Nonlinear radio-frequency generation of sheared flows*

J.R. Myra and D.A. D'Ippolito

Lodestar Research Corp.

L.A. Berry, E.F. Jaeger, D.B. Batchelor ORNL

and the RF SciDAC Team

* Work supported by U.S. DOE grants/contracts DE-FC02-01ER54650, DE-FG03-97ER54392 and DEAC05000R22725

presented at TTF, April 2 - 5, 2003, Madison WI

Introduction

RF-driven sheared flows may be important

- control turbulence and transport barriers
- investigate fundamental physics of nonlinear waves and flows

RF codes and experiments can help to understand turbulence & transport barrier formation

• rf driven flows are "open loop", easier than "closed loop" turbulence problem

- for rf problem need to understand:
 - how a given wave affects macroscopic responses (flows)
 - o macroscopic changes affect instabilities, turbulence
- turbulence: flows modify the waves that create them
 - o important but a separate issue

rf allows fundamental nonlinear physics in a controlled context

Experiments suggest that ITB control is possible

direct launch ion Bernstein wave (IBW):

• confinement improvement and/or profile modifications consistent with ITB

PBX-M

B. LeBlanc, et al. Phys. Plasmas 2, 741 (1995)

FTU

R. Cesario, et al., Phys. Plasmas 8, 4721 (2001)

Alcator C

J. D. Moody, et al., Phys. Rev. Lett. 60, 298 (1988)

PLT

M. Ono, et al., Phys. Rev. Lett. 60, 294 (1988)

JIPPT-II-U

T. Seki, et al., in AIP Conference Proceedings 244 – Charleston (1991)

• direct observation of rf-induced sheared flows

TFTR

J.R. Wilson, et al., Phys. Plasmas 5, 1721 (1998).B.P. LeBlanc, et al., Phys. Rev. Lett. 82, 331 (1999).C.K. Phillips, et al., Nucl. Fusion 40, 461 (2000).

Directly launching the IBW can be difficult in practice

- hard to launch wave with $k\rho_i \sim 1$ from macroscopic antenna
- slow $v_g \sim v_{ti} \Rightarrow$ highly nonlinear wave at edge
- more success with high frequency waveguides than antennas

Would really like to launch fast Alfvén wave (macroscopic wavelength mode)

- hardware available on many tokamaks
- antenna coupling is much better understood
- BUT, fast Alfvén wave typically generates negligible flows

 long wavelength, fluid mode
- mode convert fast Alfvén wave to short wavelength ion Bernstein wave or ion cyclotron wave inside plasma

Previously, it was not known whether flows could be driven by mode-converted waves.

new developments in theory and computation show modeconverted flow drive is possible

mode conversion edge flow drive recently observed

JET

C. Castaldo et al., 19th IAEA, Lyon (2002)

Idea of rf turbulence suppression has been around for a long time

- Craddock & Diamond, PRL (1991)
- Berry et al., PRL (1999)
- Jaeger et al., Phys. Plasmas (2000)
- Myra & D'Ippolito, Phys. Plasmas, (2000)
- Elfimov et al., PRL (2000)

Recent advances in theory and computation

- computation of short wavelength wave fields in real tokamak geometry
 - Jaeger et al., PRL to be published
- 2D nonlocal nonlinear theory
 - \circ post-processes field computations \Rightarrow flow drive forces
- rf-driven flow calculations similar to turbulence-driven flows but complement the physics regime. ICRF regime is
 - \circ high frequency $\omega > \Omega_{i}$,
 - o short wavelength $k\rho_i \sim 1$ (nonlocal integral equation)
 - o fully electromagnetic
 - all species kinetic: Landau, TTMP, and cyclotron resonances
 - o weakly nonlinear ⇒ do nonlinear calculations by postprocessing

No simulation work so far on the interaction of rf generated flows with turbulence

- good problem for the future
- rf codes can now calculate forces that drive flows and modify other macroscopic quantities
- turbulence codes can calculate transport response
- possibility of comparing controlled experiments with integrated simulations

Results from the rf SciDAC Project

The AORSA code solves an inhomogeneous wave equation with nonlocal integral operator

