edge plasma region including an antenna in the poloidal 

cross-section of a tokamak. The origin in the Cartesian coordinate system is placed at the 

bottom-left corner of the domain. The electric field is solved subject to the sheath BC on the 

right-hand side, the conducting-wall boundary condition (conducting-wall BC) on the 

left-hand side, and a periodic boundary condition that connects the top and bottom of the 

domain. The antenna surface current is given by a sine function in the y  direction as 

follows: 

( ) ( ) ( ) ,eantlwext y
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where 2ˆ yLyy -= . Thus, the antenna current is maximum at the center of the antenna 

( 0ˆ =y ) and is zero at the two ends. In Eq. (5), zk  is the toroidal wavenumber component, 
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ye  is the unit vector in the y  direction (the same shall apply to xe  and ze ), and maxK  is 

the maximum antenna current density. The spatially varying background magnetic field is 

given by 

 ,p00 YÑ´+= zzzB eeB  )7(  

where 

( )[ ]{ }.cos pppp ΘyykAxB +-+-=Y  )8(  

where pB , A , pk , py , and Θ  are specified parameters. It can be easily checked that the 

above expression, together with constant zB0 , satisfies 00 =×Ñ B . The model magnetic field 

of Eq. (8) is not meant to map literally to tokamak geometry, but is intended only to enable 

conceptual points to be addressed in the present paper - in particular as will be evident from 

Fig. 2, this model allows two tangency points of the field with the wall. 

All the calculations in this study will be conducted with a linear sheath BC, in which 

the electric field contribution to the sheath width (i.e., the first term of Eq. (3)) is omitted. 

However, it is important to mention that the sheath width varies along the sheath surface (i.e., 

( )yshsh D=D ) due to the definition of thC  (see Eq. (4)) in conjunction with the spatially 

varying background magnetic field given in Eq. (7). We will show that this variation controls 

the strength of the interaction of waves with the sheath and the propagation of SPWs. 
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A. Evanescent plasma wave-sheath interactions 

We consider first the sheath-plasma interactions for evanescent waves and investigate 

the role of flux-surface tangency points at a boundary. Based on Fig. 1, the calculation domain, 

antenna length, and its position are determined such that m 4.0=xL , m 8.0=yL , 

m 05.0ant =L , and m 2.0ant-lw =D . The quasi-neutral plasma density is fixed at 

318
ei m 102 -nn ´==  over the whole domain, and the background magnetic field parameters 

in pY  are T 4.0p =B , yLπk 2p = , 2p yLy = , 4πΘ = , and 2=A . In addition, the toroidal 

wavenumber component, zk , is fixed at 10.8 m-1, the electron temperature is 10 eV, the 

applied frequency is 80 MHz, the toroidal background magnetic field component, zB0 , is 4 T, 

and the maximum antenna current density is 1 A/m. Unless otherwise noted, these values are 

used as default ones in this and subsequent analyses. The calculation domain is divided by a 

nonuniform mesh which includes 1601961´  grid points ( 800480´  nine-node elements) in 

total; 800160´  nine-node elements in antlw0 -££ Dx  and 800320´  elements in 

xLxD ££-antlw  are used in the x  and y  directions, respectively. The grid points in the x  

direction are concentrated in the vicinity of the sheath in order to accurately resolve the thin 

layer, within which SPWs exponentially decay, near the flux-surface tangency points at the 

sheath. 

Figure 2 shows the filled contour plot of ( )[ ]||amp
1 Resinh Ea- , where ||E  is the electric 
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field component parallel to the magnetic field line ( 00|| BBE ×=E ) and ampa  is the 

amplification factor ( 1000amp =a ) for adjusting colors. The palette colors are chosen to 

accentuate the smaller fields near the sheath boundary without saturating the fields near the 

antenna. Here, the antenna and magnetic field lines are also superimposed on the plot. Since 

this is a plot of ||E , the FW contribution is considered to be negligible. It is observed that the 

SW propagates along the magnetic field lines although it is evanescent from the antenna 

position. In addition, the SPW is generated on the sheath surface between the “convex” 

flux-surface tangency point ( m 3.0=y ) and the intersection point ( m 6.0=y ) of a magnetic 

field line penetrating the antenna and the wall (hereafter, the flux-surface tangency points 

