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In this paper, two-dimensional blob models of convective transport in the scrape-
off-layer (SOL) are generalized to include the internal temperature profile of the blob. 
This generalization provides a mechanism for blob internal spin and enables 
consideration of SOL energy transport. Solutions with aligned density and temperature 
contours satisfy the resulting "hot blob" equations and are considered here.  It is shown 
that spin increases blob coherence, prevents the formation of extended radial streamers or 
fingers, reduces the radial convection velocity due to mixing and mitigation of the 
curvature-induced charge polarization, and provides a new mechanism for poloidal 
motion of the blob.  Additionally, spinning blobs are shown to survive as coherent objects 
in the presence of weak externally sheared flows, and have blob speeds that depend on the 
sign of the spin relative to the external sheared flow.  The work provides strong 
motivation for investigating the physics of parallel disconnected blobs, and the 
relationship of spin and disconnection physics to ELM propagation and the density limit. 
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 2 

I. Introduction 

There is a growing recognition of the importance of convective transport in the 
scrape-off-layer (SOL) of tokamaks and other magnetic confinement devices.  Convective 
processes have been suggested as an explanation for the observed flattening of the plasma 
density profile in the far SOL,1 and two-dimensional imaging, as well as probe data, have 
observed intermittency, and coherent objects which may be responsible for the non-
diffusive component of the transport.2-5  Edge transport analysis has revealed a strong 
convective component to the observed radial flux.6  Theoretically, recent investigations 
have shown the existence of localized coherent "blobs", "fingers", and "fronts" or 
"streamers" of density that are convected radially outward  (i.e. in the direction of the 
major radius, R) in tokamak geometry by the magnetic curvature and grad-B drifts.7-11  
Because the electrons and ions in a local blob of density experience opposite curvature 
and grad-B drifts, charge polarization results.  In tokamak geometry, the resulting internal 
blob electric field is poloidal for a blob at the outboard midplane and results in a net 
outward drift of the blob.  This mechanism is analogous to the drift of the localized 
density enhancement from an injected pellet.12  Blobs are so named because of their 
structure in the two-dimensional plane perpendicular to the magnetic field B, and it 
should be noted that in three dimensions they are filamentary structures, elongated 
along B.  A short review of recent theoretical developments in blob physics is given in 
Ref. 13. 

Previous theoretical blob models have mainly focused on density transport 
relevant to the far SOL.  Parallel loss of excess electron temperature results in 
thermalization of the blob's electron temperature, Te, with the ambient background 
plasma in a time scale τE||.  For times t > τE||  the "thermalized" blob, considered in detail 
previously, can transport density but not temperature.  The enhanced particle transport to 
the wall from thermalized blob models provides a theoretical framework for 
understanding experimental regimes dominated by main chamber recycling.1   To obtain 
a more complete understanding of both heat and particle transport in a tokamak it is 
necessary to consider blobs which carry excess temperature as well as density.  This class 
of models, treated in the present paper, can potentially yield insights into the propagation 
of hot plasma ejected by phenomena such as edge localized modes (ELMs). An important 
goal of tokamak edge physics is to understand, and ultimately mitigate or control, the 
deposition of heat on the divertor plates.  This requires an understanding of the 
importance of perpendicular energy transport relative to the parallel channel.  In extreme 
cases where perpendicular energy transport is sufficiently rapid, it is possible that the 
divertor may be "short-circuited", with the result that energy would flow primarily 
radially into the wall or other hardware in the SOL.  To assess the conditions under which 
this is possible, theoretical mechanisms for convective heat transport and estimates of the 
convective velocity are necessary. That is the subject of the present paper.  Although our 
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present interest is primarily in understanding tokamaks, it will be apparent that many of 
the concepts apply to the SOL of magnetically confined plasmas in general. 

The main new theme explored in this paper is the consequences of a hot blob 
having an internal electron temperature profile, T(r).  For brevity we will call this the 
"hot" blob case, to distinguish it from the "thermalized" blob case considered previously 
where T(r) = constant.  When the blob is connected to end sheaths along the magnetic 
field lines, the internal blob temperature profile implies an internal electrostatic potential 
profile Φ(r) ~ 3 T(r) and hence an internal vθ = ∂Φ/∂r or rotation.  We will refer to this 
internal rotation as spin (to keep it distinct from background plasma rotation).   

