Nonlinear radio-frequency generation of

sheared flows*

J.R. Myra and D.A. D'lppolito
Lodestar Research Corp.

L.A. Berry, E.F. Jaeger, D.B. Batchelor
ORNL

and the RF SciDAC Team

* Work supported by U.S. DOE grants/contracts
DE-FC02-01ER54650, DE-FG03-97ER54392 and DEAC05000R22725

presented at TTF, April 2 — 5, 2003, Madison WI



Introduction

RF-driven sheared flows may be important
« control turbulenceand transport barriers

. }Pvestigatefuncbmental physics of norinea waves and
OIS

RF codes and experiments can help to
understand turbulence & transport barrier

formation

 rf driven flows are “open loopd’, easier than “closed loop’
turbulence problem

 for rf problem need to understand.:

0 how agiven wave affects macroscopic responses
(flows)

0 macroscopic changes affect instabilities, turbulence
* turbulence: flows modify the waves that create them
0 important but a separate issue

rf allows fundamental nonlinear physicsin a
controlled context



Experiments suggest that ITB control is possible

direct launch ion Bernstein wave (IBW):

 confinement improvement and/or profile modificaions
consistent with ITB
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Directly launching the IBW can be difficult in practice

 hard to launch wave with kpj ~ 1 from maaoscopic
antenna

* dowvg~ v O highly nonlinea wave & edge

* more successwith high frequency waveguides than
antennas

Would really like to launch fast Alfvén wave (macroscopic
wavelength mode)
* hardware avail able on many tokamaks

« antenna couding is much better understood
« BUT, fast Alfvén wave typicdly generates negligible flows
o long wavelength, fluid mode

* mode onvert fast Alfvén wave to short wavelength ion
Bernstein wave or ion cyclotron wave inside plasma

Previoudly, it was not known whether flows could be
driven by mode-converted waves.

new developments in theory and computation show mode-
converted flow drive is possible
mode conversion edge flow drive recently observed
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Idea of rf turbulence suppression has been
around for along time

Craddock & Diamond, PRL (199))

Berry et d., PRL (1999
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Recent advances in theory and computation

e computation d short wavelength wave fieldsin red
tokamak geometry

0 Jagyer et a., PRL to be pubished
« 2D nonocd norinea theory
0 post-processes field computations LI flow drive forces

« rf-driven flow cdculations smilar to turbulence-driven
flows but complement the physicsregime. ICRF regimeis

0 high frequency w> Q;,
o short wavelength kpj ~ 1 (nonlocd integral equation)
o fully eledromagnetic

o al spedeskinetic: Landau, TTMP, and cyclotron
resonances

o wed&ly norlinea [J do norinea cdculations by post-
processng



No simulation work so far on the interaction of rf
generated flows with turbulence

« good problem for the future

* rf codes can now calculate forces that drive flows and
modify other macroscopic quantities

* turbulence codes can calculate transport response

* possibility of comparing controlled experiments with
Integrated simulations



Results from the rf SciDAC Project

The AORSA code solves an inhomogeneous
wave equation with nonlocal integral operator

* AORSA and TORIC have been used to simulate mode
conversion in atorus
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e He3-H-D mode conversion in Alcator C-Mod from
AORSA (Jaeger et d., PRL, 2003)

0 mode conversion (ion-ion hybrid) and ion-cyclotron
resonant surfaces

o IBW and ICW



Poloidal magnetic field effects control the mode
conversion products

 predicted by Perkins (1977) but not able to be seen directly
In experiments [Nelson-Melby et a, submitted to PRL] or
simulations until 2002
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(Jaeger et al., PRL, 2003)

« weak Bg on axis[J ion Bernstein wave (IBW)
0 propagatesto smaller R
0 absorption ison eectrons
 stronger Bg off axis I ion cyclotron wave (ICW)
0 propagatesto larger R (into cyclotron resonance)
0 absorptionisonions



Minority ion heating and poloidal force
Jaeger et d., PRL, 2003
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* net poloidal force follows heating profile
 additional sheared force contribution
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Nonlinear calculation of the forces is based on a
gyrokinetic formulation
« 2nd order in E, quasilinear average in time (not space)
* energy and momentum moments of gyrokinetic Vlasov
equation
* like AORSA: hot plasma, quasi-local theory
0 kgp ~ 1, gyrokinetic theory (nonlocal)
0 W UQ >> wyrift
0 nonlinear responses retain first order in p/L

of of
a +V"|:|"f -Q—= _DV EQaf)

0P

Energy moment
local power absorption

| 3 0, oo L i P
W—Z Z Id Vi vidg +CC_Z Z Er (W(k,k") [E
K,k K,k

W = symmetric bilinear 4th rank tensor operator
related to the conductivity (Smithe, 1989)

Wk, k' - k) =8(Kk)
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Momentum moment
The order |EJ2 terms arise from the Lorentz force