( 0n =b ) from which the magnetic field lines inside the plasma are seen as convex and 

concave curves are simply called the convex and concave tangency points at the sheath 

surface, respectively). While the present geometry is too simple to apply directly to a tokamak, 

in general the complex magnetic fields of shaped diverted plasmas, and realistic vessel walls 

can exhibit both types (convex and concave) of interactions. This is also confirmed in Fig. 3, 

which shows the variations of the real part of the parallel electric field component along the 

sheath surface for two different boundary conditions at the right wall; here, the result obtained 

by imposing the conducting-wall BC, 0E =t , is added for comparison. It is seen that the 

SPW is generated only by imposing the sheath BC. Furthermore, it is important to notice that 
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the SPW is driven in the narrow region within which the magnetic field lines connect the 

antenna to the wall and accumulation of its energy occurs at the convex tangency point. (This 

in spite of the fact that the concave point is closer to where the field lines strike the wall. In 

this regard we find that the placement of the antenna influences the field strength and pattern, 

but not the tendency for SPW accumulation at the convex point.) The next part of this section 

will be devoted to clarify the mechanism of this phenomenon. 

 

B. Electromagnetic SW-SPW dispersion relation 

The physics involved in Fig. 2 or 3 can be uncovered by using the following two 

equations, which are derived in Appendix: 

,||||
2
||

2 eeee ^^^ =+ nn  )9(  

( ),2
||||nsh

2
ttt||

2
t ^^ -D=×- eee nbikkn bk  )10(  

where ^n  and ||n  are the components of the index of refraction, which is defined as 

wkn c= , perpendicular and parallel to 0B , respectively; ^e , ||e  are the components of ε  

(see Ref. [37] for the definitions); tt
2
t kk ×=k  (or tt

2
t nn ×=n ) where tk  comes from the 

conversion tki®Ñ . 

As discussed in the Appendix, Eq. (9) is the local EM (electromagnetic) SW 

dispersion relation in the volume, and Eq. (10) is the appropriate boundary condition at the 
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sheath surface. We solve the two equations simultaneously for complex xk  and yk  with w , 

zk , and local values for the plasma parameters given as described above. Also, note that the 

sheath width is calculated using Eqs. (3) and (4) (here, the first term in Eq. (3) is neglected). 

The unit normal to the sheath (pointing into the plasma) is in the xe-  direction (i.e., 

xes -= ) according to Fig. 1. The profiles of xB0  and yB0  are shown in Fig. 4(a). Note the 

tangency points where 00 =xB . 

Taking m 4.0=y  on the sheath as a representative point, eight modes are obtained 

from Eqs. (9) and (10). Five of the modes among them satisfy ( ) 0Im <xk  and are therefore 

physically acceptable because they evanesce into the plasma, since our phase convention is 

( )tii w-× xkexp~ . Further, two modes have ( ) 200~Re yk  to 300 m-1 and therefore have short 

wavelengths on the order of what we observe in Fig. 3. They are weakly evanescent in y , 

and they also satisfy the SW ordering ( ||
2 ~ e^n ). We concentrate on them in the following. 

The profile of yk  along the sheath surface is shown in Fig. 4(b). Solutions are 

ill-posed and therefore suppressed in a narrow band near the points where 00 =xB . This 

profile is one important ingredient in understanding the physical behavior of the roots. Below 

the convex point ( m 3.0<y ) both modes decay with increasing y  (i.e., ( ) 0Im >yk ), while 

above the convex point they both grow. Opposite behavior occurs near the concave point 

( m 7.0=y ). 
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The second key ingredient in understanding the physical behavior of the roots is the 

real part of the group velocity yvg  shown in Fig. 4(c). Below the convex point ( m 3.0<y ) the 

wave energy propagates in the direction of increasing y , i.e., towards the convex point, for 

the red mode (i.e., the mode with direction marked with the thick red arrows), and away from 

the convex point for the blue mode (thin blue arrows). Similar arguments can be made for the 

other regions. 

Finally, we combine the information about the direction of exponential decay with the 

information about the direction of propagation. The results can be summarized quite simply: 

the red mode (plotted with thick lines) decays in the direction of energy propagation (i.e., the 

direction of yvg ) while the blue mode (plotted with thin lines) grows in the direction of 

energy propagation. Furthermore, it is seen that the convex (concave) point attracts (repels) 

the red mode while the opposite is true for the blue mode. 