As demonstrated in this paper, spin influences the net convection velocity of 
blobs.  The curvature-induced drift mechanism attempts to charge polarize the blobs.  
Spin rotates the separated charges to different angles with respect to the blob center and 
ultimately mixes them, resulting in mitigation of the charge-polarization mechanism.  It 
slows the blob's convection  velocity in x, stalling it in extreme cases, and in intermediate 
cases gives a mechanism for blob motion in y.  Here x and y are a local coordinate system 
with ex = R/R (tokamak radial) and ey = b × ex  (tokamak poloidal) where b = B/B.  
Thus, hot blobs that are sheath-connected and hence spinning are not as effective at either 
energy or particle transport as non-spinning blobs.   Other consequences of spin related to 
density convection will also be investigated. 

The plan of our paper is as follows. In Sec. II model equations for investigating 
hot blob transport will be presented.  In Sec. III both numerical and analytical results from 
these models will be presented.  Our conclusions are given in Sec. IV. 

II. Model Equations 

A minimal set of equations for understanding convective transport of hot blobs 
consists of the vorticity equation for the electrostatic potential and continuity equations 
for the plasma density, n, and electron temperature, T.  For simplicity we work in the cold 
ion limit.  Normalizing time to the inverse of the ion cyclotron frequency Ωi = ZeB/mic, 
space to a reference ion Larmor radius ρs = cs/ Ω, where cs2 = Te0/mi is the sound speed 
based on a reference temperature Te0, T to Te0, and n to a reference density, the 
fundamental equations take the form8 

 Φ∇ν−
∂

∂β
−Φ−Φ

α
=Φ∇ 2

B2/1
2

y
)nT(

n
)(

Tdt
d

 (1) 

 0
dt
dn

=  (2) 

 0
dt
dT

=  (3) 
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where 

 ∇⋅+
∂
∂

= v
tdt

d
 (4) 

 Φ∇×= bv  (5) 

with sheath parameter α = 2ρs/L|| where L|| is the parallel connection length to the 
sheaths, curvature parameter β = 2ρs/R and Bohm sheath potential ΦB = ΦB0T where 
typically ΦB0 ~ 3.  In Eq. (1) we have made the usual "Boussinesque" approximation 
∇⋅(n d/dt ∇Φ) → n d/dt ∇2Φ and divided through by n. The final term in Eq. (1) is 
regarded here as a phenomenological vorticity damping term.  A term of this form can be 
used to model Alfvén wave damping,14 parallel plasma viscosity or neutral friction.   
Parallel energy loss is neglected in Eq. (3), under the assumption that τc < τE|| where τc is 
a convective time scale of interest, to be defined subsequently. In the opposite limit, τc > 
τE||, the blob will quickly thermalize to the background temperature. 

Several limiting cases will be useful in the next section to elucidate the behavior 
of different terms and physical mechanisms.  The "thermalized blob equations" result 
from taking T = constant, which trivially solve  Eq. (3).  Since ΦB is then just a constant 
potential, it may be set to zero, leaving Eqs. (1) and (2) which are the equations studied in 
Refs. 7 and 8. 

For future convenience, we also define two subsidiary forms of the vorticity 
equation.  The first is the dissipative limit ν >> d/dt 

 
y

)nT(
n

qT
)1(

2/1

B
22

s ∂
∂

+Φ=Φ∇− a  (6) 

where as2 ≡ νΤ1/2/α and q ≡ β/α = L||/R.  The second is the hydrodynamic, thermalized 
blob case with T = 1 and ν << d/dt. 

 
y
n

n
)(

dt
d

B
2

∂
∂β

−Φ−Φα=Φ∇  (7) 

The mechanism for convective transport of blobs, is that the curvature term (∝ q 
or β) in Eqs. (6) or (7) drives an electrostatic potential Φ with y variation, and hence 
gives rise to a velocity vx = − ∂Φ/∂y. 

In the remained of the paper we specialize to the class of solutions with aligned 
density and temperature contours, and for simplicity consider the case T(n) = n.  Thus 
only one of Eqs. (2) and (3) need to be time advanced.  