F, =ZerE+2JxB
C

or using Maxwell’ s equations

F = i[(DED) D -0 EQDED)]+ cc
161
471
D=""
where ©

and from the noninea stresstensor

n=" )3 Id3v(w—<w>)fl$2_)k. +cC
4k

Notes:
 [1 generalizes Reynolds dress
* requires gyrophese-dependent part of f(2)

« gyrophese-average f(2) givesrise to dagona (CGL type)
pressure terms

o don't contribute to flow drive
0 areseaular unlesshed sink is gedfied

Then
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The [Jforce from [/field gradients

F=Fyq-0pX, +bxOXy

The Fg term contains the wave momentum absorption ~ WH and
areactive term ~ WA

KK e OwWH e+ D) wA

F
47 40 40

Thereactive term X ~ parallel torques on the plasma,

m 3 N
X, =—(d v bV xap +cc
Aot Rl k
Theterm X ~ perpendicular dissipation.

m 3 M
Xq=—1(d°vf, v @y~ +cc
d SQI k' Vo lagp

A more general result isalso available
[Jand || forcesfrom [Jand || gradients



13

Reactive terms reduce to the conventional
ponderomotive force

» forceson afluid element (not a guiding center)

o for inclusion into macroscopic evolution codes (e.g.
transport codes)

0 cold plasmalimit of previous result
= keep reactive terms
= u = fluid velocity
= add back CGL terms

F = Fyp —DDEixr +%nm<u%>E

1
Fqo =—(LUE) D +cc
d2 16n( )

X, :mbﬁuxam+cc
8Q

0 agrees with standard ponderomotive force
= p = ponderomotive potential
= M = ponderomotive magnetization

F=-nly, +BxUxM
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Reactive ponderomotive forces drive no avg.
flows

<...> =flux-surface aerage
toroidal rotationisdriven by torque <RFz>

poloidal rotationis driven by a combination d <BF> and
<RFz>

identities

(O :%%u<RBeAw>

1 000982 0Q
BLQ)=—[d6 =0
o [ <BFp vanishes when F= Lj(scdar)
10 2
Rey IO ) =(0 M Rez ) = ———V{R*Bgll
(Reg (1) =() 1 (Reg ) =+ v(R BTy

0 [ <RFz> vanisheswhen I'l isadiagonal tensor
o ...
« can show that for cold-fluid pondromotive force

F=-nly,+BxUxM
(BFy)=0
(RR;)=0




Flux-surface-averaged flows are driven by

- direct wave-momentum absorption and
- dissipative stresses

Fais = Far +bx0Xy

K+K' 0 n— K
Fy =< EOwH - =
=" 40 w

* Fg1 = “photon” momentum absorptiont erm
0 drivesnet flows
0 €lectron or ion dissipation
o b x X = dissipative stress term
o drives bipolar sheared flows (no net momentum)
o significant only for ions
_ P
20
= where P isthe power absorbed into v

Xd

15
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Summary: considerable progress has been
made on the rf half of the problem

* the short wavelength modes needed for flow drive can now
be followed in sophisticated 2D codes

o fully EM
o integral equation solve for nonlocal effectskp ~ 1

0 mode conversion in 2D with poloidal magnetic field
effects

0 massively parallel, scaleable computations

o improved nonlocal nonlinear algorithms have been
developed for flow drive

. H‘ theory has been devel oped to calculate the forces driving
OWS

o nonlinear nonlocal theory
0 includesimportant 2D effects
0 %enﬁraliZfs Reynolds and magnetic stresses and to w >
i p -
0 theory necessitated and stimulated by new code
capabilities
* interesting physicsis emerging from these results

0 mode conversion scenarios can generate flows, aren't
restricted to direct launch IBW

0 mode conversion in 2D is subtle: ICW replaces IBW
in traditional scenarios (Perkins, 1977)
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Conclusions

ICRF field computations and the calculations of
their nonlinear consequences are at a mature
level

* integrated rf and turbulence simulations may now be
feasible

o start with open loop
» rf code givesforces, flows
= turbulence simulations give transport reduction

The results of an integrated effort in this area
could be

- interesting from a physics perspective and
- important from a practical perspective

rf smulation ¢ turbulence smulation = experiment

 deeper understanding of interaction of nonlinear forces,
flows, and plasmaresponse

» practically for experiments: aflexible knob for externa
control of ITB’s
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Is the effect important for turbulence?

theor etical

force - flows - Ws> Ymax ?

» force caculationis slid
» flowsrequire neoclasscd theory

0 handwave poloidal flows from neoclasscd viscosity

for TFTR IBW case I rough agreament with
observed flows

0 better estimates require neoclasscd codes (being
Investigated)

* nedal Ymax from turbulence mmmunity
empirical

« several hundeds of kW (< 1 MW) of dired launch IBW
have produced I TB effeds in experiments (e.g. FTU)

* many MW of fast Alfvén wave can be launched and the
mode wnversion efficiency can be >50% in scenarios
that are goodfor flow drive