We can make a physical argument as to why the red mode should be preferred over the 

blue one. There is no apparent source of free energy or instability in the physics model of Eqs. 

(9) and (10), which is local in y  on the sheath surface, and therefore does not know about 

gradients of the background magnetic field. Thus, we hypothesize that only the red mode 

which decays in the direction of energy propagation is physical. It must be admitted that 

growing modes do in fact happen in physical systems, sometimes with very subtle sources of 
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free energy. However, in this case we judge a root to be physical not only by considering the 

analytical theory and stability arguments but also by comparison with numerical results. 

Evidently, it is the red (stable) mode that explains the difference of the convex and 

concave points observed in the numerical result. The red mode propagates energy away from 

the concave point and towards the convex point. The dramatic slowing of the group velocity 

near m 3.0=y  should lead to an accumulation of wave energy there. Closer to the convex 

point, the physical mode experiences exponential decay, although the decay is very slow (in 

fact, ( )ykIm  is more than 10 times smaller than ( )ykRe ). Thus, the decay is not evident in the 

present numerical result. 

As a next numerical investigation, the SPW behaviors are compared by slightly 

increasing the periodic length of the domain (i.e., yL ). Figure 5 shows the variations of the 

real part of a perpendicular electric field component along the sheath surface for two different 

lengths of yL : 8.0=yL  (default) and 0.9 m. Here, the perpendicular component, yE^ , is 

defined as ( ) yy EE ebE ×-=^ || . Note that pk  which defines the flux surfaces remains fixed at 

yLk p2p = . It is observed that the point where the SPW is excited is shifted to a larger 

y -coordinate value. This corresponds to the fact that the field-line intersection point is shifted 

with an increase in yL ; from the points of intersection both excited SPWs propagate to their 

corresponding convex tangency points and wave energy accumulation occurs near those 
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points. These results clearly demonstrate that the SPW is mainly generated by coupling with a 

SW that has propagated (with evanescence) along the magnetic field line through the plasma 

volume to the sheath surface. Although not shown in this paper, it is observed that yE^  of 

the SPW in the vicinity of the sheath follows the surface and is skewed along the magnetic 

field lines, which indicates that the profiles of ( )yE^Re  shown in Fig. 5 are associated with 

SWs. Note that the amplitude of the SPW for m 9.0=yL  is smaller than that for m 8.0=yL  

since the length of the magnetic field line connecting the antenna to the wall is longer for the 

former and thus the SW, which evanesces along that field line, is weaker at the wall (note that 

the SPW is mainly driven by ||E  at the intersection point between the field line and the wall). 

One can observe a similar trend in the profiles of ||E , although their amplitudes are much 

smaller than those of ^E . 

Figures 6 and 7 are the results showing how pB  and pk  in the expression of the 

background magnetic field (see Eqs. (7) and (8)) affect the SPW interactions in the present 

case. In Fig. 6, the profiles of ( )yE^Re  are compared with use of two different values of pB  

( 4.0p =B  and 2 T); here, the periodic domain length, yL , is increased to 2.14 m, which is 

comparable to the circumferential length of the outer wall in the Alcator C-Mod device. On 

the other hand, in Fig. 7 the profiles of ( )yE^Re  are compared using two different values of 

pk  ( yLk p2p =  and yLp4 ) with the periodic domain length kept at the default one 
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( m 8.0=yL ). 

It is important to notice that both pB  and pk  affect the scale length of the variation 

of the background magnetic field along the sheath surface and this affects the coupling of the 

SPWs. To be more explicit, from Eq. (8), it is clear that pk  affects the scale length of 

variation directly. Moreover, pB  affects the scale length through variation of the contact 

angle n
1tan b-  where nb  is directly proportional to pB . A straightforward evaluation of the 

function ( )yC th  given in Eq. (4) shows that for the most extreme case in Fig. 7, ( )yC th  

varies on a scale length of the order of a cm or less. The sheath width is given by 

Dethsh lC=D  and it makes a transition from zero sheath width at the tangency point to finite 

sheath width within a short distance away in y  (see Fig. 8; here, the phase shift Θ  is set at 

zero). This variation of shD  implies variation of the boundary condition that is seen by the 

incident RF waves. Rapid scale variation (comparable to or shorter than the incident 

wavelength) implies a breakdown of eikonal theory, and promotes strong coupling from the 

incident branch (here the SW) to the short-scale SPW. 