Solutions for the various limits of these equations indicated will be explored in 
the next section. 
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III. Results 

We begin by exploring the difference in blob propagation in the thermalized and 
hot blob models., viz. Eq. (6) with T = constant and T(n) = n, first considering the non-
spinning ΦB = 0 limit.  In the hot blob model with T(n) = n, and momentarily dropping 
the as term for simplicity, the curvature-induced potential is 

 
y
n

qn2 2/1
∂
∂

=Φ  (8) 

which is to be compared with the result in the thermalized limit T = 1 

 
y
n

n
q

∂
∂

=Φ  (9) 

Because of the n1/2 vs. n-1 weightings of ∂n/∂y, the hot blob model gives a larger Φ and 
hence a larger velocity to the high density region near the blob maximum, while slowing 
the low density extremities of the blob.  In the absence of blob instabilities, a thermalized 
blob propagates as a coherent object (i.e. it maintains a relatively fixed or slowly evolving 
shape in its own moving reference frame), but a hot blob develops strong fingering or a 
radial streamer structure. 

Numerical results comparing these case are shown in Fig. 1. The blobs were 
initialized at t = 0 with a Gaussian density profile  

 f
22 n)2/rexp()r(n +−= a  (10) 

and allowed to evolve under Eqs. (2) and (6).  Parameters for this comparison are a = 10, 
q = 2.5, as = 5 and nf = 0.01.  To improve the quality of the numerical runs and avoid 
noise at the scale of the grid, a small diffusion term was added to Eq. (2), with D = 0.002 
for these runs.  For the thermalized blob case of Fig. 1 (a) we took T = constant = 0.57, 
choosing the numerical value of T for convenience [i.e. to make the final state at t = 2250 
fit on the same frame as the other cases in parts b) and c)] noting from Eq. (2) that  Φ, 
and the resulting blob velocity scale with qT3/2 in this case.  Although the thermalized 
blob equations permit an exact analytical solution7,8 (i.e. a Gaussian in a frame moving 
with velocity ux = q/a2) for these parameters, the blob is unstable15,16 and is beginning to 
break up along its leading edge. Turning to Fig 1 b), a finger or streamer is clearly seen in 
the hot blob result.  This finger can be considered as a nonlinear limit of the same 
curvature-driven instability, enhanced by the weighting discussed above in Eqs. (8) and 
(9).   

Fingers are prominent when as < a, as in the example of Fig 1 b).  In the opposite 
limit as > a (not shown) the term involving ∇2 in Eq. (6) dominates the determination of 
the potential.  Inversion of this operator smoothes the spatial structure of Φ and results in 
density evolution contours that are more reminiscent of a mushroom shape,14 rather than 
a sharp finger.   
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Spin dramatically alters the results, as can be seen in Fig. 1 c) where we solve the 
hot blob Eq. (6) with the same parameters, except that now we consider the strongly 
spinning case ΦB0 = 5.  First we note that spin stabilizes the curvature-driven instabilities 
and suppresses the development of fingers.  Spin convects perturbations through both the 
"bad" and "good" curvature sides of the blob mitigating instability. Furthermore, the flow 
pattern due to spin is necessarily sheared for any confined T(r) profile, and this shearing 
provides additional stabilization of curvature-driven modes.  However, a spinning blob 
may become unstable to rotational instabilities.  These are being addressed in a separate 
publication.17 

Although Eqs. (2) and (6) are already dimensionless (to the scales set by Ωi and 
ρs) a further scaling invariance of this system is apparent, and motivates normalizing 
space scales to a and time scales to the spin time τs = a2/ΦB0.  The resulting equations 
contain only two parameters: 22

s / aa and ε ≡ 2q/aΦB0.  For small ε, the blob is rapidly 
spinning, curvature imposes a small perturbation on the evolution of the system, and the 
lowest order density and potential are functions of r alone.  For larger ε (i.e. weaker spin), 
the blob begins to leave a trailing wake behind as it propagates.  An extreme case is 
illustrated in Fig. 2 with ε = 0.4.  [This corresponds to the same parameters as in Fig. 1 c) 
except that q = 10.]  Here, and all figures of this paper, the spin is clockwise.  The comet-
like tail forms because the blob leaves a trailing wake which is then spun around and left 
behind as the blob propagates. [The lower density wake is left behind because of the n3/2 
scaling of velocity implied by Eq. (8)]  Convective curvature-driven instability on the bad 
curvature (large x) side of the blob appears to be ejecting a plasma perturbation which 
would reach maximum amplitude at the bottom of the blob for clockwise spin.  The 
differential spin, being more rapid at smaller r, results in the observed pattern.  This 
explanation is more evident from movies than from the still frame shown here. 