• AORSA and TORIC have been used to simulate mode conversion in a torus

- He3-H-D mode conversion in Alcator C-Mod from AORSA (Jaeger et al., PRL, 2003)
 - mode conversion (ion-ion hybrid) and ion-cyclotron resonant surfaces
 - IBW and ICW

Poloidal magnetic field effects control the mode conversion products

• predicted by Perkins (1977) but not able to be seen directly in experiments [Nelson-Melby et al, submitted to PRL] or simulations until 2002

(Jaeger et al., PRL, 2003)

- weak B_{θ} on axis \Rightarrow ion Bernstein wave (IBW)
 - o propagates to smaller R
 - o absorption is on electrons
- stronger B_{θ} off axis \Rightarrow ion cyclotron wave (ICW)
 - propagates to larger R (into cyclotron resonance)
 - o absorption is on ions

Minority ion heating and poloidal force

Jaeger et al., PRL, 2003

- net poloidal force follows heating profile
- additional sheared force contribution

Nonlinear calculation of the forces is based on a gyrokinetic formulation

- 2nd order in E, quasilinear average in time (not space)
- energy and momentum moments of gyrokinetic Vlasov equation
- like AORSA: hot plasma, quasi-local theory
 - \circ k_⊥ ρ ~ 1, gyrokinetic theory (nonlocal)
 - $\circ \omega \sim \Omega >> \omega_{drift}$
 - \circ nonlinear responses retain first order in ρ/L

$$\frac{\partial \mathbf{f}}{\partial \mathbf{t}} + \mathbf{v}_{\parallel} \nabla_{\parallel} \mathbf{f} - \Omega \frac{\partial \mathbf{f}}{\partial \phi} = -\nabla_{\mathbf{v}} \cdot (\mathbf{a}\mathbf{f})$$
$$\mathbf{R} = \mathbf{r} + \frac{1}{\Omega} \mathbf{v} \times \mathbf{b}$$
$$\mathbf{a} = \frac{Ze}{m} \left[\mathbf{I} \left(1 - \frac{\mathbf{k} \cdot \mathbf{v}}{\omega} \right) + \frac{\mathbf{k}\mathbf{v}}{\omega} \right] \cdot \mathbf{E}_{1} = \sum_{k} \mathbf{a}_{k} e^{i\mathbf{k} \cdot \mathbf{R} - i\delta_{k}}$$
$$\delta_{k} = \frac{1}{\Omega} \mathbf{k} \cdot \mathbf{v} \times \mathbf{b}$$

Energy moment

local power absorption

$$\dot{\mathbf{w}} = \frac{m}{4} \sum_{\mathbf{k},\mathbf{k}'} \int d^3 \mathbf{v} f_{\mathbf{k}'} \, \mathbf{v} \cdot \mathbf{a}_{\mathbf{k}}^* + \mathbf{cc} = \frac{1}{4} \sum_{\mathbf{k},\mathbf{k}'} \mathbf{E}_{\mathbf{k}}^* \cdot \vec{\mathbf{W}}(\mathbf{k},\mathbf{k}') \cdot \mathbf{E}_{\mathbf{k}'}$$

W = symmetric bilinear 4th rank tensor operator related to the conductivity (Smithe, 1989)

$$\vec{W}(\mathbf{k},\mathbf{k}'\rightarrow\mathbf{k}) = \vec{\sigma}(\mathbf{k})$$

Momentum moment

The order $|E|^2$ terms arise from the Lorentz force

$$\mathbf{F}_{\mathrm{L}} = \mathrm{Zen}\mathbf{E} + \frac{1}{\mathrm{c}}\mathbf{J} \times \mathbf{B}$$

or using Maxwell's equations

$$\mathbf{F}_{\mathrm{L}} = \frac{1}{16\pi} \left[(\nabla \mathbf{E}^*) \cdot \mathbf{D} - \nabla \cdot (\mathbf{D} \mathbf{E}^*) \right] + \mathrm{cc}$$

 $\mathbf{D} = \frac{4\pi i}{J}$

where

and from the nonlinear stress tensor

$$\Pi = \frac{m}{4} \sum_{k,k'} \int d^3 v \left(\mathbf{v} \mathbf{v} - \left\langle \mathbf{v} \mathbf{v} \right\rangle \right) f_{k-k'}^{(2)} + cc$$

Notes:

