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Abstract. Numerical techniques (windowed Fourier transforms and wavelets) are developed for 
carrying out a local mode analysis k(x) of ICRF field solutions. It is shown that simultaneous 
resolution of long- and short-wavelength waves in typical rf mode conversion scenarios requires 
the use of a modified wavelet transform. The abilit y to get quantitative information by this 
technique is assessed and visualization techniques for wave polarization information are 
ill ustrated. 

INTRODUCTION 

With the growing capabilit y of rf simulations,1-3 there is a strong motivation to 
develop appropriate post-processing tools for extracting physical information from the 
numerical solutions. Full -wave ICRF codes yield complicated rf f ield patterns, and the 
challenge is to understand these patterns by appealing to the intuitive, but 
approximate, physics-based notion of local plasma modes (global eigenmodes, 
transmitted and reflected waves, and mode conversions between different types of 
waves). Quantitative information on the local wavevectors, amplitudes and wave 
polarizations is required for a basic understanding of the plasma heating and the ICRF-
driven currents and flows. As part of the rf SciDAC project, numerical techniques 
(windowed Fourier transforms and wavelets) have been investigated for the local 
mode analysis of ICRF field solutions. Here, we ill ustrate these techniques for a 
DIII -D D(H) mode conversion reference case4 computed by the AORSA-1D code, 
which includes a model of the 2D poloidal magnetic field. Work is in progress to 
apply the techniques described in this paper to full 2D rf wave solutions.  

TRANSFORM METHODS 

We ill ustrate these methods by considering the 1D case where the function f(x) is 
represented by its values fi = f(xi) on a grid of N spatial points xi. The transform 
specifies the mapping f(x) → F(k) where k = kx is also represented on a grid of N 
points. Here, we analyze E(x) obtained from a fast wave (FW) to ion Bernstein wave 
(IBW) or ion cyclotron wave (ICW) mode-conversion solution with x = R − R0 and k 
= kx ex  + (n/R) ez, where R is the major radius of the tokamak and n is the toroidal 
mode number. Our tests of various transform methods are described below. 
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The simplest approach is to use the discrete Fourier transform to resolve the wave 
propagation data into global k modes. This identifies all the relevant physical modes in 
the spatial domain of interest but does not yield any information as to their spatial 
location, nor does it yield insight into relationships among modes such as mode 
conversion. To resolve this diff iculty, we considered the Windowed Fourier 
Transform (WFT) technique, in which the function E(x) is multiplied by a window 
w(x) before carrying out the transform. The best results are obtained using a smooth 
window function such as the Gaussian w(x) = Exp[−(x−x0)2/(2xw

2)], where x0 and xw 
are the location and width of the window. The WFT method with a constant window 
width works well for a single wave or for the case of multiple waves with similar 
wavelengths, but it fails for the case of multiple waves with very different 
wavelengths, such as occurs in mode conversion. For example, a large window is 
needed to resolve the wavelength (or k) of the FW but does a poor job in giving the 
spatial location of the IBW; a small window does a good job in localizing the IBW in 
space but does a poor job in resolving the FW wavelength.  

An analysis of this problem shows that it stems from the need to minimize two 
conflicting types of errors: (1) the “Heisenberg” error ∆k1 = Cπ/∆x, where C is a 
constant of order unity and ∆x is the size of the region in which the transform is 
carried out (here, the window width),  and (2) the “non-local” or “gradient” error ∆k2 
≈ (∂k/∂x) ∆x, where k(x) is the local (eikonal) wavenumber. Note that ∆k1 vanishes in 
for a large window, whereas ∆k2 is reduced by a small window. The competition 
between the two effects produces an “optimal” window width which depends on the 
wavelength, i.e. xw = xw(k). Thus, we must generalize the WFT technique to have a 
window width that scales with k. 

A transform involving basis functions that are translated and scaled is called a 
“wavelet.” The Morlet wavelet is essentially a WFT with a scaled Gaussian window, 
xw = c0/k, where c0 is a constant that has an optimal value (c0 = 5) for minimizing the 
error. This wavelet is an improvement over the WFT, but the scaling breaks down at k 
= 0. The infinite window width at k = 0 leads to large gradient error and false peaks in 
the spectrum. However, it is essential in treating the FW to IBW mode conversion 
problem that one resolve k’s of both signs and therefore handle the behavior at k = 0. 