The figure illustrates a downward motion in y of the blob which can be 
understood as follows.  Examine ∂n/∂y along the line y = y0 where (x0, y0) is the density 
maximum.  In the wake, x < x0, ∂n/∂y > 0 because of the ejected material in the comet-
like tail.  At the center, x = x0, ∂n/∂y = 0 by definition of the maximum.  Thus ∂/∂x 
(∂n/∂y) ∝ ∂Φ/∂x = vy < 0.  Our earlier spin-less theories of blob propagation have 
provided a mechanism for vx but not vy (except of course for a uniform E × B drift in a 
background potential).  The preceding discussion provides one candidate explanation of 
the more complicated poloidal and radial motion that is sometimes observed in 
simulations and imaging experiments.  A second mechanism for vy will be discussed 
later. 

So far we have only considered the solutions of the vorticity equation in the 
dissipative limit given by Eq. (6).  This has allowed an investigation of the role of the 
spin through the convective nonlinearity v⋅∇n.  It has been shown that this nonlinearity 
mitigates asymmetries in density.  This profoundly affects the blob dynamics but only 
influences the polarization-induced charge indirectly. 
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Next we investigate the hydrodynamic case given by Eq. (7) which contains the 
v⋅∇∇2 Φ nonlinearity, viz. the convection of vorticity or charge.  For this investigation, a 
code described in Ref. 16 has been employed with the addition of spin through ΦB = 
ΦB0T with T = n.  Results for the scaled x-velocity of blob propagation are shown in Fig. 
3.  When both the spin and vorticity convection term are neglected, the analytical model 
of Ref. 8 applies, the blob velocity has the simple scaling vx = q/a2 and results in a 
characteristic time for a blob to convect one blob radius of τc = a3/q.  This scaling leads 
to straight-line trajectories in Fig. 3.  For the non-spinning cases, comparing a = 30 and a 
= 10, the results show that the speed increase with smaller a is not quite proportional to 
1/a2 as embodied in the analytical scaling.  Rather there is a weaker dependence because 
of the importance of the vorticity convection term (v⋅∇∇2Φ > αΦ) at small a.16  
Comparing the spinning and non-spinning blobs for the same a, spinning blobs move 
more slowly than their non-spinning counterparts. Finally note that all blobs move at the 
same speed for t << τc, τs because there is not time for charge mixing by vorticity 
convection due to Kelvin-Helmholtz (KH) instability16 or spin. For the parameters of the 
figure, the scaled spin time τs/2τc is 0.11 for a = 10 and 0.04 for a = 30. 

The simulations employed to obtain Fig. 3 exhibit a rich variety of phenomena.  
At longer times than shown in the figure, there are significant ambiguities in the blob 
trajectories due to blob instabilities which distort the blob's shape, and in extreme cases, 
which destroy its coherence.  As noted previously, the curvature-driven and KH 
instabilities are present for non-spinning blobs.  In the spinning case, rotational 
instabilities with an azimuthal mode number of 2 are observed.17  These instabilities 
result in a pinwheel pattern (somewhat resembling a spiral galaxy) that ejects the outer 
region of the blob. A discussion of rotational instabilities and more detailed results of 
these simulations will be presented elsewhere.17  A second point of interest from these 
simulation results is that the blobs typically show motion in both x and y directions.  The 
mechanism for the slowing of vx and the generation of vy will be presented next. 

