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Abstract. The modification of badkground plasma flows in a tokamak by applied rf waves is of
interest as a possble means of controlling turbulence, triggering the formation of internal
transport barriers. Here we extend previous work by developing the standard neoclassca
treament to enable i) an evaluation of locdized (in radius) poloidal and toroidal forces by the rf,
ii) a rigorous cdculation of the resulting poloidal and toroidal flow rates in the presence of
neoclasscd damping due to plasma viscosity and a phenomenologicd radial diffusion of
momentum, and iii) implicit treament of ambipdarity isaes in the presence of rf. As an
example, we mnsider IBW interadion within a narrow resonant ion-cyclotron layer where the
wave absorption and rf forces occur.

INTRODUCTION

Nonlinea forces arising from applied rf waves are of interest for the generation o
buk plasmaflows. Because sufficiently large rf-driven sheaed flows can in principle
suppressturbulence, it has been propaosed that rf power may be useful as an externd
control for triggering tokamak plasma transitions into high-confinement regimes.
Indeed there isintriguing experimenta evidencefor thisin several IBW experiments.

Our goal in the present paper isto pu previous dab model sheaed-flow drive work
[1-3] on a firm footing with resped to toroidal geometry and ambipalarity
considerations. This necessarily entail s a neoclassgcd approach to the problem. Our
treament follows most closely the procedure in Refs. 4 and 5 however, here we
explore further the cougding of toroida and pdoida flows in the presence of a
phenomenadlogicd radia diffusion d momentum. The latter effed is expeded to be
important for locdized (in radius) poloidal and toroida rf forces, and aso adds
significantly to the conceptual understanding of the resulting flows. The toroidad
formulation provides an implicit treament of ambipalarity issues in the presence of rf.

Asin Ref. 3,the driving rf forces are due to the locdized absorption d rf wavesin
a radialy narrow resonance layer in which bah pasma Larmor radius effeds and
disspation day important roles. The resulting forces and flows are bipdar in nature,
(i.e. changing sign aaoss the resonance layer) when the net momentum imparted by
the waves to the plasma is small; however, significant sheaed flows, suitable for
turbulence suppresson, can dill arise.  Furthermore, when momentum diffusion
dominates damping, net bulk plasma rotation can arise even when the wave
momentum inpu is negligible. Thisresult isin analogy to a similar situationin which
fast particles rather than rf nonli neaiti es are the momentum source[6].



TOROIDAL FORMULATION

Beginning with the momentum conservation equation in vedor form, including a
phenomenodlogicd diffusion coefficient D, we take toroidal and parallel comporents
to oltain the equations
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where p = nm;, Yis a radia flux coordinate, <> is a flux surface aerage, v is a
Jambian fador, and 6 and ( are the pdoida and toroidal angles respedively. In Egs.
(1) and (2), F is the total nonlinea force due to the rf waves (including the important
contributions from the rf presaure tensor discussed in Refs. [2] and [3]), and I is the
neoclasscd contribution that will give rise to the damping of poloidal flows. ThusF,
given explicitly in Ref. 3, isageneralization d the simple rf ponderomotive force

Equations (1) and (2) are standard (see eg. Refs. [4, §), except for the retention o
D in Eq. (2), which will be aiticd. Since (BDN) is propational to the pdoidal
flow velocity, Eqg. (2) would sean to suggest that the poloidal flow is driven by the
parallel comporent of F; however, thisisnat the cae, evenwhen D — 0.

Asauming incompressble bulk flows in toroidal geometry, we employ the standard
form for the velocity u =K(y)B + G(@)Rez with K and G to be determined. From
radial forcebalance G isrelated to the radia gradients and the radial rf force by
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Thus, the rf affeds the anbipdar radial eledric field E; by i) the toroidal rotation G
it drives through F, ii) the p;(J) heding profile for fixed G, andiii ) the explicit radial
forceFjy. Normally, the latter effed is negligible; but if not, the rf can also drive flux
surfacedistortions[7].
The equations for K and G can be simplified and decouped in several limits.
In the cae of locdized resporses (sharp gradients in G and K relative to the plasma
radius) the equation for K becmes
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where x is a locd radia variable, ' = d/dx, <>, is a weighted flux surface aerage
whose detalled form is unimportant here, and we have speaalized to the Pfirsch-
Schluter limit with ng the dasscd parallel ion viscosity. Note that when D — 0, Eq.
(4) does not recover EQ. (2) with D = 0. Equation (1) impliesthat GO /D asD - 0.
Thus, the diffusion term in Eqg. (2), Du; U DG, isnot negligible s D - 0. Equation
(4) rewvers the heuristic result that the poloidal flow K is driven by a force
comporent which is esentially pooidal, i.e. the rhs of Eq. (4). Equation (4) also
permits arigorous cdculation of forced flows in the presence of damping.