- Π generalizes Reynolds stress
- requires gyrophase-dependent part of f⁽²⁾
- gyrophase-average f⁽²⁾ gives rise to diagonal (CGL type) pressure terms
 - o don't contribute to flow drive
 - o are secular unless heat sink is specified

Then

The \perp force from \perp field gradients

$$\mathbf{F} = \mathbf{F}_d - \nabla_\perp \mathbf{X}_r + \mathbf{b} \times \nabla \mathbf{X}_d$$

The F_d term contains the wave momentum absorption ~ W^H and a reactive term ~ W^A

$$\mathbf{F}_{d} = \frac{\mathbf{k} + \mathbf{k}'}{4\omega} \mathbf{E}^{*} \cdot \mathbf{W}^{H} \cdot \mathbf{E} + \frac{i}{4\omega} \nabla (\mathbf{E}^{*} \mathbf{E}) : \mathbf{W}^{A}$$

The reactive term $X_r \sim \text{parallel torques}$ on the plasma,

$$\mathbf{X}_{\mathbf{r}} = \frac{\mathbf{m}}{8\Omega} \int \mathbf{d}^3 \mathbf{v} \mathbf{f}_{\mathbf{k}'} \, \mathbf{b} \cdot \mathbf{v} \times \mathbf{a}_{\mathbf{k}}^* + \mathbf{c}\mathbf{c}$$

The term $X_d \sim$ perpendicular dissipation.

$$X_{d} = \frac{m}{8\Omega} \int d^{3}v f_{k'} \mathbf{v}_{\perp} \cdot \mathbf{a}_{k\perp}^{*} + cc$$

A more general result is also available \perp and $\mid\mid$ forces from \perp and $\mid\mid$ gradients

Reactive terms reduce to the conventional ponderomotive force

- forces on a fluid element (not a guiding center)
 - o for inclusion into macroscopic evolution codes (e.g. transport codes)
 - o cold plasma limit of previous result
 - keep reactive terms
 - **u** = fluid velocity
 - add back CGL terms

$$\mathbf{F} = \mathbf{F}_{d2} - \nabla_{\perp} \left(\mathbf{X}_{r} + \frac{1}{2} \operatorname{nm} \left\langle \mathbf{u}_{\perp}^{2} \right\rangle \right)$$
$$\mathbf{F}_{d2} = \frac{1}{16\pi} (\nabla \mathbf{E}^{*}) \cdot \mathbf{D} + \operatorname{cc}$$

$$\mathbf{X}_{\mathrm{r}} = \frac{\mathrm{nm}}{8\Omega} \mathbf{b} \cdot \mathbf{u} \times \mathbf{a}^{*} + \mathrm{cc}$$

o agrees with standard ponderomotive force

- ψ_p = ponderomotive potential
- **M** = ponderomotive magnetization

$$\mathbf{F} = -n\nabla\psi_p + \mathbf{B} \times \nabla \times \mathbf{M}$$

Reactive ponderomotive forces drive no avg. flows

- <...> = flux-surface average
- toroidal rotation is driven by torque $\langle RF\zeta \rangle$
- poloidal rotation is driven by a combination of $\langle BF_{\parallel} \rangle$ and $\langle RF_{\zeta} \rangle$
- identities

$$\langle \nabla \cdot \mathbf{A} \rangle = \frac{1}{\upsilon} \frac{\partial}{\partial \psi} \upsilon \langle \mathbf{RB}_{\theta} \mathbf{A}_{\psi} \rangle$$

$$\left\langle \mathbf{B}\nabla_{\parallel}\mathbf{Q}\right\rangle = \frac{1}{\upsilon}\int d\theta \int \frac{d\zeta}{2\pi} \frac{\mathbf{J}\mathbf{B}\zeta}{\mathbf{R}} \frac{\partial \mathbf{Q}}{\partial \zeta} = 0$$

$$\circ \Rightarrow \langle \mathbf{B}\mathbf{F}_{\parallel} \rangle \text{ vanishes when } \mathbf{F}_{\parallel} = \nabla_{\parallel} \text{ (scalar)}$$

$$\nabla_{\perp}\mathbf{H}\rangle = \sqrt{\nabla_{\perp}\mathbf{H}} \cdot \mathbf{P} = \sqrt{\frac{1}{\varepsilon}} \frac{\partial}{\partial \zeta} + \sqrt{\mathbf{P}} \frac{2}{\varepsilon} \mathbf{P} \cdot \mathbf{H}$$