In situations for which the blob maintains coherency for many spin and 
convection times it is possible to understand the dynamics of the bulk blob propagation 
from a simple analytical model based on the physics of charge mixing that was discussed 
in the introduction.  We begin from Eq. (7) by transforming to the blob frame, which is 
translating with constant velocity u as yet undetermined. Let 

 ),r()r(B θφ+Φ=Φ  (11) 

and also consider n = n(r) on the RHS of Eq. (7).  The basic ordering is that ΦB ~ 1, 
∇ ∼ 1/a, where a is the blob radius in units of ρs (a >> 1), and α ~ β ~ 1/a4.  From this we 
see that φ ~ 1/a << ΦB.  Linearizing the convective derivative term for φ << ΦΒ, dropping 
order φ2 and noting that 0B

2
B =Φ∇∇⋅Φ∇×b , Eq. (7) becomes, in the blob frame 

 
y
n

n
)( 2

B
2

∂
∂β

−=αφ−φ∇
θ∂
∂

Ω+Φ∇∇⋅−φ uv  (12) 
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where vφ = b × ∇φ  is associated with the blob convection due to charge polarization and 
vB = b × ∇ΦB is associated with the spin.  Here, we have set vB⋅∇ = Ω ∂/∂θ where Ω = 
r-1 ∂ΦB/∂r, and also Eq. (12) presumes a solution that is steady-state in the blob frame.  
We note that the assumption vφ⋅∇∇2φ << αφ  requires φ << αa4, or assuming φ ~ q/a, a 
>> a

*
 ≡ (q/α)1/5.  The scale a

*
 is the fundamental dimensionless blob scale in the absence 

of spin and dissipation. 
To illustrate the physics, we simplify by considering the rigid rotor case, Ω  = 

const.  When blob spin is due to sheaths, this cannot happen for a blob with a confined 
T(r) profile, but here the rigid rotor assumption is actually only needed in the vicinity of 
the polarization charge which creates the velocity shear vφ − u.  In the rigid rotor limit we 
have ΦB = Ωr2/2, ∇2ΦB = 2Ω and ∇∇2ΦB = 0, thus the equation to be solved is 

 θ
∂
∂β

−=αφ−φ∇
θ∂
∂

Ω sin
r
n

n
2  (13) 

 Although it is simple to construct a general solution to Eq. (6), the most insight is 
gained by the small and large α limits.  Comparing the terms on the LHS of Eq. (6), the 
expansion parameter is seen to be W = Ω/(αa2) which is the ratio of charge transport by 
spin to parallel charge loss to the sheaths.  For W >> 1 we obtain 

 θ
∂
∂β

−=φ∇
θ∂
∂

Ω sin
r
n

n
2  (14) 

It can be seen that  
 θφ=φ cos)r(c  (15) 

This induced potential will cause an E×B drift that controls the blob's translation motion 
according to 

 
θ∂
φ∂θ

−
∂
φ∂

θ=
∂
φ∂

=
r

sin
r

cos
x

v y  (16) 

 
θ∂
φ∂θ

−
∂
φ∂

θ−=
∂
φ∂

−=
r

cos
r

sin
y

vx  (17) 

Using Eq. (15) and averaging over θ 
 0vx =  (18) 

 ( )cc
c

y r
rr2

1
r2

1
r2

1
v φ

∂
∂

=φ+
∂
φ∂

=  (19) 

where from Eq. (14) we estimate 

 ( )
aW

q
~

r
n

n

12
c ∂

∂β
∇Ω=φ

−
∗  (20) 
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where 222 r/1−∇=∇∗  i.e. )r(cos]cos)r([ 22 φ∇θ=θφ∇ ∗ . 
In the opposite limit W << 1 we can neglect Ω to lowest order in Eq. (13) to 

obtain 

 θφ=φ sin)r(s  (21) 

 
r
n

n
q

s ∂
∂

−=φ  (22) 

To this order one obtains the usual estimate for the blob velocity without spin, viz. 