 

C. Propagating FW-sheath interactions 

In this section, we show that the wave-sheath interactions described in Sec. III A (e.g., 

the coupling of an incoming wave to the SPW, and the special role of magnetic tangency 
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points) are not purely a SW phenomenon. We examine a case with the same parameters as 

described in the first paragraph in Sec. III A, except that the spatially constant plasma density 

is fixed at 320
ei m 105.1 -nn ´== . The density is high enough that the FW propagates and the 

SW is highly evanescent (see Fig. 9). Recall that the conducting-wall BC is imposed on the 

left-hand side of the domain (as shown in Fig. 1) and thus the configuration of the model 

corresponds to a waveguide rather than a tokamak SOL; however, our model is sufficient to 

investigate the key mechanism in propagating FW-sheath interactions. For the antenna-wall 

spacing used here, the ||E  component shown in Fig. 9(a) is small except at the sheath. Unlike 

Fig. 2, ||E  at the sheath does not appear to result from a direct field line connection with the 

antenna. In fact, we infer that the ||E  at the sheath is due entirely to the SPW. Note that yE^  

in Fig. 9(b) is much larger, and the corresponding wave propagates across the background 

magnetic field to the wall. These are the characteristics of the FW. 

Figure 10 shows a plot of the real part of the perpendicular electric field component, 

( )yE^Re , along the sheath surface for this case with an incident propagating fast wave. As in 

the SW examples in Sec. III A, the incoming wave couples to a short-wavelength mode on the 

sheath, and this coupling occurs only when the sheath BC is used. The short-wavelength 

mode disappears when the conducting BC is used. This shows that the sheath capacitance is 

needed for the existence of the wave, and confirms its identity as a SPW. Finally, note that the 
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SPW accumulate preferentially at the convex point. 

 

D. Discussion 

We have shown that sheaths driven by incident (evanescent) slow waves and 

propagating fast waves in 2D magnetic field geometry have many similarities. In both cases, 

there is a spatial localization of the energy along the sheath surface which is influenced by 

varying geometry along that surface and in particular by the presence of magnetic field 

tangency points. 

Let us consider at a heuristic level why fast and slow waves incident on a sheath 

generate the SPW. Our basic postulate is that the degree to which the incident waves and the 

boundary conditions fail to conform is what excites the SPWs. The total wave solution 

(incident, reflected and sheath plasma wave) must of course satisfy the boundary conditions. 

If the incident wave has a long scale length and there is rapid variation in the boundary 

condition along the surface, then short scales length modes must necessarily be generated. To 

make this more precise, we define a scale length shL  along the sheath surface as the 

minimum of 

· the background variation of the sheath width, ( )[ ] 1
shln -D dyd ; 

· the wavelength of the waves incident on the boundary, ykp2 . 
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In the case of an incident FW, since the FW wavelength is large, the background variation of 

the sheath width sets shL . The second effect may be important for an incident SW which has 

a short scale length to begin with. In both cases, when SPWsh ~ lL  (the wavelength of the 

SPW), the excitation of the latter is efficient and the result is that large sheath voltages can be 

obtained. 

Since SPWl  is short, the matching condition SPWsh ~ lL  is usually only satisfied for 

FWs near tangency points of the magnetic field where shD  varies rapidly (see Fig. 8). As we 

have seen, (see Fig. 2) direct SW excitation of the SPW may also occur away from the 

tangency points, but the tangency points can further concentrate the SPW. 

 

 

IV. CONCLUSIONS 

In this paper, we have studied the problem of sheaths created by RF waves incident on 

a conducting wall for the case of 2D curved magnetic fields with tangency points at the sheath 

surface. An important element in the model is the propagation of a type of surface wave on 

the sheath called a “sheath plasma wave” (which is abbreviated as SPW). It was shown that 

allowing spatial variation along the sheath introduces new effects not obtainable in previous 

1D sheath models, such as localized deposition of wave energy at the convex tangency points. 
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This is expected to be relevant to the formation of localized hot spots on the bounding 

surfaces, which are commonly observed on powered ICRF antennas, but further work is 

necessary to establish this point. 