We have developed a simple modification to the Morlet wavelet that keeps its 
useful features while still resolving the k = 0 region. We scale the window width as xw 
= c0/(k2 + k0

2)1/2 so that xw → c0/k0 as k → 0, where k0 is a constant. While k0 ≠ 0 
spoils the pure wavelet scaling in a small region, it permits us to obtain a physical 
answer over the whole x-k plane. We call this approach the “k-wavelet” method. It 
should be emphasized that we do not need the “pure” wavelet scaling for our 
application. We are simply using the wavelet transform for visualization and for 
extracting the dispersion function k(x). We will show that the k-wavelet method 
provides a useful tool for graphically obtaining this information. 

The k-wavelet transform is implemented in Mathematica using fast Fourier 
transform (FFT) techniques as follows. The wavelet transform f(x) → W(x0, k) 
involves a spatial convolution of the functions f(x) and a mother wavelet Ψ(x). Using 
the convolution theorem to cast this into k-space reduces the number of computations 
from N2 to N lnN. Thus, we define the k-wavelet transform W(x0, k) as 
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where ℑ[f(x)] denotes the forward FFT of f(x), ℑ−1 denotes the inverse FFT, and Ψ is 
the k-wavelet function defined by 
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with xw(k) = c0/(k2 + k0
2)1/2 and c0, k0 are constants. In the limit k0 → 0, Ψ → 

Ψ[k(x − x0)] and the exact wavelet scaling is recovered. 

APPLICATIONS AND CONCLUSIONS 

We first consider a DIII-D D(H) mode conversion reference case4 computed by the 
AORSA-1D code, which includes a model of the 2D poloidal magnetic field Bp. We 
define the k-wavelet spectral power density Pα(x0, k) = |Wα(x0, k)|2, where Wα is the 
k-wavelet transform of Eα(x) defined in Eq. (1). In Fig. 1 we show the contours of 
P⊥(x0, k) = Px(x0, k)+Py(x0, k), obtained by analyzing the AORSA-1D code solutions 
for two values of Bp corresponding to horizontal slices of the 2D equilibrium. The 
wavelet analysis illustrates the important result5,2 that the mode conversion process is 
sensitive to the poloidal magnetic field. Above the midplane [Fig. 1(a)] the incoming 
FW converts to a backward-propagating IBW, whereas below the midplane [Fig. 1(b)] 
the FW converts to a forward-propagating ICW. 

 
 
 
 

 
 
 
 
 
 
 

FIGURE 1.  k-wavelet transform spectral power density P⊥(x0, k) of the rf 
electric field with c0= 5 and k0= 40 m−1 for horizontal slices (a) above the 
midplane, and (b) below the midplane.  

A comparison of the contours in Fig. 1(a) with the analytic 1D hot-plasma 
dispersion relation for the same parameters shows good agreement for the k contours 
of the incident and reflected FW and the IBW and for the location of the mode 
conversion surface (near x = 1.5 m). Thus, the k-wavelet transform is useful for 
obtaining quantitative information about the spatial dependence of the wavenumber. 
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We have also investigated the use of the wavelet analysis for simultaneous 
visualization of dispersion, amplitude and wave polarization information in 3D plots 
by the use of appropriately defined color palettes. In Fig. 2, we show a grayscale print 
of a 3D plot for the case of Fig. 1(a) with palette chosen to reflect the linear wave 
polarization, Ex/Ey. A color version of this figure can be viewed in the version of this 
paper posted on our website.6 

 
 
 

 
 
           

 

 

 

 

FIGURE 2.  k-wavelet transform of P⊥(x0, k) of the rf electric field using the same 
parameters as Fig. 1(a); the color palette indicates the linear wave polarization Ex/Ey. 

We have shown that the “k -wavelet” transform provides a useful diagnostic for 
wave properties in complex situations such as mode conversion where multiple waves 
with vastly different wavelengths are present simultaneously. The methods used here 
can be generalized to obtain the wavevector k⊥ = (kx, ky) for 2D rf f ield solutions, E = 
E(x,y). However, the 1D analysis ill ustrated here is qualitatively valid when ky << kx, 
which is satisfied for the case shown here. 
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