 ( )sx r
rr2

1
v φ

∂
∂

−=  (23) 

 0v y =  (24) 

which implies vx ~ q/a2 .  The effect of Ω is then determined by higher order expansions. 
Iterating on Eq. (13) by using the lowest order solution, Eq. (21) in φ∇θ∂∂αΩ 2)/)(/(  
we obtain, through order W2 

 θ





 +

∂
∂

∇
α
Ω

+θ
∂
∂











+∇

α

Ω
−=φ cos...

r
n

n
q

sin
r
n

n
q

...1 24
2

2
 (25) 

This shows a reduction in vx and the development of vy as the parameter W is increased. 
In summary, W = Ω/(αa2) is the fundamental parameter that controls the velocity 

slowdown by spin.  For W << 1 spin is ineffective and vx ~ q/a2.  As W increases, we get 
a reduction in vx and the development of vy.  For W ~ 1 we expect vx ~ vy .  For W >> 1 
we find vx = 0 (to order 1/W) while vy ~ q/Wa2.  In this large spin limit, the charge 
polarization mechanism results in primarily poloidal rather than radial blob motion.  

In order of magnitude Ω ∼ ΦΒ/a2, but it is worth noting that for a Gaussian blob 
on a low density background, most of the induced charge occurs at r >> a (recall that ∇2φ 
≡ 0 for the vacuum case). Consequently the local value of Ω can be exponentially smaller 
than ΦΒ/a2. 

The preceding simple model is approximate because it neglects the complexities 
caused by instabilities and blob mass loss that are seen in the simulation, but it 
qualitatively describes the phenomena of the suppression of vx and the generation of vy 
due to spin-induced charge mixing.  Comparing with the simulations of Fig. 3, the model 
works well for the a = 10 case, predicting the observed factor-of-two slowdown in vx.  
For the a = 30 case, the model predicts negligible slowdown.  We speculate that the 
slowdown seen in the simulations for a = 30 is not the result of charge mixing but rather 
the result of the convective term v⋅∇n stabilizing the curvature instability (which is 
responsible for the apparent acceleration seen in the upper curve of Fig. 3).  This 
stabilization mechanism is the same one that was demonstrated in Fig. 1. 
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The remainder of this section will be devoted to studying the effects of an 
externally imposed sheared velocity field Vy(x) on the motion of blobs.  A blob in the 
SOL is naturally exposed to a sheared velocity field because it E × B drifts in the SOL 
electric field Ex = − ΦB0 ∂Te/∂x from the Bohm sheath potential due to the background 
temperature profile.   

Subtracting off a constant mean poloidal velocity, which is ignorable for the blob 
dynamics, we add a pure shear flow field by the replacement in Eq. (6) 

 2
0x0BB )/x()n(T aΦ+Φ→Φ  (26) 

For a Te(x) profile that decays exponentially in the SOL, the resulting shear coefficient 
Φx0 (∝ ∂2T/∂x2 at the blob center) is positive and corresponds to an external shear that 
opposes the spin of the blob.  We refer to this case as counter-shear.  Conversely, 
negative Φx0 implies co-shear.  Note that when Φx0 < ΦB0, Eq. (26) implies that the 
external shear flow at one blob radii x ~ r ~ a is small compared with the blob spin.     

In Fig. 4 we again launch a Gaussian blob from the origin at t = 0 and follow its 
evolution up to t = 4000 for a) co-shear, b) counter- shear and c) non-spinning cases.  
Parameters are the same as for Fig. 1 c) and Φx0 << 1 is given in the caption.  Comparing  
4 a) or b) with 4 c) we conclude that spin dramatically increases the coherency of the blob 
and allows coherent blob propagation even in the presence of external sheared flows that 
completely smear out and destroy the fingers (streamers) in c).   

In the non-spinning case 4 c) where we solve the hot blob equations [Eqs. (2) and 
(6) with T(n) = n and ΦB0 = 0], the external sheared flow strongly inhibits transport in the 
x direction. The periodicity in y of the simulation, which models the interaction of 
adjacent fingers [see the finger without external sheared flows in Fig. 1 b)], leads to the 
observed mixing as the shearing progresses.  In the presence of dissipation (D and as) the 
time-asymptotic state is uniform in y and hence non-propagating in x.  This transport 
inhibition of streamers by sheared flows is akin to well known results. 

In contrast, externally sheared flows do not destroy the blob coherency in the 
spinning cases, 4 a) and b) because in these cases the external sheared flows are weak 
compared with the blob spin, i.e. Φx0 << ΦB0.  The spin prevents the development of 
fingers, keeping each blob localized (and non-interacting with any neighbors). 

