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1 Introduction

This test was devised to demonstrate and verify the ability of the 2DX eigenvalue
code to solve a kinetic resistive ballooning model. Kinetic in this context refers
to the inclusion of electron Landau damping into the basic physics model. Since
the 2DX code is by nature a fluid code, this represents a signficant extension of
the code’s capabilities. This extension is achieved through the use of an iterative
method which progressively refines approximations to kinetic terms.

Fluid codes can be used to model kinetic effects using gyrofluid or other
fluid moment models [1]. This offers a considerable advantage in computational
cost compared to a fully kinetic model. However, such models are at best ap-
proximations, and in some cases involve non-analytic functions of wavenumber,
hence cannot be expressed in sparse matrix form. The iterative method used in
this report solves these problems by ”tuning” the model equations to maximize
accuracy for a specific eigenmode of interest.

This test compares 2DX results to results from a Mathematica test of a
spectral kinetic model [2]. The spectral model uses an exact plasma response
function, and therefore may be considered as a fully kinetic benchmark case.

2 Description

2.1 Code structure

The 2DX code is a highly flexible eigenvalue solver designed for problems rel-
evant to edge physics in toroidal plasma devices. Its flexibility stems from the
use of a specialized input file containing instructions on how to set up a partic-
ular set of equations. Because of this, the 2DX code permits model equations
to be changed without altering its source code. The drawback to this approach
is that any change to the structure file represents a potential source of error,
necessitating re-verification. This problem is offset by the fact that the source
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code remains unchanged, thus testing one structure file builds confidence in
the underlying code that interprets the structure file. Also, structure files can
be translated into analytic form, thus allowing the user to verify that the file
contains the equations intended.

The structure file contains two main parts: an elements section, which con-
structs the differential operators and other functions used in a particular set
of equations, and a formula section, which assembles these into an actual set
of equations. This separation means that elements can be recycled in other
structure files. By testing one structure file, one builds confidence in the ele-
ments used in that file. The main source of error when switching to a different
structure file then is in the formula section, which can be manually verified by
translating into analytic form.

Regardless of the content of the structure file, the 2DX code is fundamentally
a finite-difference eigenvalue solver. As such, it is subject to the limitations of
any code of its type.

2.2 Model equations

For this test we use the following model equations:

γ∇2
⊥δφ =

2B

n
Crδp−
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∂‖∇2
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γδn = −δvE · ∇n (2)

−γ∇⊥2δA = νe∇2
⊥δA− µn∇‖δφ (3)

δp = (Te + Ti)δn+ n(δTe + δTi) (4)

Cr = b× κ · ∇ = −κgRBp∂x + i(κnkb − κgkψ) (5)

∇2
⊥ = −k2b − B(kψ − i∂xRBp)(1/B)(kψ − iRBp∂x) (6)

∂‖Q = B∇‖(Q/B) (7)

∇‖ = ∂y (8)

δvE · ∇Q = −ikz(RBp∂xQ)

B
δΦ (9)

νe = .51νrn/T
3/2
e (10)

In this notation, κg is geodesic curvature, κn is normal curvature, kb is
binormal wavenumber, kψ is radial wavenumber. RBp is poloidal flux density,
as polodial flux is used as a radial coordinate,  is the inverse Jacobian 1/JB
which is used to define the poloidal coordinate, and Q is any quantity. The
above equations are normalized to Bohm units, i.e. all distances are in units of
ρs and all time scales are in units of ω−1ci .

Kinetic effects are modeled by defining conductivity in terms of the plasma
response function:
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νe = µ/σ (11)
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iΩe

ω + iν0
ζ2Z ′(ζ) (12)
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ω + iν0

|k‖|
√

2vthe
(13)

where ν0 is the physical resistivity, as opposed to νe which in these equations is
used to model the effective resistivity.

Since the definition of ζ contains a non-analytic function of the wavenumber,
it cannot be expressed in terms of spatial finite difference operators. In order
to solve this problem, an iterative approach is used.

2.3 Iterative method

In order to calculate the plasma response function without using non-analytic
functions of wavenumber, a polynomial approximation is used. In order to make
this approximation as accurate as possible, the coefficients of this polynomial
are iteratively updated to produce the most accurate possible fit at a particular
wavenumber and growth rate. The growth rate for which the fit is to be opti-
mized can be calculated using the eigenvalue of a previous iteration of the code,
whereas the wavenumber can be calculated by doing simple numerical analysis
of the eigenvector.