In the cae of small € = r/Ry, circular flux surface geometry, for general
colli sionality (banana, plateau ar Pfirsch-Schiiter) we obtain the uncouped equations

DO =-F (5)
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where b = B/B, J:pG§O(1+3£2/2) +pKBzg =puz, K =pKB =pug/bg,
KB =<B [ >. Here, Oristheusua cylindriczg Laplaceoperator.

It is draightforward to investigate Egs. (5) and (6) in various limiti ng cases of the
scde lengths of the rf absorption layer A, the diffusion scde A = [D(1+2¢2)/yg] Y2 and
the minor radiusa. The main results are asfollows. For Dz* 0, E.e. A << A, weobtain
ug = Fg / ypp where in the mllisional regime, yg =3v: /2R“v;; differs from the
standard expresson [8] by R2 - R2(1 + 2¢2). The standard result can be recovered
from the present theory when the time derivatives are retained and the unforced initi al
value problem is lved. For A << A << g the locd padoida rf force drives local
poloidal flows while the locd toroidal rf force drives bath local and globd toroidal
flows. Inthe strong diffusion limit, [Eq. (5) for toroida or Eq. (6) with A << A ~afor
poloidal] one can drive net flows with no dred rf momentum inpu when the
boundary condtionsat r = 0 and r = aprovide symmetry-breaking [6].

NUMERICAL EXAMPLE

The nonlinea force density on a fluid element due to second ader interadions in
the rf eledric field strength has been cdculated in considerable generality in Ref. 3.
The cdculations are fully eledromagnetic, and include @ntributions from the haot
plasma Bessl function terms, and the resulting rf-induced presaure tensor. While only
the paoida force @mmporent was required in Ref. 3, the toroidal force may reaily be
obtained from the expressons therein. The force mmporents of Ref. 3 are related to
those required here by e, = ¢y, &, =b ande, = b x g;. Two classs of poloida and
toroidal terms arise: those @rrespondng to dred momentum inpu by the waves
(propational to kg and k; respedively) and thase wrrespondng to a mnservative
redistribution & momentum (and hence perfed 0/0x derivatives).

As an illustration, results for a test case similar to ore treded in Ref. 2 are
presented: that of IBW absorption in a gyclotron layer. We mnsider a TFTR-like
triti um plasma, take ky = 0, and cefine x so that the w = 5Q; resonance s located at x
= 0. A one-dimensiona eikonal-based agorithm is employed to oltain the dedric
field profile nea the resonance layer, retaining the full Bessal and Z-function ion
resporse. Figure 1a) shows the Poynting flux and absorbed power for a cae with total
power absorption ~400 RV. The dedric field E, ~ 100V/cm (not shown) undergoes
abou 12 oscill ations between x = 5 and 2cm before its amplit ude becomes negligible,
justifying the ekonal limit. Figure 1b) shows the norinea force and resulting
poloidal flow for the parameters yg = 10/s and D = 200cm?/s. Note the bipolar nature
of Fg and the diffusive broadening of ug relative to Fg. The pesk value of ug = 2 km/s
(for this assumed D) is of the same order as that measured experimentally in TFTR [9]
and the profile shape shows qualitative areement with the experiment. The
cdculated toroidal flow velocity profile for this example (not shown) is= 30 km/sat r
= 0 and is constant out to the resonance layer (r = 46) after which it decays dowly to
zeroatr = a Itisdriven primarily by the net toroidal momentum of the waves, which
were taken to have an asymmetric spedrum with k, ~5 m-1.

The pdoida flow for this example is consistent with the estimate ug =
PsAIA2QDpV with the Py the total rf power and the relevant volume V = 412RrA.
For the toroidal flow, the estimateis u; = Pskzr2/wDpV where sincethe toroidal flows
are global V = 2r@Rr2. In urits of Km/s, MW, m, MHz, T, mZ/s, and 1#%m3 we
obtain Uy = 0.4 P/g2RrBDny and |, = 48 Pytkz/RfDnyqu with p(amu) the ion mass
and f(MHz) the rf frequency.
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FIGURE 1. a) Power absorption P (W/cm3) (solid) and Poynting flux S (W/cm?) (dashed) for IBW
absorption nea a gyclotron resonance layer (x = 0), b) resulting force Fy (arbitrary units) (dashed) and
poloidal flow velocity ug (krmv/s) (solid). Theinset shows ug over the full range of minor radius.

CONCLUSIONS

A formulation d rf-driven flows in toroidal geometry has been developed which
includes effeds arising from the geometry and from rf ambipdarity. It was siown
that retaining diffusion in the parallel momentum equation (as well as in the toroidal
equation) is critica, and results in Uy being driven by Fg rather than F. The results
enable arigorous cdculation d forced pdoida flows in the presence ok‘ damping by
viscosity. In the Pfirsch-Schitter regime the result differs dightly from the often
quaed damping rate for the decay of unforced flow. When dffusion is grong,
locdized rf forces can drive net global flows even withou dired wave momentum
inpu. Finaly, the flows appea to be of asignificant size for case of diredly launched
IBW, andare in qualitative ayreement with experimental data.
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