Comparing these two spinning cases in more detail, for the counter-shear case, 
corresponding to a "normal" decaying Te(x) background profile, a slight increase in the 
blob's x-velocity occurs due to the sheared flow, while a slight decrease results in the co-
shear case.  The changes in speed ∝ ∂n/∂y are consistent with the observed elongations of 
the blob in x and y for the counter and co cases respectively.  It should be noted that 
spinning blobs are subject to charge-induced mixing when Ω/αa2 > 1 as discussed 
following Eq. (25).  The role of external sheared flows in this regime remains to be 
investigated. 
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The differences in convective velocity that we have been considering are 
illustrated more dramatically in Fig. 5 which shows the time evolution of the position of 
the center of mass of the plasma (initiated as a Gaussian blob) for five comparative cases.  
The most rapid transport occurs in the case without spin or external sheared flow and the 
smallest transport occurs in the case that has external sheared flow without spin.  The 
effect of shear (Φx0) on the velocity of a spinning blob is not linear, and shows 
asymmetries with respect to sign.  The evolution of the counter-sheared case is very 
sensitive to Φx0 (which is why such a small value was chosen).  This sensitivity is 
probably a consequence of the fact that the external sheared flow combines with the spin 
to give a stagnation point. 

The present results for the interaction of hot blobs with external sheared flows can 
be compared with the results of similar studies for thermalized blobs, i.e. T(n) = constant.  
In Appendix A of Ref. 8 it was shown that the coherency and blob velocity vx of large (a 
>> as, a*

) thermalized blobs propagating through weak shear layers are not much affected 
by external sheared flows.  In Ref. 16, however it was shown that for a ~ a

*
 and (in the 

present notation) 5crit
0x0x )/)(/q( ∗≡Φ>Φ aaa strong deformation and some loss of 

coherency of the blob occurs as it passes through a localized sheared layer.  In general, 
loss of coherency is to be expected whenever the nonlinearities in the Φ∇2)dt/d(  term 
become significant, since this term is associated with the mode coupling and 
energy/vorticity cascades of hydrodynamic turbulence. 

IV. Discussion and Conclusions  

In this paper we have extended the theory of convective transport in the SOL by 
blobs to include the effects of electron energy as well as density transport.  This 
generalization requires the consideration of an internal temperature profile within the 
blob and leads naturally to internal blob spin when the blob is connected in the parallel 
direction to sheaths.  Both spinning and non-spinning solutions of the hot blob equations 
have been investigated.  

The main conclusions from this study are as follows.  While the thermalized blob 
equations that were considered previously have an exact solution that convects an isolated 
density blob in a vacuum without distortion, the hot blob equations without spin typically 
result in plasma fingers (also referred to in the literature as fronts or streamers) and 
mushrooms that propagate  forward at a rapid velocity while leaving behind a pronounced 
wake.   

Blob spin, normally present when the blobs connect to sheaths in the parallel 
direction,  introduces several important effects; (i) the blob coherence and symmetry are 
increased, (ii) the blob radial (i.e. in the direction ex = R/R) velocity is slowed, and (iii) 
two mechanisms for poloidal motion (i.e. in the direction ey = b × ex) of the blob are 
introduced.  Both the spin-induced convection of density v⋅∇n and of charge v⋅∇ 

∇2φ play a role in these phenomena.  It was shown by a relatively simple analytical model 
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that an important mechanism for the velocity dependence on spin is the spin-induced 
mixing of the curvature-generated charge separation. Coherency of the blob against 
internal curvature instabilities is enhanced by the spin; but, the blob may become unstable 
to rotational instabilities when ΦB0/αa4 >> 1.17   

Finally, the effect of externally imposed sheared-flows on convective transport 
was considered. This complements previous work done on the effect of sheared flows on 
thermalized non-spinning blobs.8,16 It was shown that while external poloidal velocity 
shear inhibits radial transport in the case of non-spinning fingers (i.e. radial streamers) 
through shearing-induced interactions with poloidally adjacent neighbors, for spinning 
blobs the interaction of the blob with the external velocity field depends on the sign of the 
external shear with respect to the spin.  Importantly, for large blobs (a > a

*
) spin permits 

the blob to pass coherently through a shear layer which would break up a non-spinning 
finger. 