$$\left\langle \mathbf{R}\mathbf{e}_{\zeta} \cdot \nabla \cdot \Pi \right\rangle = \left\langle \nabla \cdot \Pi \cdot \mathbf{R}\mathbf{e}_{\zeta} \right\rangle = \frac{1}{\upsilon} \frac{\partial}{\partial \psi} \upsilon \left\langle \mathbf{R}^{2} \mathbf{B}_{\theta} \Pi_{\psi \zeta} \right\rangle$$

 \circ ⇒ <RFζ> vanishes when Π is a diagonal tensor \circ ...

• can show that for cold-fluid ponderomotive force

$$\mathbf{F} = -n\nabla\psi_{p} + \mathbf{B} \times \nabla \times \mathbf{M}$$
$$\left\langle \mathbf{B}\mathbf{F}_{\parallel} \right\rangle = 0$$
$$\left\langle \mathbf{R}\mathbf{F}_{\zeta} \right\rangle = 0$$

direct wave-momentum absorption and
dissipative stresses

$$\mathbf{F}_{dis} = \mathbf{F}_{d1} + \mathbf{b} \times \nabla \mathbf{X}_d$$

$$\mathbf{F}_{d1} = \frac{\mathbf{k} + \mathbf{k}'}{4\omega} \mathbf{E}^* \cdot \mathbf{W}^{\mathrm{H}} \cdot \mathbf{E} \sim \frac{\mathbf{k}}{\omega} \mathbf{P}_{\mathrm{rf}}$$

- \mathbf{F}_{d1} = "photon" momentum absorption t erm
 - o drives net flows
 - \circ electron or ion dissipation
- $\mathbf{b} \times \nabla X_d$ = dissipative stress term
 - o drives bipolar sheared flows (no net momentum)
 - o significant only for ions

$$X_d = \frac{P_\perp}{2\Omega}$$

• where P_{\perp} is the power absorbed into v_{\perp}

Summary: considerable progress has been made on the rf half of the problem

- the short wavelength modes needed for flow drive can now be followed in sophisticated 2D codes
 - o fully EM
 - \circ integral equation solve for nonlocal effects k $\rho \sim 1$
 - mode conversion in 2D with poloidal magnetic field effects
 - o massively parallel, scaleable computations
 - improved nonlocal nonlinear algorithms have been developed for flow drive
- rf theory has been developed to calculate the forces driving flows
 - o nonlinear nonlocal theory
 - o includes important 2D effects
 - $\circ\,$ generalizes Reynolds and magnetic stresses and to $\omega > \Omega_{\rm i},\, k\rho \thicksim 1$
 - theory necessitated and stimulated by new code capabilities
- interesting physics is emerging from these results
 - mode conversion scenarios can generate flows, aren't restricted to direct launch IBW
 - mode conversion in 2D is subtle: ICW replaces IBW in traditional scenarios (Perkins, 1977)

Conclusions

ICRF field computations and the calculations of their nonlinear consequences are at a mature level

- integrated rf and turbulence simulations may now be feasible
 - o start with open loop
 - rf code gives forces, flows
 - turbulence simulations give transport reduction

The results of an integrated effort in this area could be

- interesting from a physics perspective and
- important from a practical perspective

rf simulation • *turbulence simulation* \Leftrightarrow *experiment*

- deeper understanding of interaction of nonlinear forces, flows, and plasma response
- practically for experiments: a flexible knob for external control of ITB's

Is the effect important for turbulence?

theoretical

force
$$\rightarrow$$
 flows $\rightarrow \omega_s > \gamma_{max}$?

- force calculation is solid
- flows require neoclassical theory
 - o handwave poloidal flows from neoclassical viscosity for TFTR IBW case ⇒ rough agreement with observed flows
 - better estimates require neoclassical codes (being investigated)
- need γ_{max} from turbulence community

empirical

- several hundreds of kW (< 1 MW) of direct launch IBW have produced ITB effects in experiments (e.g. FTU)
- many MW of fast Alfvén wave can be launched and the mode conversion efficiency can be > 50% in scenarios that are good for flow drive