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1 Introduction

This test was devised to verify the ability of the 2DX eigenvalue code to correctly
solve a simple fluid model relevant to edge turbulence in tokamaks. Since the
functionality of the 2DX code depends on both the source code itself and the
input file defining the system of equations to solve (structure file), this test
demonstrates both. Since a similar test was performed on an earlier version of
2DX, this verifies that the current version retains this functionality. Moreover,
since the structure file for this test represents a subset of a more general 6-field
model, many of the terms in that test are also verified.

This test compares 2DX results to approximate analytic solutions for relevant
eigenmodes of interest.

2 Description

2.1 Code structure

The 2DX code is a highly flexible eigenvalue solver designed for problems rel-
evant to edge physics in toroidal plasma devices. Its flexibility stems from the
use of a specialized input file containing instructions on how to set up a partic-
ular set of equations. Because of this, the 2DX code permits model equations
to be changed without altering its source code. The drawback to this approach
is that any change to the structure file represents a potential source of error,
necessitating re-verification. This problem is offset by the fact that the source
code remains unchanged, thus testing one structure file builds confidence in
the underlying code that interprets the structure file. Also, structure files can
be translated into analytic form, thus allowing the user to verify that the file
contains the equations intended.

The structure file contains two main parts: an elements section, which con-
structs the differential operators and other functions used in a particular set
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of equations, and a formula section, which assembles these into an actual set
of equations. This separation means that elements can be recycled in other
structure files. By testing one structure file, one builds confidence in the ele-
ments used in that file. The main source of error when switching to a different
structure file then is in the formula section, which can be manually verified by
translating into analytic form.

Regardless of the content of the structure file, the 2DX code is fundamentally
a finite-difference eigenvalue solver. As such, it is subject to the limitations of
any code of its type.

2.2 Model equations

For this test we use the following model equations [1]:
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2.3 Boundary conditions

This test case uses phase-shift periodic boundary conditions in the parallel di-
rection, and zero-derivative boundary conditions in the radial direction. The
phase shift in the parallel direction is given by:

ei2πnq (12)
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2.4 Profile setup

The formulas in Eq. 1-4 are normalized to Bohm units. Values are converted by
dividing input distances by ρs, and input magnetic fields are in Tesla. Output
eigenvalues are multiplied by ωci. Resistivity is given by the formula:

νr =
µ

.51σ
(13)

where

σ = 1.96
ωce
νei

(14)

The geometry used is a thin toroidal annulus with major radius R. Other
geometric effects are neglected, so that the domain is effectively a shearless slab.
Both normal and geodesic curvature are calculated as follows:

κn =
cos(y)

R
(15)

κg =
sin(y)

R
(16)

Parallel derivatives are calculated using the Jacobian factor 1/qR. Toroidal
mode number is set to zero. Binormal wavenumber is therefore also equal to
zero. In addition, a constant parameter Γ is used to give the GAM a positive
growth rate; physically, this represents nonlinear drive of the GAM by turbu-
lence.

3 Analytic results

Since the eigenmodes of the GAM model are not homogenous, there is no exact
analytic solution. An approximate solution can be found by assuming that δA
terms are small and that geodesic curvature has the form κg = κ̂g sin θeθ. For
purposes of this calculation, we normalize n and T to reference values, set µii
to zero, and set the Jacobian factor  = 1/qR. This results in the following
dispersion relation:

iω(ω2 − ω2
g) = −Γ(ω2 − ω2

s) (17)

where

ωs = k‖cs (18)
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(19)
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If Γ is small, this yields a frequency and growth rate:

ω = ωg +
iΓ

2 + 1/q2
(20)

In addition, there is also a zero frequency mode which can be identified as a
zonal flow. This has a growth rate:

ω =
iΓ

1 + 2q2
(21)

These approximations break down at certain specific values of q. This occurs
because of a resonance between the GAM and spatial harmoics of the sound
wave. The sound wave has frequency:

ωs =
m2

q2R2
(22)

Consequently, a resonance between ωs and ωg occurs at values of q that
satisfy the equation:

q =

√
m2 − 1

2
(23)

4 Numerical results

The code was tested by sweeping the variable q and plotting the fastest growing
eigenvalue. The parameters used in this test are as follows:

ρs = 1
R = 1000
δa = 100
n = 1
Te = 1
Ti = 0
δer = 1
µ = 1836
kψ = .2
Γ = .00001
B = 1
RBp = 1
ωci = 1
A more complete list of input values is shown in table 1.
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The results of this test are shown in Fig. 1. The raw data is also shown
in table 2. The red line is the growth rate predicted for the zonal flow mode,
whereas the yellow line is the growth rate predicted for the analytic GAM. The
blue line is the 2DX result. Note that the 2DX result agrees with whichever
of the two analytic results is greater, except at certain specific q values. These
values agree with those predicted by the formula in Eq. 23.
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nx 4 ny 32

dx 33.3333 dy .202683

ωci 1 n 0

µ 1836 νr .0000196078

q q0 kb 0

 .001/q0 kψ .2

κn .001 cos(y) κg .001 sin(y)

B 1 RBp 1

n0 1 Te 1

Γ .00001

Table 1: Non-dimensional profile functions and parameters used in the GAM

test case, as a function of q0.

Figure 1: Growth rate vs. q for the GAM model.
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q γ × 106 Zonal flow Analytic GAM q γ × 106 Zonal flow Analytic GAM

.1 9.80481 9.80392 .098039 2.1 4.41140 1.01833 4.49084

.2 9.26424 9.25926 .370370 2.2 4.51496 .936330 4.53184

.3 8.48054 8.47458 .762712 2.3 4.57988 .863558 4.56822

.4 7.58423 7.57576 1.21212 2.4 4.62225 .798722 4.60064

.5 6.67693 6.66667 1.66667 2.5 4.62246 .740741 4.62963

.6 5.82520 5.81395 2.09302 2.6 4.49110 .688705 4.65565

.7 5.06206 5.05051 2.47475 2.7 4.70994 .641849 4.67908

.8 4.39735 4.38596 2.80702 2.8 4.75274 .599520 4.70024

.9 3.82771 3.81579 3.09160 2.9 4.78082 .561167 4.71942

1.0 3.34361 3.33333 3.33333 3.0 4.80332 .526316 4.73684

1.1 2.93355 2.92398 3.53801 3.1 4.81994 .494560 4.75272

1.2 2.58617 2.57732 3.71134 3.2 4.81926 .465549 4.76723

1.3 3.12899 2.28311 3.85845 3.3 4.85264 .438982 4.78051

1.4 3.60623 2.03252 3.98374 3.4 4.86981 .414594 4.79270

1.5 3.88574 1.81818 4.09091 3.5 4.88342 .392157 4.80392

1.6 4.06130 1.63399 4.18301 3.6 4.89546 .371471 4.81426

1.7 4.15147 1.47493 4.26254 3.7 4.90607 .352361 4.82382

1.8 4.13123 1.33690 4.33155 3.8 4.91024 .334672 4.83266

1.9 3.50439 1.21655 4.39173 3.9 4.92539 .318269 4.84087

2.0 4.16704 1.11111 4.44444 4.0 4.93414 .303030 4.84848

Table 2: Growth rate vs. q for the GAM model.