In conclusion, hot blobs that are sheath-connected and hence spinning are not as 
effective at either energy or particle transport as non-spinning blobs.  Since spin is a 
natural consequence of sheath physics, this motivates further work into the conditions for 
parallel sheath connection and the behavior of blobs in the disconnected limit.  It is 
anticipated from the present results (where disconnection was modeled by artificial spin 
suppression) that a complete theory of disconnected blobs will show enhanced convective 
transport when compared with their connected, spinning counterparts.  If so, the roles of 
parallel connection and the presence or absence of spin may have significant implications 
for understanding the density limit.  In turbulence simulations relevant to the density 
limit18 it has been shown that rapid perpendicular energy transport, and concomitant 
cooling of the edge Te, acts synergistically with disconnection physics and increased 
resistivity at low Te.  The relationship of this observation to fundamental blob physics 
merits further study. 

Finally, we end with the caveat that the present paper has only explored the class 
of solutions with T = T(n).  Even though n and T obey identical advection equations, Eqs. 
(2) and (3), for time-scales t < τE||, more general solutions are possible, and may be of 
interest in understanding recent simulation results.19 
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Fig 1.  Density contours at t = 2250 of a blob that was released at t = 0 as a circular Gaussian with center at 

x  = y = 0:  a) thermalized density blob with T = constant (ΦB0 = 0), b) same case for a hot but non-

spinning blob with T(n) = n (ΦB0 = 0), and c) hot spinning blob (ΦB0 = 5).  Units are normalized to Ωi and 

ρs. Note that spin provides coherency by suppressing the curvature-induced instability seen in a) and the 

fingering seen in b).  Comparing b) and c), spin reduces the radial convection of the blob maximum. 
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Fig 2.  Weakly spinning blob (2q/aΦB0 = 0.4) at t = 1000 showing the development of a comet-like tail 

which arises from the wake in the presence of spin.  Note the y-displacement of the center from the launch 

point at x = y = 0, indicating motion in both radial (x) and poloidal (y) directions even though the curvature 

"force" is entirely radial. 
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Fig 3.  Normalized radial displacement ∆x of blob maximum vs. time normalized to blob convection time τc 

= a3/q. Numbers indicate the value of a.  The curves labeled "spin" have ΦB0 = 10, while the curves 

without the "spin" label have  ΦB0 = 0.  Note  that (i) the speed increase as a → 0 reflected in the scaling of 

τc is saturated by the vorticity convection term, (ii) for the same a, spinning blobs move more slowly than 

their non-spinning counterparts, and (iii) that all blobs move at the same speed for t << τc, τs where the spin 

time is τs = a2/ ΦB0 because there is not time for charge mixing by vorticity convection due to KH 

instability or spin. 
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Fig 4.  Effect of external sheared flows on blob evolution.  Shown above are density contours at t = 4000 of 

a blob that was released from the origin at t = 0 as a circular Gaussian:  a) a spinning blob in a strongly co-

sheared flow (Φx0 = −0.2, ΦB0 = 5), b) a spinning blob in a weakly counter-sheared flow  (Φx0 = 0.02, 

ΦB0 = 5), c) final state of a non-spinning blob for the same parameters and time as in a) but with ΦB0 = 0. 
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Fig 5.  Center of mass transport (radial position vs. time) for five comparative cases showing the effect of 

external sheared flows and spin. Cases with no external sheared flows are shown with a dashed curve. 

"Finger" is the non-spinning hot blob case of Fig 1 b) in the absence of external shear and  "sheared finger" 

is the same case with external sheared flow [i.e. the case of Fig. 4 c)].  Note that sheared flow strongly 

inhibits transport. "Co", "0" and "counter" refer to spinning blob cases. "Co" is the co-shear case of Fig. 

4 a).  "Counter" is the counter-shear case of Fig. 4 b).  "0" is the case of a spinning blob with no external 

shear shown in Fig. 1c).  For these spinning blob cases, the effect of sheared flow depends on the sign of the 

shear with respect to the spin. 

 