The present modeling suggests that the variation of conditions (in particular, the 

background magnetic field to surface contact angle) along the sheath tends to enhance the RF 

sheath potential and lead to stronger sheath-plasma interactions. Recent work has explored 

this effect using a qualitative 1D model in connection with the observed large SOL plasma 

potentials on Alcator C-Mod [47,48]. The present work underscores the need for an accurate 

treatment of the geometry of the plasma boundary in order to get quantitative results for 

RF-plasma interactions. 
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APPENDIX: EM SPW DISPERSION RELATION IN A TILTED BACKGROUND 

MAGNETIC FIELD 

The SPW dispersion relation in a homogeneous plasma is given by the simultaneous 

solution of the dispersion relation in the plasma volume and the sheath BC. As we have 

described in Ref. [37], in the electrostatic (ES) case one can obtain two scalar equations, 

which allow a unique solution for xk  and yk  (the wavenumber components normal and 

tangential to the sheath surface, respectively) assuming w  and zk  are specified and 

equilibrium quantities are known. Here, z  is the other direction tangential to the sheath 

surface, but normal to the simulation plane. The EM SPW problem is fundamentally different. 

For the EM SW, the dispersion relation is written as 

.||||
2
||

2 eeee ^^^ =+ nn  )1A(  

The sheath BC is written as Eq. (2) which is a vector equation with two non-trivial 

components. Consequently, the EM case gives three scalar conditions: a dispersion relation, 

and the two components of the sheath BC. This indicates that the SPW cannot exist as a true 

eigenmode of the system in the EM theory; instead, it is observed to be driven in EM 
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problems even when the FW is the primary mode making contact with the wall. In this sense, 

we may say that the EM SPW is a quasi-mode (i.e., an oscillation which exists only in the 

presence of a driving force, but is in some sense close to an eigenmode of the system). To 

describe it approximately, we rewrite Eq. (2) as the two equivalent conditions 

,n
sh

sh2
ttt ÷÷

ø

ö
çç
è

æ D
Ñ=×Ñ D

e
E  )2A(  

,0n =B  )3A(  

and then retain Eq. (A2) which has the sheath physics, and neglect Eq. (A3). In reality, we 

assume that Eq. (A3) is ultimately satisfied by including the coupling of the driving mode as 

described in Ref. [33]. 

To formulate the EM problem, let us express the electric field as follows: 

,||bkAE Aii
t

w+F-»
¶
¶

-F-Ñ=  )4A(  

where A  is the vector potential and ||A  is its component parallel to 0B . Since we focus on 

the interaction between the SW and the sheath here, the vector potential is approximated to 

bA ||A» . Substituting Eq. (A4) into Maxwell’s equation 

( ) ,2 0EεInn =×+- n  )5A(  

(where I  is the unit tensor) one obtains 

( ) ( ) .||
2 0bεInnnε =×+--F× cAn  )6A(  

Next, we extract coupled equations for F  and ||A  by dotting Eq. (A6) with n  and b  to 
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obtain 

( ) ,0|| =××-F×× bεnnεn cA  )7A(  

( ) .0||
2 =××+--F×× ^ cAn bεbnεb  )8A(  

Substituting the expression for the dielectric tensor 

( ) ´^ ´++-= eee IbbbbbIε i||  )9A(  

into Eqs. (A7) and (A8), one gets 

( ) ,0||||||||
2
||

2 =-F+^^ Acnnn eee  )01A(  

( ) .0||
2

|||||| =--F ^ Ancn ee  )11A(  

A short calculation verifies that Eqs. (A10) and (A11) recover the SW dispersion relation 

given in Eq. (A1). 

Now, look at the sheath BC in Eq. (A2). Substituting Eq. (A4) into Eq. (A2) and using 

Eεs ××= 0n eD , we obtain the following equation (recall that 0sh ee = ): 

( ).||sh
2
ttt||tt bnεsbk cAikcAkn -F××D=×-F  )21A(  

Clearly, if ||A  is neglected, Eq. (A12) reduces to the SPW dispersion relation for the ES case 

shown in Ref. [37]. 