In this approach, conductivity is first represented as a polynomial in k:

σ =
µ

νe(a+ bk2)
(14)

This formula can be represented in operator form by making minor modifi-
cations to Eq. 3. This yields:

−γ∇⊥2δA = νea∇2
⊥δA− νeb∇2

⊥∇2
‖δA− µn∇‖δφ (15)

The coefficients a and b are then calculated using the plasma response func-
tion:

a =
βk3σ0
2α2

(16)

b =
σ0(2α− βk)

2α2
(17)

α =
Ωe
ν + γ

ζ2Z ′(ζ) (18)

β = − Ωe
ν + γ

ζ3Z ′′(ζ) (19)



Appendix J: KRB benchmark 4

The wavenumber k‖ can be extracted from the eigenvector by taking an
average derivative:

k‖ =

√∑
i 

2
i |ψi − ψi−1|2

dy2
∑
i |ψi|2

(20)

2.4 Boundary conditions

This test case uses phase-shift periodic boundary conditions in the parallel di-
rection, and zero-derivative boundary conditions in the radial direction. The
phase shift in the parallel direction is given by:

δQ(y = 0) = δQ(y = 2π)e−i2πnq (21)

This ensures toroidal and poloidal periodicity in the field-line following coordi-
nate.

2.5 Profile setup

The formulas in Eq. 1-3 are normalized to Bohm units. Values are converted by
dividing input distances by ρs, and input magnetic fields are in Tesla. Output
eigenvalues are multiplied by ωci. Resistivity is given by the formula:

νr =
µ

.51σ0
(22)

where

σ0 = 1.96
ωce
νei

(23)

The geometry used is an idealized toroidal annulus with major radius R,
minor radius a, and thickness δa. The density profile is exponential with scale
length Ln, and temperature profiles are flat. Curvature is assumed, and is given
by:

κn =
cos(y)

R
(24)

The function q may be sheared, but shear is set to zero for the test case
given. The value of this constant q is given in Sec. 3.

Parallel derivatives are calculated using the Jacobian factor  = 1/qR.
Toroidal mode number is calculated by n = kza/q0.
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3 Numerical results

The code and iterative method were tested by sweeping the variable Te from
10 to 200. Ten iterations were used for each value for the kinetic method. The
results from the kinetic iterative method were compared to results from the fluid
model. In addition, a spectral calculation was used to determine the solution
for the kinetic case using the full Z function rather than an approximation [2].
The other parameters used were:

a = .75 cm
δa = .3 cm
R = 207.5 cm
Ln = 4 cm
Zeff = 1
B = 3 T
ne = 1013cm−3

mi/mp = 2
µ = 3674.32
Ti = 0
lnΛ = 24− Log(ne/Te)
The results of this test are shown in Fig. 1. In addition, a table of the raw

eigenvalue data is shown in table 2. This test compares the 2DX kinetic iterative
method (yellow diamonds), the 2DX fluid model (green triangles), the spectral
full kinetic model (blue circles), and the spectral fluid model (red squares). As
can be seen from this data, there are some slight discrepancies between 2DX and
the spectral method even in the fluid case. This indicates the relative limitations
of comparing a spectral to a spatial model; in particular, the spatial model
is subject to numerical dispersion due to finite resolution. The discrepancy
between the iterative and spectral kinetic methods is slightly larger, but it is
still small enough for the method to be useful. This discrepancy can be explained
because the eigenmode is not a pure sinusoidal function, so it does not have a
single wavenumber. The iterative method is designed to get as good as possible
a fit to a full plasma response function over a range of wavenumbers, but there
are limits to how good a fit is possible.
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nx 2 ny 64

dx .3/ρs dy .097331

γ γ(s−1)/1.437× 108 n 5

µ 3674.32 νr νeiµ/1.96ωce

q 3.3 kz 22ρs

 ρs668.25 kψ 0

κn ρs/202.5 cos(y) κg 0

B 3 RBp 1

Table 1: Non-dimensional profile functions and parameters used in the resistive

ballooning test case, as a function of the dimensional input kz(cm
−1).
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Figure 1: Growth rate vs. electron temperature for fluid and kinetic resistive

ballooning models. Yellow diamonds are 2DX results using the iterative kinetic

model. Green triangles are 2DX results using the fluid model. Blue circles are

solutions to the kinetic model using a spectral method, and red squares are

solutions to a fluid model using a spectral method.
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Te γ (2DX kinetic) γ (spectral kinetic) γ (2DX fluid) γ (spectral fluid)

10 81803 81079 81545 81007

20 105501 103325 103223 102137

30 124705 120139 116570 114943

40 144832 137440 126410 124286

50 166502 156785 134605 132036

60 188948 177778 142069 139109

70 211303 199440 149304 146005

80 232992 220954 156606 153013

90 253750 241840 164149 160306

100 273509 261883 172035 167982

110 292299 281027 180317 176090

120 310192 299295 189011 184644

130 327273 316746 198107 193630

140 343622 333449 207574 203015

150 359316 349472 217368 212751

160 374418 364882 227439 222781

170 388989 379736 237729 233047

180 403077 394085 248184 243489

190 416725 407975 258749 254053

200 429972 421445 269379 264688

Table 2: Growth rate vs. Te for the kinetic and fluid resistive ballooning models.