The last step in the derivation is to eliminate F  (or ||A ) using either Eq. (A10) or 

(A11), which will then turn Eq. (A12) into an explicit scalar condition to be solved 

simultaneously with the dispersion relation. First, substituting Eq. (A1) into Eq. (A11), we 
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obtain 

.||||

^

=F
e

Acn
 )31A(  

Consequently, substituting Eq. (A13) into Eq. (A12) and using the approximation that 

bbbsεs ||n|| ee b=×»× , the desired expression is given by 

( ).2
||||nsh

2
ttt||

2
t ^^ -D=×- eee nbikkn bk  )41A(  

It is easily verified that Eq. (A14) reduces to the expression for the ES limit when the terms 

involving an explicit ^e  are dropped. 
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FIG. 1. Singly-periodic slab model to analyze RF sheath-plasma interactions. The x  and y  

directions heuristically correspond to the radial and poloidal directions in a tokamak; however, 

the geometry is simple and mainly intended to illustrate conceptual points of sheath tangency 

interactions. 
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FIG. 2. (Color online) Filled contour plot of ( )[ ]||amp
1 Resinh Ea- . Here, 1000amp =a . Note that 

the field from the antenna decays both across and along the field lines, but the decay along 

background magnetic field is weaker so most of the electric field from the antenna strikes the 

wall sheath near m 55.0=y . The boxed region (center right) is shown in an expanded (and 

spatially distorted) view in the inset to better illustrate the increase in amplitude near the 

tangency point. 
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FIG. 3. Plot of the real part of the parallel electric field component along the sheath surface 

with a comparison to the result for the conducting-wall BC. The vertical dashed and chained 

lines show the convex and concave points of the magnetic field lines, respectively. 
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FIG. 4. (Color online) Physical quantities along the sheath surface, which are taken into 

account in the analytical investigation of the SPW: (a) profiles of the background magnetic 

field components showing the location of tangency points (where 00 =xB ); (b) plot of the 

real and imaginary parts of the wavenumber component yk ; and (c) plot of the real and 

imaginary parts of the group velocity component yvg . In the plots of (b) and (c), the solid and 

dashed lines denote the real and imaginary parts of the quantities, respectively. Notice the two 

different modes (i.e., the red, thick mode towards the convex point and the blue, thin mode 

towards the concave point). 
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FIG. 5. Comparison of the real part of a perpendicular electric field component, ( )yE^Re , 

along the sheath surface between the two different periodic lengths in y . The vertical gray 

dashed and chained lines, respectively, show the convex and concave points of the magnetic 

field lines for m 8.0=yL , and the vertical black dashed and chained lines correspond to those 

for m 9.0=yL . 

 



 37

 

 

 

 

 

FIG. 6. Comparison of the real part of a perpendicular electric field component, ( )yE^Re , 

along the sheath surface between the two different poloidal magnetic field strengths. The 

vertical dashed and chained lines show the convex and concave points of the magnetic field 

lines, respectively. 
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(a) 

 

(b) 

 

FIG. 7. Comparison of the real part of a perpendicular electric field component, ( )yE^Re , 

along the sheath surface for yLπk 2p =  (a) and yLπk 4p =  (b). The vertical dashed and 

chained lines show the convex and concave points of the magnetic field lines, respectively. 
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(a) 

 

(b) 

 

FIG. 8. (a) Plot of thC  for three different choices of pk  and pB ; this graph is magnified in 

(b) around m 4.0=y . Note the rapid variation of thC , and therefore the sheath BC, near the 

magnetic field tangency points. 
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FIG. 9. (Color online) Filled contour plot of ( )[ ]||amp
1 Resinh Ea-  (a) and ( )[ ]yE^

- Resinh amp
1 a  

(b) for the case described in Sec. III B. Here, the values of ampa  are 1000 and 0.1 for ||E  

and yE^ , respectively. 
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FIG. 10. Plot of the real part of the perpendicular electric field component, ( )yE^Re , along the 

sheath surface for the case of a propagating FW. The vertical dashed and chained lines show 

the convex and concave points of the magnetic field lines, respectively. Note the coupling to a 

small-wavelength mode when the sheath BC is used; the mode disappears when the 

conducting-wall BC is used. 


